Resilience of the Central Indian Forest Ecosystem to Rainfall Variability in the Context of a Changing Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Trend Analysis and Statistical Significance
2.3.2. Rainfall and NDVI Anomalies
2.3.3. Seasonal and Periodic Variability in the Vegetation and Rainfall
2.3.4. NDVI-Rainfall Ratio
2.3.5. Sensitivity to Spatial Resolution, Growth Period and Aggregation Method
3. Results
3.1. Long-Term Trend Analysis of Rainfall and Vegetation
3.2. Inter-Annual Variability of Rainfall Anomaly
3.3. Vegetation Response to Seasonal Rainfall Variation
3.4. Periodic (5 Yearly) Rainfall and Vegetation Sensitivity
3.5. Response of Vegetation Growth during Drought, Normal and Wet Years
3.6. Spatio-temporal Distribution of NDVI-Rainfall Ratio (NRR)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Miles, L.; Grainger, A.; Phillips, O. The impact of global climate change on tropical forest biodiversity in Amazonia. Glob. Ecol. Biogeogr. 2004, 13, 553–565. [Google Scholar] [CrossRef]
- Nobre, C.A.; Obregón, G.O.; Marengo, J.A.; Fu, R.; Poveda, G. Characteristics of Amazonian climate: Main features. In Amazonia and Global Change; Keller, M., Bustamante, M., Gash, J., Dias, P.S., Eds.; American Geophysical Union: Washington, DC, USA, 2009. [Google Scholar]
- DeFries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M.C. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178–181. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Global Forest Resources Assessment 2015 How are the World’s Forests Changing? Food and Agriculture Organization of the United Nations Rome: Rome, Italy, 2015; ISBN 978-92-5-109283-5. [Google Scholar]
- FAO. Global Forest Resources Assessment 2020; Main report; FAO: Rome, Italy, 2020. [Google Scholar]
- Muluneh, A.; Van Loon, E.; Bewket, W.; Keesstra, S.; Stroosnijder, L.; Burka, A. Effects of long-term deforestation and remnant forests on rainfall and temperature in the Central Rift Valley of Ethiopia. For. Ecosyst. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Leite-Filho, A.T.; Soares-Filho, B.S.; Davis, J.L.; Abrahão, G.M.; Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 2021, 12, 1–7. [Google Scholar] [CrossRef]
- Houet, T.; Verburg, P.H.; Loveland, T.R. Monitoring and modelling landscape dynamics. Landsc. Ecol. 2009, 25, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Weisberg, J.P.; Bristow, A.N. Landsat remote sensing approaches for monitoring long-term tree cover dynamics in semi-arid woodlands, Comparison of vegetation indices and spectral mixture analysis. Remote Sens. Environ. 2012, 119, 62–71. [Google Scholar] [CrossRef]
- Wulder, M. Optical remote sensing techniques for the assessment of forest inventory and biophysical parameters. Prog. Phys. Geogr. 1998, 22, 449–476. [Google Scholar] [CrossRef]
- McIver, D.; Wheaton, E. Tomorrow’s forests, adapting to a changing climate. Clim. Change 2005, 70, 273–282. [Google Scholar] [CrossRef]
- Beck, P.S.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- Körner, C.; Hoch, G. A test of tree line theory on a Montane Permaforest island. Arct. Antarct. Alp. Res. 2006, 38, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.X.; Davies, S.J.; Ashton, P.S.; Bunyavejchewin, S.; Supardi, M.N.N.; Kassim, A.R.; Tan, S.; Moorcroft, P.R. Variability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forests. Proc. R. Soc. B Boil. Sci 2012, 279, 3923–3931. [Google Scholar] [CrossRef] [PubMed]
