Mapping a Paddy Rice Area in a Cloudy and Rainy Region Using Spatiotemporal Data Fusion and a Phenology-Based Algorithm
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Optical Remote Sensing Data and Preprocessing
2.2.2. Paddy Rice Crop Calendar
2.2.3. Field Survey Data
2.2.4. Auxiliary Data
3. Method
3.1. Removal of Thick Clouds
3.2. FSDAF
3.3. Phenology-Based Paddy Rice Mapping Algorithm
3.3.1. Identification of Flooding Signal
3.3.2. Generating Other Land Cover Masks to Reduce Potential Impacts
3.4. Accuracy Assessment
3.4.1. Evaluation of the MNSPI Approach and the FSDAF Model
3.4.2. Accuracy Assessment of Paddy Rice Map
4. Results
4.1. Accuracy of the MNSPI Approach and the FSDAF Model
4.2. Fused Time Series Data
4.3. Paddy Rice Map and Accuracy Assessment
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuenzer, C.; Knauer, K. Remote sensing of rice crop areas. Int. J. Remote Sens. 2013, 34, 2101–2139. [Google Scholar] [CrossRef]
- Gilbert, M.; Golding, N.; Zhou, H.; Wint, G.R.; Robinson, T.P.; Tatem, A.J.; Lai, S.; Zhou, S.; Jiang, H.; Guo, D.; et al. Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia. Nat. Commun. 2014, 5, 4116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hongo, C.; Sigit, G.; Shikata, R.; Tamura, E. Estimation of water requirement for rice cultivation using satellite data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar]
- Sass, R.L.; Cicerone, R.J. Photosynthate allocations in rice plants: Food production or atmospheric methane? Proc. Natl. Acad. Sci. USA 2002, 99, 11993–11995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vliet, J.; Eitelberg, D.A.; Verburg, P.H. A global analysis of land take in cropland areas and production displacement from urbanization. Glob. Environ. Chang. 2017, 43, 107–115. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Y.; Ma, M. Mapping Paddy Rice with Satellite Remote Sensing: A Review. Sustainability 2021, 13, 503. [Google Scholar] [CrossRef]
- Gumma, M.K.; Mohanty, S.; Nelson, A.; Arnel, R.; Mohammed, I.A.; Das, S.R. Remote sensing based change analysis of rice environments in Odisha, India. J. Environ. Manag. 2015, 148, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, X.; Dong, J.; Zhou, Y.; Zhu, Z.; Zhang, G.; Du, G.; Jin, C.; Kou, W.; Wang, J.; et al. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery. ISPRS J. Photogramm. Remote Sens. 2015, 105, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Kontgis, C.; Schneider, A.; Ozdogan, M. Mapping rice paddy extent and intensification in the Vietnamese Mekong River Delta with dense time stacks of Landsat data. Remote Sens. Environ. 2015, 169, 255–269. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Zhang, G.; Xiao, X.; Dong, J.; Kou, W.; Jin, C.; Qin, Y.; Zhou, Y.; Wang, J.; Menarguez, M.A.; Biradar, C. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS J. Photogramm. Remote Sens. Off. Publ. Int. Soc. Photogramm. Remote Sens. 2015, 106, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Xiao, X.; Kou, W.; Qin, Y.; Zhang, G.; Li, L.; Jin, C.; Zhou, Y.; Wang, J.; Biradar, C.; et al. Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sens. Environ. 2015, 160, 99–113. [Google Scholar] [CrossRef]
- Whyte, A.; Ferentinos, K.P.; Petropoulos, G.P. A new synergistic approach for monitoring wetlands using Sentinels -1 and 2 data with object-based machine learning algorithms. Environ. Modell Softw. 2018, 104, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Gao, F.; Liu, D.; Chen, J. A Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 521–525. [Google Scholar] [CrossRef]
- Benabdelkader, S.; Melgani, F. Contextual Spatiospectral Postreconstruction of Cloud-Contaminated Images. Geosci. Remote Sens. Lett. IEEE 2008, 5, 204–208. [Google Scholar] [CrossRef]
- Helmer, E.H.; Ruefenacht, B. Cloud-free satellite image mosaics with regression trees and histogram matching. Photogramm. Eng. Remote Sens. 2005, 71, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Melgani, F. Contextual reconstruction of cloud-contaminated multitemporal multispectral images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 442–455. [Google Scholar] [CrossRef]
