Modelling Permafrost Distribution in Western Himalaya Using Remote Sensing and Field Observations
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Temperature
3.2. Land Cover and Use
3.3. Ground Terrain Variables
3.4. Resampling and Analytical Hierarchy Process (AHP)
3.5. The Model for Permafrost Mapping
Permafrost Zones | Area (km2) | Area (%) | Number of Rock Glaciers Mapped in the Area | ||
---|---|---|---|---|---|
Schmid et al. [49] | Pandey [110] | Hassan et al. [112] | |||
Continuous permafrost | 69,563.01 | 25.02 | 165 | 240 | 325 |
Discontinuous permafrost | 96,097.86 | 34.57 | 102 | 252 | 257 |
Sporadic permafrost | 4251.92 | 1.53 | 0 | 0 | 0 |
No permafrost | 108,103.60 | 38.88 | 10 | 24 | 15 |
Total | 278,016.40 | 100 | 279 | 516 | 597 |
4. Results
4.1. Temperature
4.2. Land Cover and Ground Variables
4.3. Validation and Accuracy Assessment
4.4. Distribution of Permafrost
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Permafrost Subcommittee. Glossary of Permafrost and Related Ground-Ice Terms; Associate Committee on Geotechnical Research, National Research Council of Canada: Ottawa, ON, Canada, 1988; p. 156. [Google Scholar]
- Zhang, T.; Heginbottom, J.A.; Barry, R.G.; Brown, J. Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere1. Polar Geogr. 2000, 24, 126–131. [Google Scholar] [CrossRef]
- Li, Y.; Conway, D.; Xiong, W.; Gao, Q.; Wu, Y.; Wan, Y.; Zhang, S. Effects of climate variability and change on Chinese agriculture: A review. Clim. Res. 2011, 50, 83–102. [Google Scholar] [CrossRef]
- Boike, J.; Juszak, I.; Lange, S.; Chadburn, S.; Burke, E.; Overduin, P.P.; Roth, K.; Ippisch, O.; Bornemann, N.; Stern, L.; et al. A 20-year record (1998–2017) of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen). Earth Syst. Sci. Data 2018, 10, 355–390. [Google Scholar] [CrossRef] [Green Version]
- Cao, B.; Zhang, T.; Wu, Q.; Sheng, Y.; Zhao, L.; Zou, D. Permafrost zonation index map and statistics over the Qinghai-Tibet Plateau based on field evidence. Permafr. Periglac. Process. 2019, 30, 178–194. [Google Scholar] [CrossRef]
- Ali, S.N.; Quamar, M.F.; Phartiyal, B.; Sharma, A. Need for permafrost researches in Indian Himalaya. J. Clim. Chang. 2018, 4, 33–36. [Google Scholar] [CrossRef]
- Allen, S.K.; Fiddes, J.; Linsbauer, A.; Randhawa, S.S.; Saklani, B.; Salzmann, N. Permafrost Studies in Kullu District, Himachal Pradesh. Curr. Sci. 2016, 111, 550. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Kumar, R.; Sam, L. Analysing geospatial techniques for land degradation studies in Hindu Kush-Himalaya. In Environmental Change in the Himalayan Region: Twelve Case Studies; Springer: Cham, Switzerland, 2019; pp. 117–135. [Google Scholar] [CrossRef]
- Pandey, P.; Chauhan, P.; Bhatt, C.M.; Thakur, P.K.; Kannaujia, S.; Dhote, P.R.; Roy, A.; Kumar, S.; Chopra, S.; Bhardwaj, A.; et al. Cause and process mechanism of rockslide triggered flood event in Rishiganga and Dhauliganga River Valleys, Chamoli, Uttarakhand, India using satellite remote sensing and in situ observations. J. Indian Soc. Remote. Sens. 2021, 49, 1011–1024. [Google Scholar] [CrossRef]
- Ekici, A.; Lee, H.; Lawrence, D.M.; Swenson, S.C.; Prigent, C. Ground subsidence effects on simulating dynamic high-latitude surface inundation under permafrost thaw using CLM5. Geosci. Model Dev. 2019, 12, 5291–5300. [Google Scholar] [CrossRef] [Green Version]
- Gruber, S. Ground subsidence and heave over permafrost: Hourly time series reveal interannual, seasonal and shorter-term movement caused by freezing, thawing and water movement. Cryosphere 2020, 14, 1437–1447. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, L.; Liu, G.; Xu, H.; Zhang, X.; Ding, Y. Effects of permafrost thaw-subsidence on soil bacterial communities in the southern Qinghai-Tibetan Plateau. Appl. Soil Ecol. 2018, 128, 81–88. [Google Scholar] [CrossRef]