- Stocker, B.D.; Zscheischler, J.; Keenan, T.F.; Prentice, I.C.; Peñuelas, J.; Seneviratne, S.I. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 2018, 218, 1430–1449. [Google Scholar] [CrossRef] [Green Version]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
- Seddon, A.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, J.K.; Berry, J.; Ciais, P.; Zhang, Y.; Gentine, P. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci. Adv. 2020, 6, eabb7232. [Google Scholar] [CrossRef]
- Aubry-Kientz, M.; Rossi, V.; Wagner, F.; Hérault, B. Identifying climatic drivers of tropical forest dynamics. Biogeosciences 2015, 12, 5583–5596. [Google Scholar] [CrossRef] [Green Version]
- Scranton, K.; Amarasekare, P. Predicting phenological shifts in a changing climate. Proc. Natl. Acad. Sci. USA 2017, 114, 13212–13217. [Google Scholar] [CrossRef] [Green Version]
- Bohlman, S.A. Landscape patterns and environmental controls of deciduousness in forests of central Panama. Glob. Ecol. Biogeogr. 2010, 19, 376–385. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Raghubanshi, A.S.; Singh, J.S. Plant functional traits with particular reference to tropical deciduous forests: A review. J. Biosci. 2011, 36, 963–981. [Google Scholar] [CrossRef]
- Li, C.; Qi, J.; Yang, L.; Wang, S.; Yang, W.; Zhu, G.; Zou, S.; Zhang, F. Regional vegetation dynamics and its response to climate change—A case study in the Tao River Basin in Northwestern China. Environ. Res. Lett. 2014, 9, 125003. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Burke, I.C.; Lauenroth, W.K. Land use impact on ecosystem functioning in eastern Colorado, USA. Glob. Change Biol. 2001, 7, 631–639. [Google Scholar]
- Olsson, L.; Eklundh, L.; Ard, J. A recent greening of the Sahel—Trends, patterns and potential causes. J. Arid Environ. 2005, 63, 556–566. [Google Scholar] [CrossRef]
- Krishnaswamy, J.; John, R.; Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Change Biol. 2013, 20, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Jeganathan, C.; Rathore, V.S. Improved NDVI based proxy leaf-fall indicator to assess rainfall sensitivity of decid-uousness in the central Indian forests through remote sensing. Sci. Rep. 2020, 10, 17638. [Google Scholar] [CrossRef] [PubMed]
- Griffin, K.L.; Prager, C.M. Where does the carbon go? Thermal acclimation of respiration and increased photosynthesis in trees at the temperate-boreal ecotone. Tree Physiol. 2017, 37, 281–284. [Google Scholar] [CrossRef]
- Ravindranath, N.; Sukumar, R. Climate Change and Tropical Forests in India. Clim. Change 1998, 39, 563–581. [Google Scholar] [CrossRef]
- Polanski, S.; Fallah, B.; Befort, D.J.; Prasad, S.; Cubasch, U. Regional moisture change over India during the past Millennium: A comparison of multi-proxy reconstructions and climate model simulations. Glob. Planet. Change 2014, 122, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.V.; Naidu, C.V.; Prasanna, K. Inconsistency in the Frequency of Rainfall Events in the Indian Summer Monsoon Season. Int. J. Climatol. 2019, 39, 4907–4923. [Google Scholar]
- Chaturvedi, R.K.; Gopalakrishnan, R.; Jayaraman, M.; Bala, G.; Joshi, N.V.; Sukumar, R.; Ravindranath, N.H. Impact of cli-mate change on Indian forests: A dynamic vegetation modeling approach. Mitig. Adapt. Strateg. Glob. Change 2010, 16, 119–142. [Google Scholar] [CrossRef]
- Lejeune, Q.; Edouard, L.D.; Benoit, P.G.; Sonia, I.S. Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Clim. Dyn. 2015, 44, 2769–2786. [Google Scholar] [CrossRef] [Green Version]
