A NIRS-Aided Methodology to Elucidate the Nutrition of the Endangered Mountain Gazelle (Gazella gazella) Using Samples of Rumen Contents from Roadkills
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collecting Gazelle Carcasses
2.2. Sampling, Preparation, and Chemical Analyses of Rumen Contents
2.3. Near-Infrared (NIR) Scans
2.4. Calibrating NIR Spectra to Reference Values
2.5. Predicting Rumen Constituents with NIRS
2.6. Statistical Analyses
3. Results
3.1. NIRS Calibrations
3.2. Gazelle Nutrition—Changes in Constituents, and the Factors Affecting Them
4. Discussion
4.1. Using NIRS to Estimate Chemical Constituents in Rumen Contents
4.2. Rumen Contents as Proxies for Nutrition
4.3. Using Roadkill to Study Ungulate Nutrition
4.4. The Nutrition of Mountain Gazelles
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yom-Tov, Y. The Gazelles of Israel; Dan Pery: Jerusalem, Israel, 2016. (In Hebrew) [Google Scholar]
- IUCN SSC ANTELOPE SPECIALIST GROUP. Gazella gazella. In The IUCN Red List of Threatened Species. 2017. Available online: https://doi.org/10.2305/IUCN.UK.2017-2.RLTS.T8989A50186574.en (accessed on 1 June 2021).
- Yom-Tov, Y.; Balaban, A.; Hadad, E.; Weil, G.; Roll, U. The plight of the Endangered mountain gazelle Gazella gazella. Oryx 2020, 55, 1–8. [Google Scholar] [CrossRef]
- Hadas, L.; Hermon, D.; Boldo, A.; Arieli, G.; Gafny, R.; King, R.; Bar-Gal, G.K. Wild Gazelles of the Southern Levant: Genetic Profiling Defines New Conservation Priorities. PLoS ONE 2015, 10, e0116401. [Google Scholar] [CrossRef] [Green Version]
- Baharav, D. Food habits of the mountain gazelle in semi-arid habitats of eastern Lower Galilee, Israel. J. Arid Environ. 1981, 4, 63–69. [Google Scholar] [CrossRef]
- Baharav, D. Observation on the ecology of the mountain gazelle in the Upper Galilee, Israel. Mammalia 1983, 47, 59–70. [Google Scholar] [CrossRef]
- Parker, K.L.; Barboza, P.S.; Gillingham, M.P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 2009, 23, 57–69. [Google Scholar] [CrossRef]
- Prins, H.H.T.; Langevelde, F. Van Resource Ecology; Prins, H.H.T., Van Langevelde, F., Eds.; Springer: Dordrecht, The Netherlands, 2008; ISBN 978-1-4020-6848-5. [Google Scholar]
- Spitzer, R.; Felton, A.; Landman, M.; Singh, N.J.; Widemo, F.; Cromsigt, J.P.G.M. Fifty years of European ungulate dietary studies: A synthesis. Oikos 2020, 129, 1668–1680. [Google Scholar] [CrossRef]
- Landau, S.Y.; Isler, I.; Dvash, L.; Shalmon, B.; Arnon, A.; Saltz, D. Estimating the Suitability for the Reintroduced Arabian Oryx (Oryx leucoryx, Pallas 1777) of Two Desert Environments by NIRS-Aided Fecal Chemistry. Remote Sens. 2021, 13, 1876. [Google Scholar] [CrossRef]
- Shalmon, B.; Sun, P.; Wronski, T. Factors Driving Arabian Gazelles (Gazella arabica) in Israel to Extinction: Time Series Analysis of Population Size and Juvenile Survival in an Unexploited Population. Biodivers. Conserv. 2020, 29, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Hodgman, T.P.; Davitt, B.B.; Nelson, J.R. Monitoring Mule Deer Diet Quality and Intake with Fecal Indices. J. Range Manag. 1996, 49, 215. [Google Scholar] [CrossRef] [Green Version]
- Macandza, V.; Owen-Smith, N.; Le Roux, E. Faecal nutritional indicators in relation to the comparative population performance of sable antelope and other grazers. Afr. J. Ecol. 2013, 52, 300–307. [Google Scholar] [CrossRef]