- Frampton, A.; Painter, S.; Destouni, G. Permafrost degradation and subsurface-flow changes caused by surface warming trends. Hydrogeol. J. 2012, 21, 271–280. [Google Scholar] [CrossRef]
- Karlsson, J.M.; Lyon, S.W.; Destouni, G. Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. J. Hydrol. 2012, 464–465, 459–466. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Kurylyk, B. Hydrologic Impacts of Thawing Permafrost-A Review. Vadose Zone J. 2016, 15, 1–20. [Google Scholar] [CrossRef]
- Liu, W.; Yu, W.; Hu, D.; Lu, Y.; Chen, L.; Yi, X.; Han, F. Crack damage investigation of paved highway embankment in the Tibetan Plateau permafrost environments. Cold Reg. Sci. Technol. 2019, 163, 78–86. [Google Scholar] [CrossRef]
- Nelson, F.E.; Anisimov, O.; Shiklomanov, N.I. Subsidence risk from thawing permafrost. Nature 2001, 410, 889–890. [Google Scholar] [CrossRef]
- Rowland, J.; Jones, C.; Altmann, G.; Bryan, R.; Crosby, B.T.; Hinzman, L.D.; Kane, D.L.; Lawrence, D.; Mancino, A.; Marsh, P.; et al. Arctic Landscapes in Transition: Responses to Thawing Permafrost. EOS 2010, 91, 229–230. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koven, C.D.; Ringeval, B.; Friedlingstein, P.; Ciais, P.; Cadule, P.; Khvorostyanov, D.; Krinner, G.; Tarnocai, C. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl. Acad. Sci. USA 2011, 108, 14769–14774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuur, E.A.G.; McGuire, A.D.; Schadel, C.; Grosse, G.; Harden, J.W.; Hayes, D.; Hugelius, G.; Koven, C.; Kuhry, P.; Lawrence, D.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef] [Green Version]
- IPCC. IPCC Fifth Assessment Synthesis Report-Climate Change 2014 Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The State and Fate of Himalayan Glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Kapnick, S.; Delworth, T.; Ashfaq, M.; Malyshev, S.; Milly, P.C.D. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci. 2014, 7, 834–840. [Google Scholar] [CrossRef]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Bhardwaj, A.; Sam, L.; Shekhar, M.; Singh, A.; Gupta, A. Changing climate and glacio-hydrology in Indian Himalayan Region: A review. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 393–410. [Google Scholar] [CrossRef] [Green Version]
- Shekhar, M.; Bhardwaj, A.; Singh, S.; Ranhotra, P.S.; Bhattacharyya, A.; Pal, A.K.; Roy, I.; Martin-Torres, J.; Zorzano, M.-P. Himalayan glaciers experienced significant mass loss during later phases of little ice age. Sci. Rep. 2017, 7, 10305. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Thompson, L.G.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Sam, L.; Bhardwaj, A.; Singh, S.; Kumar, R. Remote sensing flow velocity of debris-covered glaciers using Landsat 8 data. Prog. Phys. Geogr. Earth Environ. 2015, 40, 305–321. [Google Scholar] [CrossRef]
- Sam, L.; Bhardwaj, A.; Kumar, R.; Buchroithner, M.F.; Martin-Torres, J. Heterogeneity in topographic control on velocities of Western Himalayan glaciers. Sci. Rep. 2018, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bhambri, R.; Bolch, T.; Chaujar, R.K. Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high-resolution remote sensing data. Curr. Sci. 2012, 102, 489–494. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Joshi, P.K.; Snehmani; Singh, M.; Sam, L.; Gupta, R. Mapping debris-covered glaciers and identifying factors affecting the accuracy. Cold Reg. Sci. Technol. 2014, 106–107, 161–174. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Joshi, P.; Snehmani; Sam, L.; Singh, M.; Singh, S.; Kumar, R. Applicability of Landsat 8 data for characterizing glacier facies and supraglacial debris. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 51–64. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Singh, S.; Kumar, R. Automated detection and temporal monitoring of crevasses using remote sensing and their implications for glacier dynamics. Ann. Glaciol. 2016, 57, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Singh, M.; Joshi, P.; Snehmani; Singh, S.; Sam, L.; Gupta, R.; Kumar, R. A lake detection algorithm (LDA) using Landsat 8 data: A comparative approach in glacial environment. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 150–163. [Google Scholar] [CrossRef]