- Davidson, E.A.; De Araújo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Bustamante, M.; Coe, M.; DeFries, R.S.; Keller, M.; Longo, M.; et al. The Amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef]
- Kumar, V.; Jain, S.K.; Singh, Y. Analysis of long-term rainfall trends in India. Hydrol. Sci. J. 2010, 55, 484–496. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ritika, K.; Terray, P.; Murtugudde, R.; Ashok, K.; Goswami, B.N. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 2015, 6, 7423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goswami, B.N.; Venugopal, V.; Sengupta, D.; Madhusoodanan, M.S.; Xavier, P.K. Increasing Trend of Extreme Rain Events Over India in a Warming Environment. Science 2006, 314, 1442–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajeevan, M.; Bhate, J.; Jaswal, A.K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 2008, 35, L18707. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ghosh, S.; Pathak, A.; Athulya, R.; Mujumdar, M.; Murtugudde, R.; Terray, P.; Rajeevan, M. A threefold rise in widespread extreme rain events over central India. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Malhi, Y.; Aragão, L.E.O.C.; Galbraith, D.; Huntingford, C.; Fisher, R.; Zelazowski, P.; Sitch, S.; McSweeney, C.; Meir, P. Ex-ploring the likelihood and mechanism of a climate-change induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 2009, 106, 20610–20615. [Google Scholar] [CrossRef] [Green Version]
- Cox, P.M.; Pearson, D.; Booth, B.B.; Friedlingstein, P.; Huntingford, C.; Jones, C.D.; Luke, C.M. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 2013, 494, 341–344. [Google Scholar] [CrossRef]
- Bhargava, S.; Sawant, K. Drought stress adaptation: Metabolic adjustment and regulation of gene expression. Plant Breed. 2012, 132, 21–32. [Google Scholar] [CrossRef]
- Cristiano, E.; Ten Veldhuis, M.-C.; Van de Giesen, N. Spatial and temporal variability of rainfall and their effects on hydro-logical response in urban areas—A review. Hydrol. Earth Syst. Sci. 2017, 21, 3859–3878. [Google Scholar] [CrossRef] [Green Version]
- Synodinos, A.D.; Tietjen, B.; Lohmann, D.; Jeltsch, F. The impact of inter-annual rainfall variability on African savannas changes with mean rainfall. J. Theor. Biol. 2018, 437, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Conte, A.; Fares, S.; Salvati, L.; Savi, F.; Matteucci, G.; Mazzenga, F.; Spano, D.; Sirca, C.; Marras, S.; Galvagno, M.; et al. Ecophysiological Responses to Rainfall Variability in Grassland and Forests Along a Latitudinal Gradient in Italy. Front. For. Glob. Change 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ciais, P.; Wang, Y.; Zhu, D. Divergent response of seasonally dry tropical vegetation to climatic variations in dry and wet seasons. Glob. Change Biol. 2018, 24, 4709–4717. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.; Gadgil, S.; Patwardhan, S. Monsoon Variability, the 2015 Marathwada Drought and Rainfed Agriculture. Curr. Sci. 2016, 111. [Google Scholar] [CrossRef]
- Champion, H.G.; Seth, S.K. A Revised Survey of the Forest Types of India; Government of India Publication: New Delhi, India, 1968.
- ISFR. State of Forest Report Forest Survey of India; Ministry of Environment and Forests, Government of India: Dehradun, India, 2019.
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Michaelsen, J. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data. 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote. Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Didan, K.; Barreto, A.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series); Version 3.00 (Collection 6); The University of Arizona: Tucson, AZ, USA, 2015. [Google Scholar]
