ICESat-2 Marine Bathymetry: Extraction, Refraction Adjustment and Vertical Accuracy as a Function of Depth in Mid-Latitude Temperate Contexts
Abstract
:1. Introduction
- To evaluate ICESat-2 marine bathymetric performance in a mid-latitude temperate context;
- To assess accuracy at a range of depths, using external bathymetric reference data;
- To describe an ICESat-2 bathymetric data processing chain that may be of interest to prospective users of ICESat-2 bathymetric data.
2. Materials and Methods
2.1. Materials
2.1.1. ICESat-2 Data: Coverage
2.1.2. ICESat-2 Data: Geolocated Photon Sampling Density
2.1.3. MBES Bathymetric Reference Data
2.1.4. GNSS Bathymetric Reference Data
2.2. Methods
2.2.1. ICESat-2: Geolocated Photon Data Download Access
2.2.2. ICESat-2 Bathymetric Extraction
- Filtering geolocated photons by ICESat-2 signal-to-noise Ratio class;
- Applying a temporary 3D rotation to the 3D geolocated photon cloud;
- Conducting manual bathymetric extraction using a 2D geometric query;
- Applying a bathymetric averaging filter to remove near-duplicate values.
- 1.
- Manual Bathymetric Extraction: Filtering by SNR Class
- 2.
- Manual Bathymetric Extraction: Temporary 3D Rotation
- 3.
- Manual Bathymetric Extraction: 2D geometric query
- 4.
- Post-Extraction Point Local Filtering
2.2.3. ICESat-2 Bathymetric (Water Column) Refraction Error Adjustment
2.2.4. Conducting the Refraction Adjustment
2.2.5. Quantification of ICESat-2 Bathymetric Accuracy
3. Results
- ICESat-2 bathymetric accuracy quantification across the full depth range of ICESat-2 points that could be paired with a nearby MBES of GNSS comparison point;
- Determination of ICESat-2 bathymetric accuracy ranging from minimum depth to progressive (incrementally deeper) water column depths;
- Evaluation of ICESat-2 bathymetric accuracy within successive discrete 1-m depth bands.
3.1. ICESat-2 Bathymetric Accuracy Assessment across the Full Depth Range
3.2. ICESat-2 Bathymetric Accuracy to Progressive Water Column Depths
3.3. ICESat-2 Bathymetric Accuracy in Discrete One-Metre Depth Bands
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Toole, R.; Judge, M.; Sacchetti, F.; Furey, T.; Mac Craith, E.; Sheehan, K.; Kelly, S.; Cullen, S.; McGrath, F.; Monteys, X. Mapping Ireland’s coastal, shelf and deep-water environments using illustrative case studies to highlight the impact of seabed mapping on the generation of blue knowledge. Geol. Soc. Lond. U. K. Spec. Publ. 2020, 505, 97–123. [Google Scholar] [CrossRef]
- Kotilainen, A.T.; Kaskela, A.M. Comparison of airborne LiDAR and shipboard acoustic data in complex shallow water environments: Filling in the white ribbon zone. Mar. Geol. 2017, 385, 250–259. [Google Scholar] [CrossRef]
- Leon, J.X.; Phinn, S.R.; Hamylton, S.; Saunders, M.I. Filling the ‘white ribbon’—A multisource seamless digital elevation model for Lizard Island, northern Great Barrier Reef. Int. J. Remote Sens. 2013, 34, 6337–6354. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, X.; Zhang, H.; Zhou, F. Improved model for depth bias correction in airborne LiDAR bathymetry systems. Remote Sens. 2017, 9, 710. [Google Scholar] [CrossRef] [Green Version]
- Coveney, S.; Monteys, X. Integration potential of INFOMAR airborne LIDAR bathymetry with external onshore LIDAR data sets. J. Coast. Res. 2011, 62, 19–29. [Google Scholar] [CrossRef]