- Pandey, P.; Ali, S.N.; Sharma, V.; Ray, P.K.C. Focus on Thermokarst Lakes in Indian Himalaya: Inception and Implication under Warming Climate. J. Clim. Chang. 2020, 6, 59–69. [Google Scholar] [CrossRef]
- Shukla, A.K.; Ojha, C.S.P.; Singh, R.P.; Pal, L.; Fu, D. Evaluation of TRMM Precipitation Dataset over Himalayan Catchment: The Upper Ganga Basin, India. Water 2019, 11, 613. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Kumar, R.; Singh, S.; Singh, A.; Bhardwaj, A.; Kumari, A.; Randhawa, S.S.; Saha, A. Dynamics of suspended sediment load with respect to summer discharge and temperatures in Shaune Garang glacierized catchment, Western Himalaya. Acta Geophys. 2018, 66, 1109–1120. [Google Scholar] [CrossRef]
- Ali, S.N.; Sharma, A.; Agrawal, S.; Yadava, M.G.; Jani, R.A.; Dubey, J.; Morthekai, P. Oxygen and deuterium isotope characteristics of Teesta river catchment from Sikkim Himalaya, India: Implications of different moisture sources. Geochem. J. 2020, 54, 327–336. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, S.; Singh, A.; Bhardwaj, A.; Sam, L.; Randhawa, S.S.; Gupta, A. Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction. Water Resour. Manag. 2016, 30, 3475–3492. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Bhardwaj, A.; Singh, A. Changing climate and glacio-hydrology: A case study of Shaune Garang basin, Himachal Pradesh. Int. J. Hydrol. Sci. Technol. 2018, 8, 258. [Google Scholar] [CrossRef]
- Gruber, S.; Fleiner, R.; Guegan, E.; Panday, P.; Schmid, M.-O.; Stumm, D.; Wester, P.; Zhang, Y.; Zhao, L. Review article: Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region. Cryosphere 2017, 11, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Wu, T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res. Space Phys. 2007, 112, F02S03. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Lai, Y.; Liu, Z.; Gao, Z. Nonlinear analysis for the cooling effect of Qinghai-Tibetan railway embankment with different structures in permafrost regions. Cold Reg. Sci. Technol. 2005, 42, 237–249. [Google Scholar] [CrossRef]
- Schmid, M.-O.; Baral, P.; Gruber, S.; Shahi, S.; Shrestha, T.; Stumm, D.; Wester, P. Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth. Cryosphere 2015, 9, 2089–2099. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Harrison, S.; Anderson, K.; Selley, H.; Wood, J.; Betts, R. The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya. Glob. Planet. Chang. 2017, 160, 123–142. [Google Scholar] [CrossRef] [Green Version]
- Mayewski, P.A.; Jeschke, P.A.; Ahmad, N. An active rock glacier, Wavbal Pass, Jammu and Kashmir Himalaya, India. J. Glaciol. 1981, 27, 201–202. [Google Scholar] [CrossRef] [Green Version]
- Owen, L.; England, J. Observations on rock glaciers in the Himalayas and Karakoram Mountains of northern Pakistan and India. Geomorphology 1998, 26, 199–213. [Google Scholar] [CrossRef] [Green Version]
- Thayyen, R.; Dimri, A. Modeling Slope Environmental Lapse Rate (SELR) of temperature in the monsoon glacio-hydrological regime of the Himalaya. Cryosph. Discuss. 2016, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Wani, J.M.; Thayyen, R.J.; Gruber, S.; Ojha, C.S.P.; Stumm, D. Single-year thermal regime and inferred permafrost occurrence in the upper Ganglass catchment of the cold-arid Himalaya, Ladakh, India. Sci. Total. Environ. 2019, 703, 134631. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Ferrians, O.J., Jr.; Heginbottom, J.A.; Melnikov, E.S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions; US Geological Survey: Reston, VA, USA, 1997; p. 45.