- Roy, P.S.; Behera, M.D.; Murthy, M.; Roy, A.; Singh, S.; Kushwaha, S.; Jha, C.; Sudhakar, S.; Joshi, P.; Reddy, S.; et al. New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. Int. J. Appl. Earth Obs. Geoinformation 2015, 39, 142–159. [Google Scholar] [CrossRef]
- Jeganathan, C.; Dash, J.; Atkinson, P.M. Characterising the spatial pattern of phenology for the tropical vegetation of India using multi-temporal MERIS chlorophyll data. Landsc. Ecol. 2010, 25, 1125–1141. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote. Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Pastor-Guzman, J.; Dash, J.; Atkinson, P.M. Remote sensing of mangrove forest phenology and its environmental drivers. Remote. Sens. Environ. 2018, 205, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; et al. Remote sensing of vegetation and land-cover change in Arctic Tundra ecosystems. Remote Sens. Environ. 2004, 89, 281–308. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Deb, D.; Mondal, S. Assessment of Rainfall Variability and its Impact on Groundnut Yield in Bundelkhand Region of India. Curr. Sci. 2019, 117. [Google Scholar] [CrossRef]
- Panda, A.; Sahu, N. Trend analysis of seasonal rainfall and temperature pattern in Kalahandi, Bolangir and Koraput districts of Odisha, India. Atmos. Sci. Lett. 2019, 20, e932. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, P.M.; Dash, J.; Jeganathan, C. Amazon vegetation greenness as measured by satellite sensors over the last decade. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.; Huang, F.; Zhai, H. Monitoring Spatio-Temporal Changes of Terrestrial Ecosystem Soil Water Use Efficiency in Northeast China Using Time Series Remote Sensing Data. Sensors 2019, 19, 1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Rich, P.M.; Price, K.P.; Kettle, W.D. Relations between NDVI and tree productivity in the central Great Plains. Int. J. Remote. Sens. 2004, 25, 3127–3138. [Google Scholar] [CrossRef]
- Park, T.; Ganguly, S.; Tømmervik, H.; Euskirchen, E.S.; Høgda, K.-A.; Karlsen, S.R.; Brovkin, V.; Nemani, R.R.; Myneni, R. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett. 2016, 11, 084001. [Google Scholar] [CrossRef]
- Rajan, H.; Jeganathan, C. Understanding Spatio-temporal Pattern of Grassland Phenology in the western Indian Himalayan State. J. Indian Soc. Remote. Sens. 2019, 47, 1137–1151. [Google Scholar] [CrossRef]
- Shukla, A.N.; Kumar, B.; Srivastava, S.K. Floristic composition and vegetation types of Rewa District in Madhya Pradesh: An overview. Ann. For. 2010, 18, 283–296. [Google Scholar]
- Rathoure, A.K. Ecological status for Ratapani wild life sanctuary, Raisen (MP) India. Biodivers. Int. J. 2018, 2, 153–170. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.K.; Sahu, S.; Singh, P. Assessment of Richness of Diversity between Various Species of Vegetation Type and Their Threat Status in Mukundpur Forest Area, Satna District, Madhya Pradesh, India. J. Agric. Ecol. Res. Int. 2018, 16, 1–16. [Google Scholar] [CrossRef]
- Mungi, N.A.; Qureshi, Q.; Jhala, Y.V. Expanding niche and degrading forests: Key to the successful global invasion of Lantana camara (sensu lato). Glob. Ecol. Conserv. 2020, 23, e01080. [Google Scholar] [CrossRef]
- Singh, V.P. Flora of Madhya Pradesh (Western Part); Scientific Publishers: Jodhpur, India, 2014. [Google Scholar]