- Perry, G.J. Post-processing in laser airborne bathymetry systems. In Proceedings of the ROPME/PERSGA/IHB Workshop on Hydrographic Activities in the ROPME Sea area and Red Sea, Kuwait City, Kuwait, 24–27 October 1999; Volume 13, pp. 24–27. [Google Scholar]
- Finkl, C.W.; Benedet, L.; Andrews, J.L. Interpretation of seabed geomorphology based on spatial analysis of high-density airborne laser bathymetry. J. Coast. Res. 2005, 21, 501–514. [Google Scholar] [CrossRef] [Green Version]
- Saylam, K.; Brown, R.A.; Hupp, J.R. Assessment of depth and turbidity with airborne Lidar bathymetry and multiband satellite imagery in shallow water bodies of the Alaskan North Slope. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 191–200. [Google Scholar] [CrossRef]
- Karlsson, T.; Pe’eri, S.; Axelsson, A. The impact of sea state condition on airborne LiDAR bathymetry measurements. In Laser Radar Technology and Applications XVII; International Society for Optics and Photonics: Baltimore, MD, USA, 2012; Volume 8379, p. 837913. [Google Scholar]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr.-Methods 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Hamylton, S.M.; Hedley, J.D.; Beaman, R.J. Derivation of high-resolution bathymetry from multispectral satellite imagery: A comparison of empirical and optimisation methods through geographical error analysis. Remote Sens. 2015, 7, 16257–16273. [Google Scholar] [CrossRef] [Green Version]
- Cahalane, C.; Magee, A.; Monteys, X.; Casal, G.; Hanafin, J.; Harris, P. A comparison of Landsat 8, RapidEye and Pleiades products for improving empirical predictions of satellite-derived bathymetry. Remote Sens. Environ. 2019, 233, 111414. [Google Scholar] [CrossRef]
- Hedley, J.D.; Roelfsema, C.M.; Chollett, I.; Harborne, A.R.; Heron, S.F.; Weeks, S.; Skirving, W.J.; Strong, A.E.; Eakin, C.M.; Christensen, T.R.; et al. Remote sensing of coral reefs for monitoring and management: A review. Remote Sens. 2016, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Dekker, A.G.; Phinn, S.R.; Anstee, J.; Bissett, P.; Brando, V.E.; Casey, B.; Fearns, P.; Hedley, J.; Klonowski, W.; Lee, Z.P.; et al. Intercomparison of Shallow Water Bathymetry, Hydro-Optics, and Benthos Mapping Techniques in Australian and Caribbean Coastal Environment. Limnol. Oceanogr.-Methods 2011, 9, 396–425. [Google Scholar] [CrossRef] [Green Version]
- Casal, G.; Hedley, J.D.; Monteys, X.; Harris, P.; Cahalane, C.; McCarthy, T. Satellite-derived bathymetry in optically complex waters using a model inversion approach and Sentinel-2 data. Estuar. Coast. Shelf Sci. 2020, 241, 106814. [Google Scholar] [CrossRef]
- Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock, D.W.; et al. The Ice, Cloud and Land Elevation Satellite-2 Mission: A Global Geolocated Photon Product. Remote Sens. Environ. 2019, 233, 11325. [Google Scholar] [CrossRef]
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sens. 2019, 11, 1634. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Gao, H.; Jasinski, M.F.; Zhang, S.; Stoll, J.D. Deriving high-resolution reservoir bathymetry from ICESat-2 prototype photon-counting LiDAR and landsat imagery. IEEE Trans. Geosci. Remote Sen. 2019, 57, 7883–7893. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- NSIDC (National Snow and Ice Data Center). ATLAS/ICESat-2 L2 A Global Geolocated Photon Data, Version 3, 2021. Available online: https://nsidc.org/data/atl03 (accessed on 18 March 2021).