- Cao, B.; Zhang, T.; Peng, X.; Mu, C.; Wang, Q.; Zheng, L.; Wang, K.; Zhong, X. Thermal Characteristics and Recent Changes of Permafrost in the Upper Reaches of the Heihe River Basin, Western China. J. Geophys. Res. Atmos. 2018, 123, 7935–7949. [Google Scholar] [CrossRef]
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Shi, Y.; Niu, F.; Yang, C.; Che, T.; Lin, Z.; Luo, J. Permafrost Presence/Absence Mapping of the Qinghai-Tibet Plateau Based on Multi-Source Remote Sensing Data. Remote. Sens. 2018, 10, 309. [Google Scholar] [CrossRef] [Green Version]
- Bhutiyani, M.R.; Kale, V.S.; Pawar, N.J. Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Clim. Chang. 2007, 85, 159–177. [Google Scholar] [CrossRef]
- Negi, H.S.; Kanda, N.; Shekhar, M.S.; Ganju, A. Recent Wintertime Climatic Variability over the North West Himalayan Cryosphere. Curr. Sci. 2018, 114, 760–770. [Google Scholar] [CrossRef]
- Sabin, T.P.; Krishnan, R.; Vellore, R.; Priya, P.; Borgaonkar, H.P.; Singh, B.B.; Sagar, A. Climate Change Over the Himalayas; Springer: Singapore, 2020; pp. 207–222. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Wake, C.P.; Mayewski, P.A.; Dibb, J.E. Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971–1994. J. Clim. 1999, 12, 2775–2786. [Google Scholar] [CrossRef] [Green Version]
- Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; Vries, M.V.W.d.; Mergili, M.; et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300–306. [Google Scholar] [CrossRef]
- Ali, S.N.; Juyal, N. Chronology of late quaternary glaciations in Indian Himalaya: A critical review. J. Geol. Soc. India 2013, 82, 628–638. [Google Scholar] [CrossRef]
- Benn, D.I.; Owen, L.A. The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: Review and speculative discussion. J. Geol. Soc. 1998, 155, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Dimri, A.P.; Niyogi, D.S.; Barros, A.; Ridley, J.K.; Mohanty, U.C.; Yasunari, T.J.; Sikka, D.R. Western Disturbances: A review. Rev. Geophys. 2015, 53, 225–246. [Google Scholar] [CrossRef]
- Ali, S.N.; Agrawal, S.; Sharma, A.; Phartiyal, B.; Morthekai, P.; Govil, P.; Bhushan, R.; Farooqui, S.; Jena, P.S.; Shivam, A. Holocene hydroclimatic variability in the Zanskar Valley, Northwestern Himalaya, India. Quat. Res. 2020, 97, 140–156. [Google Scholar] [CrossRef]
- Dahri, Z.H.; Moors, E.; Ludwig, F.; Ahmad, S.; Khan, A.; Ali, I.; Kabat, P. Adjustment of measurement errors to reconcile precipitation distribution in the high-altitude Indus basin. Int. J. Clim. 2018, 38, 3842–3860. [Google Scholar] [CrossRef]
- Dimri, A. Interannual variability of Indian winter monsoon over the Western Himalayas. Glob. Planet. Chang. 2013, 106, 39–50. [Google Scholar] [CrossRef]
- Midhuna, T.M.; Kumar, P.; Dimri, A.P. A new Western Disturbance Index for the Indian winter monsoon. J. Earth Syst. Sci. 2020, 129, 1–14. [Google Scholar] [CrossRef]
- Singh, S.; Bhardwaj, A.; Singh, A.; Sam, L.; Shekhar, M.; Martín-Torres, F.J.; Zorzano, M.-P. Quantifying the Congruence between Air and Land Surface Temperatures for Various Climatic and Elevation Zones of Western Himalaya. Remote. Sens. 2019, 11, 2889. [Google Scholar] [CrossRef] [Green Version]
- ICIMOD. Outline Boundary of Hindu Kush Himalayan (HKH) Region. 2008. Available online: https://rds.icimod.org/home/datadetail?metadataid=3924 (accessed on 25 October 2021).