- Meng, Q.M.; Borders, B.E.; Cieszewski, C.J.; Madden, M. Closest Spectral Fit for Removing Clouds and Cloud Shadows. Photogramm. Eng. Remote Sens. 2009, 75, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A simple and effective method for filling gaps in Landsat ETM + SLC-off images. Remote Sens. Environ. 2011, 115, 1053–1064. [Google Scholar] [CrossRef]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Seitz, N.; White, J.C.; Gao, F.; Masek, J.G.; Stenhouse, G. Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sens. Environ. 2009, 113, 1988–1999. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, B.; Song, H. A robust adaptive spatial and temporal image fusion model for complex land surface changes. Remote Sens. Environ. 2018, 208, 42–62. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Zhu, L.; Radeloff, V.C.; Ives, A.R. Improving the mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 1–11. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, H. Object-based rice mapping using time-series and phenological data. Adv. Space Res. 2019, 63, 190–202. [Google Scholar] [CrossRef]
- Cai, Y.; Lin, H.; Zhang, M. Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data. Adv. Space Res. 2019, 64, 2233–2244. [Google Scholar] [CrossRef]
- Yin, Q.; Liu, M.; Cheng, J.; Ke, Y.; Chen, X. Mapping Paddy Rice Planting Area in Northeastern China Using Spatiotemporal Data Fusion and Phenology-Based Method. Remote Sens. 2019, 11, 1699. [Google Scholar] [CrossRef] [Green Version]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel-2 and deep learning. In Proceedings of the IGARSS 2021–2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Zhu, X.; Helmer, E.H.; Chen, J.; Liu, D. An automatic system for reconstructing High-quality seasonal Landsat time series. In Remote Sensing Time Series Image Processing; Weng, Q., Ed.; Taylor and Francis Series in Imaging Science; CRC Press: Boca Raton, FL, USA, 2018; pp. 25–42. [Google Scholar]
- Xiao, X.; Boles, S.; Frolking, S.; Salas, W.; Moore, B.; Li, C.; He, L.; Zhao, R. Landscape-scale characterization of cropland in China using Vegetation and landsat TM images. Int. J. Remote Sens. 2002, 23, 3579–3594. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, X.; Qin, Y.; Dong, J.; Zhang, G.; Kou, W.; Jin, C.; Wang, J.; Li, X. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images. Int. J. Appl. Earth Obs. Geoinf 2016, 46, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jarihani, A.; McVicar, T.; Van Niel, T.; Emelyanova, I.; Callow, J.; Johansen, K. Blending Landsat and MODIS Data to Generate Multispectral Indices: A Comparison of “Index-then-Blend” and “Blend-then-Index” Approaches. Remote Sens. 2014, 6, 9213–9238. [Google Scholar] [CrossRef] [Green Version]
- Keys, R.G. Cubic Convolution Interpolation for Digital Image-Processing. IEEE T Acoust. Speech 1981, 29, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Xia, H.; Zhao, X.; Guo, Y.; Qin, Y. Mapping Winter Crops Using a Phenology Algorithm, Time-Series Sentinel-2 and Landsat-7/8 Images, and Google Earth Engine. Remote Sens. 2021, 13, 2510. [Google Scholar] [CrossRef]
- Yang, H.; Pan, B.; Wu, W.; Tai, J. Field-based rice classification in Wuhua county through integration of multi-temporal Sentinel-1A and Landsat-8 OLI data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 226–236. [Google Scholar] [CrossRef]
- Yun, S.; Fan, X.; Liu, H.; Xiao, J.; Ross, S.; Brisco, B.; Brown, R.; Staples, G. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sens. Environ. 2001, 76, 310–325. [Google Scholar]
- Bazzi, H.; Baghdadi, N.; El Hajj, M.; Zribi, M.; Minh, D.H.T.; Ndikumana, E.; Courault, D.; Belhouchette, H. Mapping Paddy Rice Using Sentinel-1 SAR Time Series in Camargue, France. Remote Sens. 2019, 11, 887. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.; Clauss, K.; Cao, S.; Naeimi, V.; Kuenzer, C.; Wagner, W. Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data. Remote Sens. 2015, 7, 15868–15893. [Google Scholar] [CrossRef] [Green Version]