- Neumann, T.; Brenner, A.; Hancock, D.; Robbins, J.; Saba, J.; Harbeck, K.; Gibbons, A.J.N.A. Ice, Cloud, and Land Elevation Satellite–2 (ICESat-2) Project: Algorithm Theoretical Basis Document (ATBD) for Global Geolocated Photons (ATL03); National Aeronautics and Space Administration, Goddard Space Flight Center: Greenbelt, MD, USA, 2019. [Google Scholar]
- Degnan, J.J. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements. J. Geodyn. 2002, 34, 503–549. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S.C.; Zhou, T.; Nelson, R.; Neuenschwander, A.; Sheridan, R.; Narine, L.; Walsh, K.M. Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data. Remote Sens. Environ. 2018, 208, 154–170. [Google Scholar] [CrossRef]
- Iliffe, J.C.; Ziebart, M.K.; Turner, J.F.; Talbot, A.J.; Lessnoff, A.P. Accuracy of vertical datum surfaces in coastal and offshore zones. Surv. Rev. 2013, 45, 254–262. [Google Scholar] [CrossRef]
- Ernstsen, V.B.; Noormets, R.; Hebbeln, D.; Bartholomä, A.; Flemming, B.W. Precision of high-resolution multibeam echo sounding coupled with high-accuracy positioning in a shallow water coastal environment. Geo-Mar. Lett. 2006, 26, 141–149. [Google Scholar] [CrossRef]
- Peters, J.L.; Butschek, F.; O’Connell, R.; Cummins, V.; Murphy, J.; Wheeler, A.J. Geological seabed stability model for informing Irish offshore renewable energy opportunities. Adv. Geosci. 2020, 54, 55–65. [Google Scholar] [CrossRef]
- OSI. Active GNSS Station Data. Available online: https://gnss.osi.ie/ (accessed on 3 June 2021).
- NSIDC. OpenAltimetry ICESat-2 Data Download Portal. Available online: https://openaltimetry.org/data/icesat2/ (accessed on 14 June 2021).
- Trimble. Trimble R4 S User Guide, Version 1 Revision C, Trimble Incorporated, Colorardo, USA. Available online: https://www.d3e.fr/pdf/Trimble%20R4S_userguide.pdf (accessed on 25 May 2021).
- Babbel, B.J.; Parrish, C.E.; Magruder, L.A. ICESat-2 elevation retrievals in support of satellite-derived bathymetry for global science applications. Geophys. Res. Lett. 2021, 48, e2020GL090629. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, N.; Liu, Z.; Yang, B.; Yang, F.; Wang, X.H.; Li, S. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens. Environ. 2020, 250, 112047. [Google Scholar] [CrossRef]
- Albright, A.; Glennie, C. Nearshore Bathymetry From Fusion of Sentinel-2 and ICESat-2 Observations. IEEE Geosci. Remote Sens. Lett. 2020, 18, 900–904. [Google Scholar] [CrossRef]
- Hedley, J.D.; Velázquez-Ochoa, R.; Enríquez, S. Seagrass depth distribution mirrors coastal development in the Mexican Caribbean—An automated analysis of 800 satellite images. Front. Mar Sci. 2021, 1449, in press. [Google Scholar] [CrossRef]
- Richter, K.; Mader, D.; Westfeld, P.; Maas, H.G. Refined geometric modeling of laser pulse propagation in airborne LiDAR bathymetry. PFG-J. Photogramm. Rem. 2021, 89, 1–17. [Google Scholar]
- Coveney, S.; Monteys, X.; Kelleher, B.; Hedley, J.D. Bathymetric extraction from ICESAT-2 Advanced Topographic Laser Altimeter System photon returns: Depth penetration in diverse geophysical contexts. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 4–8 May 2020; p. 10390. [Google Scholar]
- Monteys, X.; Harris, P.; Caloca, S.; Cahalane, C. Spatial prediction of coastal bathymetry based on multispectral satellite imagery and multibeam data. Remote Sens. 2015, 7, 13782–13806. [Google Scholar] [CrossRef] [Green Version]
- Met Eireann. What We Measure: Wind, Met Eireann. Available online: https://www.met.ie/climate/what-we-measure/wind (accessed on 21 August 2021).
- Met Eireann. Forecasts: Marine Waves. Available online: https://www.met.ie/forecasts/marine-incland-lakes/waves (accessed on 21 August 2021).