- RGI Consortium. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0; Technical Report; Global Land Ice Measurements from Space: Boulder, CO, USA; Available online: https://doi.org/10.7265/N5-RGI-60 (accessed on 1 March 2020).
- DIVA-GIS. Download Data by Country DIVA-GIS. 2013. Available online: http://www.diva-gis.org (accessed on 6 March 2020).
- Hachem, S.; Allard, M.; Duguay, C. Using the MODIS land surface temperature product for mapping permafrost: An application to northern Québec and Labrador, Canada. Permafr. Periglac. Process. 2009, 20, 407–416. [Google Scholar] [CrossRef]
- GES DISC. TRMM (TMPA-RT) Near Real-Time Precipitation L3 1 day 0.25 degree × 0.25 degree V7, Edited by Andrey Savtchenko, Greenbelt, M.D. Goddard Earth Sciences Data and Information Services Center (GES DISC). Available online: https://doi.org/10.5067/TRMM/TMPA/DAY-E/7 (accessed on 5 November 2020).
- Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. Space Phys. 2010, 115, F03019. [Google Scholar] [CrossRef] [Green Version]
- King, L. Zonation and Ecology of High Mountain Permafrost in Scandinavia. Geogr. Ann. Ser. A Phys. Geogr. 1986, 68, 131. [Google Scholar] [CrossRef]
- Péwé, T.L.; Brown, R.J.E. Distribution of permafrost in North America and its relationship to the environment: A review, 1963–1973. In Proceedings of the Permafrost: Second International Conference, Yakutska, Russia, 13–28 July 1973. [Google Scholar]
- Smith, M.W.; Riseborough, D.W. Climate and the limits of permafrost: A zonal analysis. Permafr. Periglac. Process. 2002, 13, 1–15. [Google Scholar] [CrossRef]
- Zhang, T. Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys. 2005, 43. [Google Scholar] [CrossRef]
- USGS. Missions de Landsat, 2013. Landsat 8. 2020. Available online: https://doi.org//10.5066/F71835S6 (accessed on 1 February 2020).