- Paul, S.; Ghosh, S.; Oglesby, R.; Pathak, A.; Chandrasekharan, A.; Ramsankaran, R. Weakening of Indian Summer Monsoon Rainfall due to Changes in Land Use Land Cover. Sci. Rep. 2016, 6, 32177. [Google Scholar] [CrossRef] [Green Version]
- Putnam, A.E.; Broecker, W.S. Human-induced changes in the distribution of rainfall. Sci. Adv. 2017, 3, e1600871. [Google Scholar] [CrossRef] [Green Version]
- Rai, P.; Dimri, A.P. Changes in rainfall seasonality pattern over India. Meteorol. Appl. 2019, 27. [Google Scholar] [CrossRef] [Green Version]
- Reddy, C.S.; Rajashekar, G.; Krishna, P.H.; Jha, C.; Dadhwal, V. Multi-source and multi-date mapping of deforestation in Central India (1935–2010) and its implication on standing phytomass carbon pool. Ecol. Indic. 2015, 57, 219–227. [Google Scholar] [CrossRef]
- Moorthy, K.K.; Babu, S.S.; Manoj, M.R.; Satheesh, S.K. Buildup of aerosols over the Indian Region. Geophys. Res. Lett. 2013, 40, 1011–1014. [Google Scholar] [CrossRef]
- Thomas, A.; Sarangi, C.; Kanawade, V.P. Recent Increase in Winter Hazy Days over Central India and the Arabian Sea. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sarangi, C.; Tripathi, S.N.; Kanawade, V.P.; Koren, I.; Pai, D.S. Investigation of the aerosol–cloud–rainfall association over the Indian summer monsoon region. Atmospheric Chem. Phys. Discuss. 2017, 17, 5185–5204. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, J.; Chen, M.; Xu, X.; Wang, Z.; Wang, B.; Wang, C.; Piao, S.; Lin, W.; Miao, G.; et al. Field evidences for the positive effects of aerosols on tree growth. Glob. Chang. Biol. 2018, 24, 4983–4992. [Google Scholar] [CrossRef]
- Chakraborty, A.; Seshasai, M.; Reddy, C.S.; Dadhwal, V. Persistent negative changes in seasonal greenness over different forest types of India using MODIS time series NDVI data (2001–2014). Ecol. Indic. 2018, 85, 887–903. [Google Scholar] [CrossRef]
- Bhelawe, S.; Chaudhary, J.L.; Nain, A.S.; Singh, R.; Khavse, R.; Chandrawanshi, S.K. Rainfall Variability in Chhattisgarh State Using GIS. Curr. World Environ. 2014, 9, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wylie, B.; Tieszen, L.L.; Reed, B.C. An Analysis of Relationships among Climate Forcing and Time-Integrated NDVI of Grasslands over the U.S. Northern and Central Great Plains. Remote. Sens. Environ. 1998, 65, 25–37. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Guo, Q.; Henderson, M.; Ji, W.; Li, Y.; Tao, S. Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
- Huang, L.; He, B.; Han, L.; Liu, J.; Wang, H.; Chen, Z. A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data. Sci. Total. Environ. 2017, 601, 1097–1107. [Google Scholar] [CrossRef]
- Zeng, C.; Zhang, F.; Wang, Q.; Chen, Y.; Joswiak, D.R. Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau. J. Hydrol. 2012, 478, 148–156. [Google Scholar] [CrossRef]
- White, A.B.; Kumar, P.; Tcheng, D. A data mining approach for understanding topographic control on climate-induced in-terannual vegetation variability over the United States. Remote Sens. Environ. 2005, 98, 1–20. [Google Scholar] [CrossRef]