Test Site | Profile Date | Reference Points (#) | Survey Date | Spatial Resolution | Radial Proximity |
---|---|---|---|---|---|
| June 2019 | MBES (101) | July 2017 | 1 m | <1 m |
| June 2019 | MBES (88) | July 2017 | 5 m | <2.5 m |
| May 2019 | GNSS (223) | July 2021 | 1 m | <0.5 m |
| May 2019 | GNSS (232) | July 2021 | 1 m | <0.5 m |
Site 1 | Site 2 | Site 3 | Site 4 | |
---|---|---|---|---|
Mean absolute error (m) | 0.56 | 0.23 | 0.26 | 0.25 |
Root mean square error (m) | 0.74 | 0.32 | 0.33 | 0.30 |
Min depth of all bathy points (m) | 4.96 | 1.75 | 0.16 | 0.10 |
Max depth of all bathy points (m) | 11.00 | 7.34 | 3.10 | 3.19 |
DEPTH to (m) | Site 1 MAE | Site 2 MAE | Site 3 MAE | Site 4 MAE |
---|---|---|---|---|
Min. to 1 m | 0.26 | 0.31 | ||
Min. to 2 m | 0.13 | 0.27 | 0.25 | |
Min. to 3 m | 0.11 | 0.26 | 0.25 | |
Min. to 4 m | 0.11 | |||
Min. to 5 m | 0.14 | |||
Min. to 6 m | 0.24 | 0.18 | ||
Min. to 7 m | 0.389 | 0.23 | ||
Min. to 8 m | 0.40 | |||
Min. to 9 m | 0.45 | |||
Min. to 10 m | 0.52 | |||
Min. to 11 m | 0.54 |
Depth Band (m) | Site 1 MAE (m) | Check Points | Site 2 MAE (m) | Check Points | Site 3 MAE (m) | Check Points | Site 4 MAE (m) | Check Points |
---|---|---|---|---|---|---|---|---|
0–1 m | 0.26 | 62 | 0.31 | 128 | ||||
1–2 m | 0.13 | 4 | 0.29 | 136 | 0.14 | 77 | ||
2–3 m | 0.10 | 24 | 0.13 | 25 | 0.29 | 27 | ||
3–4 m | 0.11 | 21 | ||||||
4–5 m | 0.18 | 14 | ||||||
5–6 m | 0.24 | 19 | 0.35 | 14 | ||||
6–7 m | 0.44 | 42 | 0.53 | 11 | ||||
7–8 m | 0.46 | 18 | ||||||
8–9 m | 0.76 | 13 | ||||||
9–10 m | 1.45 | 7 | ||||||
10–11 m | 1.51 | 2 |
Test Site | <0.15 m Error | <0.25 m Error | <0.4 m Error | <0.54 m Error |
---|---|---|---|---|
| - | To 6 m | To 8 m | To 11 m |
| To 5 m | To 7.35 m | - | - |
| - | To 3.1 m | - | |
| - | To 3.2 m | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coveney, S.; Monteys, X.; Hedley, J.D.; Castillo-Campo, Y.; Kelleher, B. ICESat-2 Marine Bathymetry: Extraction, Refraction Adjustment and Vertical Accuracy as a Function of Depth in Mid-Latitude Temperate Contexts. Remote Sens. 2021, 13, 4352. https://doi.org/10.3390/rs13214352
Coveney S, Monteys X, Hedley JD, Castillo-Campo Y, Kelleher B. ICESat-2 Marine Bathymetry: Extraction, Refraction Adjustment and Vertical Accuracy as a Function of Depth in Mid-Latitude Temperate Contexts. Remote Sensing. 2021; 13(21):4352. https://doi.org/10.3390/rs13214352
Chicago/Turabian StyleCoveney, Seamus, Xavier Monteys, John D. Hedley, Yeray Castillo-Campo, and Brian Kelleher. 2021. "ICESat-2 Marine Bathymetry: Extraction, Refraction Adjustment and Vertical Accuracy as a Function of Depth in Mid-Latitude Temperate Contexts" Remote Sensing 13, no. 21: 4352. https://doi.org/10.3390/rs13214352
APA StyleCoveney, S., Monteys, X., Hedley, J. D., Castillo-Campo, Y., & Kelleher, B. (2021). ICESat-2 Marine Bathymetry: Extraction, Refraction Adjustment and Vertical Accuracy as a Function of Depth in Mid-Latitude Temperate Contexts. Remote Sensing, 13(21), 4352. https://doi.org/10.3390/rs13214352