- Arenson, L.U.; Jakob, M. A New GIS based Mountain Permafrost Distribution Model. In Proceedings of the GEO2010: 63rd Canadian Geotechnical Conference & 6th Canadian Permafrost Conference, Calgary, AB, Canada, 12–15 September 2010. [Google Scholar]
- Hoelzle, M. Permafrost occurrence from BTS measurements and climatic parameters in the eastern Swiss Alps. Permafr. Periglac. Process. 1992, 3, 143–147. [Google Scholar] [CrossRef]
- Kreslavsky, M.; Head, J.W.; Marchant, D.R. Periods of active permafrost layer formation during the geological history of Mars: Implications for circum-polar and mid-latitude surface processes. Planet. Space Sci. 2008, 56, 289–302. [Google Scholar] [CrossRef]
- Singh, S.P.; Sharma, S.; Dhyani, P.P. Himalayan arc and treeline: Distribution, climate change responses and ecosystem properties. Biodivers. Conserv. 2019, 28, 1997–2016. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment an Earth Resource Perspective, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Muhuri, A.; Gascoin, S.; Menzel, L.; Kostadinov, T.S.; Harpold, A.A.; Sanmiguel-Vallelado, A.; Moreno, J.I.L. Performance Assessment of Optical Satellite-Based Operational Snow Cover Monitoring Algorithms in Forested Landscapes. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2021, 14, 7159–7178. [Google Scholar] [CrossRef]
- Cheng, G. Influences of local factors on permafrost occurrence and their implications for Qinghai-Xizang Railway design. Sci. China Ser. D Earth Sci. 2004, 47, 704–709. [Google Scholar] [CrossRef]
- Etzelmüller, B.; Frauenfelder, R. Factors Controlling the Distribution of Mountain Permafrost in The Northern Hemisphere and Their Influence on Sediment Transfer. Arct. Antarct. Alp. Res. 2009, 41, 48–58. [Google Scholar] [CrossRef]
- Gorbunov, A.P. Permafrost Investigations in High-Mountain Regions. Arct. Alp. Res. 1978, 10, 283. [Google Scholar] [CrossRef]
- Azócar, G.F.; Brenning, A.; Bodin, X. Permafrost distribution modelling in the semi-arid Chilean Andes. Cryosphere 2017, 11, 877–890. [Google Scholar] [CrossRef] [Green Version]
- Brenning, A.; Azócar, G.F. Statistical analysis of topographic and climatic controls and multispectral signatures of rock glaciers in the dry Andes, Chile (27°–33°S). Permafr. Periglac. Process. 2009, 21, 54–66. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Deng, X.; Sun, B.; Zhao, Y.; Fu, W. Coupled thermal model of wellbore and permafrost in Arctic regions. Appl. Therm. Eng. 2017, 123, 1291–1299. [Google Scholar] [CrossRef]
- Weiming, C.; Shangmin, Z.; Chenghu, Z.; Xi, C. Simulation of the Decadal Permafrost Distribution on the Qinghai-Tibet Plateau (China) over the Past 50 Years. Permafr. Periglac. Process. 2012, 23, 292–300. [Google Scholar] [CrossRef]
- Baral, P.; Haq, M.A.; Yaragal, S. Assessment of rock glaciers and permafrost distribution in Uttarakhand, India. Permafr. Periglac. Process. 2019, 31, 31–56. [Google Scholar] [CrossRef]
- Sattler, K.; Anderson, B.; Mackintosh, A.; Norton, K.; De Róiste, M. Estimating Permafrost Distribution in the Maritime Southern Alps, New Zealand, Based on Climatic Conditions at Rock Glacier Sites. Front. Earth Sci. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- ArcMap. Area Solar Radiation. The User Document of ArcGIS Tools Available on ESRI Website. 2021. Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/area-solar-radiation.htm (accessed on 8 July 2021).