Month | Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ten-Day | F | M | L | F | M | L | F | M | L | F | M | L | F | M | L | F | M | L | F | M | L | F | M | L | F | M | L | F | M | L | F | M | L |
West | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 6 | ||||||||||||||||
Northeast | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 6 | |||||||||||||||
Southeast | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 6 |
Land Use | Sample | RMSE | r | Mean RMSE | Mean r |
---|---|---|---|---|---|
Cropland | cropland1 | 0.0136 | 0.9724 | 0.0135 | 0.9731 |
cropland2 | 0.0140 | 0.9736 | |||
cropland3 | 0.0128 | 0.9734 | |||
Water | water1 | 0.0064 | 0.9778 | 0.0144 | 0.9566 |
water2 | 0.0261 | 0.9079 | |||
water3 | 0.0108 | 0.9842 | |||
City | city1 | 0.0200 | 0.9466 | 0.0223 | 0.9554 |
city2 | 0.0172 | 0.9592 | |||
city3 | 0.0297 | 0.9604 | |||
Forest | forest1 | 0.0091 | 0.9817 | 0.0098 | 0.9785 |
forest2 | 0.0086 | 0.9829 | |||
forest3 | 0.0117 | 0.9711 | |||
Grassland | grassland1 | 0.0101 | 0.9866 | 0.0092 | 0.9883 |
grassland2 | 0.0068 | 0.9945 | |||
grassland3 | 0.0106 | 0.9840 |
Land Use | Sample | RMSE | r | Mean RMSE | Mean r |
---|---|---|---|---|---|
Cropland | cropland1 | 0.0364 | 0.9981 | 0.0490 | 0.9964 |
cropland2 | 0.0602 | 0.9949 | |||
cropland3 | 0.0505 | 0.9963 | |||
Water | water1 | 0.0289 | 0.9987 | 0.0611 | 0.9894 |
water2 | 0.0397 | 0.9972 | |||
water3 | 0.1148 | 0.9725 | |||
City | city1 | 0.0399 | 0.9980 | 0.0760 | 0.9818 |
city2 | 0.0480 | 0.9964 | |||
city3 | 0.1401 | 0.9811 | |||
Forest | forest1 | 0.0364 | 0.9982 | 0.0350 | 0.9982 |
forest2 | 0.0315 | 0.9985 | |||
forest3 | 0.0371 | 0.9980 | |||
Grassland | grassland1 | 0.0371 | 0.9983 | 0.0555 | 0.9952 |
grassland2 | 0.0541 | 0.9963 | |||
grassland3 | 0.0754 | 0.9910 |
Band | RMSE | r | Indices | RMSE | r |
---|---|---|---|---|---|
Blue | 0.0133 | 0.9287 | NDVI | 0.1002 | 0.9381 |
Green | 0.0142 | 0.9566 | LSWI | 0.0791 | 0.7318 |
Red | 0.0177 | 0.9274 | |||
NIR | 0.0462 | 0.9435 | |||
SWIR | 0.0316 | 0.9521 | |||
Multiband | 0.0246 | 0.9417 |
Class | Ground Truth Pixels | Total | Consumer’s Accuracy | |
---|---|---|---|---|
Paddy Rice | Non-Paddy Rice | |||
Paddy rice | 274 | 15 | 289 | 95% |
Non-paddy rice | 23 | 199 | 222 | 90% |
Total | 297 | 214 | 511 | |
Producer’s accuracy | 92% | 93% | ||
Overall accuracy | 93% | |||
Kappa coefficient | 0.85 |
Town/Street | Statistic Data/km2 | Classification Result/km2 | Town/Street | Statistic Data/km2 | Classification Result/km2 |
---|---|---|---|---|---|
Banqiao | 12.41 | 13.79 | Qingfeng | 12.7 | 14.13 |
Baofeng | 10.71 | 12.69 | Sanjiao | 24.43 | 28.41 |
Chashanzhuhai | 5.84 | 4.16 | Shengli Road | 9.11 | 11.31 |
Chenshi | 25.23 | 24.39 | Shuangshi | 13.61 | 11.4 |
Daan | 23.07 | 18.79 | Songgai | 5 | 5.76 |
Hegeng | 20.18 | 25.54 | Weixing Lake | 12.34 | 15.81 |
Honglu | 11.8 | 10.62 | Wujian | 8.04 | 8.9 |
Jian | 13.88 | 14.08 | Xianlong | 24.32 | 26.73 |
Jinlong | 15.79 | 16.98 | Yongrong | 7.58 | 9.51 |
Laisu | 30.29 | 34.15 | Zhongshan Road | 2.4 | 4.16 |
Linjiang | 19.12 | 14.95 | Zhutuo | 34.26 | 36.71 |
Nandajie | 16.35 | 19.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Li, Y.; Chen, J.; Ma, M.; Fan, L.; Lu, W. Mapping a Paddy Rice Area in a Cloudy and Rainy Region Using Spatiotemporal Data Fusion and a Phenology-Based Algorithm. Remote Sens. 2021, 13, 4400. https://doi.org/10.3390/rs13214400
Zhao R, Li Y, Chen J, Ma M, Fan L, Lu W. Mapping a Paddy Rice Area in a Cloudy and Rainy Region Using Spatiotemporal Data Fusion and a Phenology-Based Algorithm. Remote Sensing. 2021; 13(21):4400. https://doi.org/10.3390/rs13214400
Chicago/Turabian StyleZhao, Rongkun, Yuechen Li, Jin Chen, Mingguo Ma, Lei Fan, and Wei Lu. 2021. "Mapping a Paddy Rice Area in a Cloudy and Rainy Region Using Spatiotemporal Data Fusion and a Phenology-Based Algorithm" Remote Sensing 13, no. 21: 4400. https://doi.org/10.3390/rs13214400
APA StyleZhao, R., Li, Y., Chen, J., Ma, M., Fan, L., & Lu, W. (2021). Mapping a Paddy Rice Area in a Cloudy and Rainy Region Using Spatiotemporal Data Fusion and a Phenology-Based Algorithm. Remote Sensing, 13(21), 4400. https://doi.org/10.3390/rs13214400