- Propastin, P.A.; Kappas, M.; Muratova, N.R. Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003. J. Environ. Inform. 2008, 12, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Guli·jiapaer, G.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, W.; Fu, J. Vegetation response to precipitation anomalies under different climatic and biogeographical con-ditions in China. Sci. Rep. 2020, 10, 830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samanta, D.; Rajagopalan, B.; Karnauskas, K.B.; Zhang, L.; Goodkin, N.F. La Niña’s Diminishing Fingerprint on the Central Indian Summer Monsoon. Geophys. Res. Lett. 2020, 47, e2019GL086237. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Vittal, H.; Sharma, T.; Karmakar, S.; Kasiviswanathan, K.S.; Dhanesh, Y.; Sudheer, K.P.; Gunthe, S.S. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes. PLoS ONE 2016, 11, e0158670. [Google Scholar] [CrossRef] [PubMed]
SRA | Anomaly Classes | 2002 | 2011 | 2013 |
---|---|---|---|---|
<−2 | Extremely Dry | 13.99 | 0.84 | 0 |
−2–−1 | Very Dry | 50.3 | 11.21 | 0.01 |
−1–−0.5 | Moderately Dry | 21.05 | 6.02 | 0.61 |
−0.5–0 | Normal | 12.9 | 11.58 | 4.59 |
0–0.5 | Normal | 1.25 | 24.89 | 15.35 |
0.5–1 | Moderately Wet | 0.52 | 31.33 | 18.29 |
1–2 | Very Wet | 0 | 14.08 | 35.93 |
>2 | Extremely Wet | 0 | 0.05 | 25.23 |
Rainfall (mm) | Epoch 1 2001–2005 | Epoch 2 2006–2010 | Epoch 3 2011–2015 | Epoch 4 2016–2018 |
<800 | 7.31 | 4.84 | 2.23 | 1.78 |
800–1000 | 8.65 | 9.40 | 6.86 | 7.74 |
1000–1200 | 15.55 | 16.63 | 15.34 | 13.53 |
1200–1500 | 47.22 | 36.26 | 46.62 | 47.03 |
1500–1800 | 19.22 | 30.90 | 26.65 | 27.75 |
>1800 | 2.05 | 1.97 | 2.30 | 2.18 |
NDVI | Epoch 1 2001–2005 | Epoch 2 2006–2010 | Epoch 3 2011–2015 | Epoch 4 2016–2018 |
<0.15 | 0.31 | 0.26 | 0.22 | 0.08 |
0.15–0.30 | 1.24 | 0.74 | 0.40 | 0.41 |
0.30–0.40 | 13.35 | 9.31 | 6.21 | 7.42 |
0.40–0.50 | 35.12 | 36.63 | 33.37 | 33.41 |
0.50–0.60 | 32.47 | 33.15 | 33.72 | 33.46 |
0.60–0.70 | 15.66 | 17.51 | 21.80 | 21.29 |
>0.70 | 1.85 | 2.40 | 4.28 | 3.93 |
Rainfall (mm) | Phase 1 (2nd–1st Epoch) | Phase 2 (3rd–2nd Epoch) | Phase 3 (4th–3rd Epoch) |
−740–−200 | 1.06 | 8.26 | 2.37 |
−200–−100 | 13.87 | 12.47 | 14.43 |
−100–−50 | 4.03 | 16.44 | 12.66 |
−50–0 | 7.39 | 13.07 | 17.28 |
0–50 | 14.48 | 9.92 | 21.49 |
50–100 | 12.97 | 13.40 | 18.93 |
100–699 | 46.20 | 26.44 | 12.84 |
NDVI | Phase 1 (2nd–1st Epoch) | Phase 2 (3rd–2nd Epoch) | Phase 3 (4th–3rd Epoch) |
−0.38–−0.06 | 0.47 | 0.27 | 0.29 |
−0.06–−0.03 | 0.31 | 0.16 | 3.69 |
−0.03–−0.01 | 4.86 | 1.32 | 26.77 |
−0.01–0 | 14.11 | 5.38 | 30.49 |
0–−0.01 | 28.45 | 15.93 | 24.36 |
0.01–0.03 | 41.20 | 59.97 | 13.29 |
0.03–0.48 | 10.60 | 16.97 | 1.11 |
NRR Class | Dry Year (2002) | Normal Year (2011) | Wet Year (2013) | Long-Term Mean |
1–50 | 0.65 | 4.06 | 6.31 | 1.81 |
50–70 | 5.05 | 14.98 | 28.85 | 8.24 |
70–90 | 20.08 | 42.10 | 43.64 | 40.65 |
90–110 | 35.90 | 26.39 | 18.33 | 39.60 |
110–130 | 27.68 | 10.23 | 2.56 | 8.66 |
130–150 | 8.21 | 1.97 | 0.30 | 1.00 |
150–250 | 2.43 | 0.27 | 0.01 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, B.; Jeganathan, C.; Rathore, V.S.; Behera, M.D.; Singh, C.P.; Roy, P.S.; Atkinson, P.M. Resilience of the Central Indian Forest Ecosystem to Rainfall Variability in the Context of a Changing Climate. Remote Sens. 2021, 13, 4474. https://doi.org/10.3390/rs13214474
Singh B, Jeganathan C, Rathore VS, Behera MD, Singh CP, Roy PS, Atkinson PM. Resilience of the Central Indian Forest Ecosystem to Rainfall Variability in the Context of a Changing Climate. Remote Sensing. 2021; 13(21):4474. https://doi.org/10.3390/rs13214474
Chicago/Turabian StyleSingh, Beependra, Chockalingam Jeganathan, Virendra Singh Rathore, Mukunda Dev Behera, Chandra Prakash Singh, Parth Sarathi Roy, and Peter M. Atkinson. 2021. "Resilience of the Central Indian Forest Ecosystem to Rainfall Variability in the Context of a Changing Climate" Remote Sensing 13, no. 21: 4474. https://doi.org/10.3390/rs13214474