- Panda, S.K.; Prakash, A.; Solie, D.N.; Romanovsky, V.E.; Jorgenson, M.T. Remote sensing and field-based mapping of permafrost distribution along the Alaska Highway corridor, interior Alaska. Permafr. Periglac. Process. 2010, 21, 271–281. [Google Scholar] [CrossRef]
- Sattler, K.; Keiler, M.; Zischg, A.; Schrott, L. On the Connection between Debris Flow Activity and Permafrost Degradation: A Case Study from the Schnalstal, South Tyrolean Alps, Italy. Permafr. Periglac. Process. 2011, 22, 254–265. [Google Scholar] [CrossRef]
- Liu, H.; Weng, Q. Scaling Effect of Fused ASTER-MODIS Land Surface Temperature in an Urban Environment. Sensors 2018, 18, 4058. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; MacGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Kayastha, P.; Dhital, M.; De Smedt, F. Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Comput. Geosci. 2013, 52, 398–408. [Google Scholar] [CrossRef]
- Kumar, R.; Anbalagan, R. Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. J. Geol. Soc. India 2016, 87, 271–286. [Google Scholar] [CrossRef]
- Malczewski, J. Visualization in multicriteria spatial decision support systems. Geomatica 1999, 53, 139–147. [Google Scholar] [CrossRef]
- Yalcin, A. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. CATENA 2008, 72, 1–12. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Imhof, M. Modelling and verification of the permafrost distribution in the Bernese Alps (western Switzerland). Permafr. Periglac. Process. 1996, 7, 267–280. [Google Scholar] [CrossRef]
- Pandey, P. Inventory of rock glaciers in Himachal Himalaya, India using high-resolution Google Earth imagery. Geomorphology 2019, 340, 103–115. [Google Scholar] [CrossRef]
- Fort, M. Permafrost in the Himalayas: Specific characteristics, evolution vs. climate change and impacts on potential natural hazards. In EGU General Assembly Conference Abstracts; EGU: Munich, Germany, 2015; p. 4733. [Google Scholar]
- Hassan, J.; Chen, X.; Muhammad, S.; Bazai, N.A. Rock glacier inventory, permafrost probability distribution modeling and associated hazards in the Hunza River Basin, Western Karakoram, Pakistan. Sci. Total Environ. 2021, 782, 146833. [Google Scholar] [CrossRef] [PubMed]
- Olson, M.; Rupper, S. Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography. Cryosphere 2019, 13, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Rowley, T.; Giardino, J.R.; Granados-Aguilar, R.; Vitek, J.D. Periglacial Processes and Landforms in the Critical Zone; Elsevier: Amsterdam, The Netherlands, 2015; pp. 397–447. [Google Scholar] [CrossRef]
- Arp, C.D.; Whitman, M.S.; Jones, B.M.; Grosse, G.; Gaglioti, B.V.; Heim, K.C. Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes. Biogeosciences 2015, 12, 29–47. [Google Scholar] [CrossRef] [Green Version]
- Davis, N. Permafrost: A Guide to Frozen Ground in Transition; University of Alaska Press: Fairbanks, AK, USA, 2001. [Google Scholar] [CrossRef] [Green Version]
- Oswood, M.W.; Everett, K.R.; Schell, D.M. Some physical and chemical characteristics of an arctic beaded stream. Ecography 1989, 12, 290–295. [Google Scholar] [CrossRef]
- Ohmura, A. Physical Basis for the Temperature-Based Melt-Index Method. J. Appl. Meteorol. 2001, 40, 753–761. [Google Scholar] [CrossRef]
- Dąbski, M. Should Glaciers Be Considered Permafrost? Geosciences 2019, 9, 517. [Google Scholar] [CrossRef] [Green Version]
- Nüsser, M.; Dame, J.; Kraus, B.; Baghel, R.; Schmidt, S. Socio-hydrology of “artificial glaciers” in Ladakh, India: Assessing adaptive strategies in a changing cryosphere. Reg. Environ. Chang. 2018, 19, 1327–1337. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Bhardwaj, A.; Kumar, R. Implications of ignoring permafrost in glacio-hydrological models in high mountains. In Proceedings of the XI International Conference on Permafrost, Potsdam, Germany, 20–24 June 2016. [Google Scholar] [CrossRef]
- Norphel, C.; Tashi, P. Mountain Hazards and Disaster Risk Reduction, Snow Water Harvesting in the Cold Desert in Ladakh: An Introduction to Artificial Glacier. In Mountain Hazards and Disaster Risk Reduction. Disaster Risk Reduction (Methods, Approaches and Practices); Nibanupudi, H., Shaw, R., Eds.; Springer: Tokyo, Japan, 2015. [Google Scholar] [CrossRef]
Precipitation Zone | R2 | n | Equation Used | |
---|---|---|---|---|
Precipitation shadow zone | 0.85 | 1418 | MAAT = 0.80 LST − 5.06 | (1) |
Transition zone | 0.88 | 1317 | MAAT = 0.74 LST + 2.27 | (2) |
WD dominated zone | 0.97 | 699 | MAAT = 0.91 LST − 0.69 | (3) |
ISM dominated zone | 0.96 | 118 | MAAT = 0.96 LST + 1.31 | (4) |
Classified Data | Barren Land | Glacier | Settlement | Vegetation | Water | Total | Accuracy (%) |
---|---|---|---|---|---|---|---|
Barren Land | 150 | 3 | 0 | 6 | 0 | 159 | 94.34 |
Glacier | 0 | 28 | 0 | 0 | 0 | 28 | 100.00 |
Settlement | 1 | 0 | 4 | 0 | 0 | 5 | 80.00 |
Vegetation | 6 | 0 | 5 | 53 | 0 | 64 | 82.81 |
Water | 1 | 0 | 0 | 0 | 4 | 5 | 80.00 |
Total | 158 | 31 | 9 | 59 | 4 | 261 | |
Accuracy (%) | 94.94 | 90.32 | 44.44 | 89.83 | 100.00 | ||
Overall Accuracy (%) | 91.57 | ||||||
Total Sum | 261 | ||||||
Total Correct Sample | 239 | ||||||
Kappa Statistics (K) | 85.00% |
Variables | Weights | Categories | Rating | Importance |
---|---|---|---|---|
BMAT (°C) | 0.5579 | <−5 °C | 9 | Extreme Importance |
−5 °C to −1.3 °C | 7 | Strong Importance | ||
−1.3 °C to 1.6 °C | 3 | Moderate Importance | ||
1.6 °C< | 2 | Less Importance | ||
PISR (MWh/m2) | 0.2633 | 0–0.87 | 9 | Extreme Importance |
0.87–1.6 | 7 | Strong Importance | ||
1.6–2.5 | 3 | Moderate Importance | ||
>2.5 | 2 | Less Importance | ||
Aspect | 0.1219 | 303.75°–0° and 0°–33.75° | 9 | Extreme Importance |
213.75°–303.75° | 7 | Strong Importance | ||
33.75°–123.75° | 3 | Moderate Importance | ||
123.75°–213.75° | 2 | Less Importance | ||
Slope (°C) | 0.0269 | 19.1–27 | 9 | Extreme Importance |
27.1–35 | 7 | Strong Importance | ||
11.1–19 | 3 | Moderate Importance | ||
<11 and >35 | 2 | Less Importance | ||
Surface features | Barren Land | 9 | Extreme Importance | |
Vegetation | 7 | Strong Importance | ||
Settlement | 3 | Moderate Importance | ||
Glacier and Waterbodies | 2 | Less Importance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.A.R.; Singh, S.; Pandey, P.; Bhardwaj, A.; Ali, S.N.; Chaturvedi, V.; Ray, P.K.C. Modelling Permafrost Distribution in Western Himalaya Using Remote Sensing and Field Observations. Remote Sens. 2021, 13, 4403. https://doi.org/10.3390/rs13214403
Khan MAR, Singh S, Pandey P, Bhardwaj A, Ali SN, Chaturvedi V, Ray PKC. Modelling Permafrost Distribution in Western Himalaya Using Remote Sensing and Field Observations. Remote Sensing. 2021; 13(21):4403. https://doi.org/10.3390/rs13214403
Chicago/Turabian StyleKhan, Md Ataullah Raza, Shaktiman Singh, Pratima Pandey, Anshuman Bhardwaj, Sheikh Nawaz Ali, Vasudha Chaturvedi, and Prashant Kumar Champati Ray. 2021. "Modelling Permafrost Distribution in Western Himalaya Using Remote Sensing and Field Observations" Remote Sensing 13, no. 21: 4403. https://doi.org/10.3390/rs13214403
APA StyleKhan, M. A. R., Singh, S., Pandey, P., Bhardwaj, A., Ali, S. N., Chaturvedi, V., & Ray, P. K. C. (2021). Modelling Permafrost Distribution in Western Himalaya Using Remote Sensing and Field Observations. Remote Sensing, 13(21), 4403. https://doi.org/10.3390/rs13214403