- Landau, S.Y.; Dvash, L.; Yehuda, Y.; Muklada, H.; Peleg, G.; Henkin, Z.; Voet, H.; Ungar, E.D. Impact of animal density on cattle nutrition in dry Mediterranean rangelands: A faecal near-IR spectroscopy-aided study. Animal 2018, 12, 265–274. [Google Scholar] [CrossRef]
- Moore, J.; Goetsch, A.; Luo, J.; Owens, F.; Galyean, M.; Johnson, Z.; Sahlu, T.; Ferrell, C. Prediction of fecal crude protein excretion of goats. Small Rumin. Res. 2004, 53, 275–292. [Google Scholar] [CrossRef]
- Landau, S.Y.; Dvash, L.; Roudman, M.; Muklada, H.; Barkai, D.; Yehuda, Y.; Ungar, E.D. Faecal near-IR spectroscopy to determine the nutritional value of diets consumed by beef cattle in east Mediterranean rangelands. Animal 2016, 10, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Hudson, R.J.; White, R.G. Bioenergetics of Wild Herbivores; Hudson, R.J., White, R.G., Eds.; CRC Press: Boca Raton, FL, USA, 1985. [Google Scholar]
- Holechek, J.L.; Vavra, M.; Arthun, D. Relationships between performance, intake, diet nutritive quality and fecal nutritive quality of cattle on mountain range. J. Range Manag. 1982, 35, 741–744. [Google Scholar] [CrossRef] [Green Version]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- White, T.C.R. The Inadequate Environment; Springer: Berlin/Heidelberg, Germany, 1993; ISBN 978-3-642-78301-2. [Google Scholar]
- Leslie, D.M.; Bowyer, R.T.; Jenks, J.A. Facts from Feces: Nitrogen Still Measures up as a Nutritional Index for Mammalian Herbivores. J. Wildl. Manag. 2008, 72, 1420–1433. [Google Scholar] [CrossRef]
- Djordjevic, N.; Popovic, Z.; Grubic, G. Chemical composition of the rumen contents in roe deer (Capreolus capreolus) as potential quality indicator of their feeding. J. Agric. Sci. Belgrade 2006, 51, 133–140. [Google Scholar] [CrossRef]
- König, A.; Hudler, M.; Dahl, S.A.; Bolduan, C.; Brugger, D.; Windisch, W. Response of roe deer (Capreolus capreolus) to seasonal and local changes in dietary energy content and quality. Anim. Prod. Sci. 2020, 60, 1315–1325. [Google Scholar] [CrossRef]
- Ballari, S.A.; Barrios-García, M.N. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mamm. Rev. 2014, 44, 124–134. [Google Scholar] [CrossRef]
- Dixon, R.; Coates, D. Review: Near Infrared Spectroscopy of Faeces to Evaluate the Nutrition and Physiology of Herbivores. J. Near Infrared Spectrosc. 2009, 17, 1–31. [Google Scholar] [CrossRef]
- Lancaster, R.J. The measurement of feed intake by grazing cattle and sheep. I. A method of calculating the digestibility of pasture based on the nitrogen content of feces derived from the pasture. N. Z. J. Sci. Technol. 1949, 31, 31–38. [Google Scholar]
- Jean, P.-O.; Bradley, R.L.; Giroux, M.-A.; Tremblay, J.-P.; Côté, S.D. Near Infrared Spectroscopy and Fecal Chemistry as Predictors of the Diet Composition of White-Tailed Deer. Rangel. Ecol. Manag. 2014, 67, 154–159. [Google Scholar] [CrossRef]
- Jianzhang, M.; Junsheng, L.; Zhaowen, J.; Mingbo, G. Nitrogen and fiber concentration in rumen contents and feces contents of Mongolian gazelles. J. For. Res. 1999, 10, 103–106. [Google Scholar] [CrossRef]
- Blanchard, P.; Festa-Bianchet, M.; Gaillard, J.-M.; Jorgenson, J.T. A Test of Long-Term Fecal Nitrogen Monitoring to Evaluate Nutritional Status in Bighorn Sheep. J. Wildl. Manag. 2003, 67, 477. [Google Scholar] [CrossRef]
- Irwin, L.L.; Cook, J.G.; McWhirter, D.E.; Smith, S.G.; Arnett, E.B. Assessing Winter Dietary Quality in Bighorn Sheep via Fecal Nitrogen. J. Wildl. Manag. 1993, 57, 413. [Google Scholar] [CrossRef]
- Wang, C.J.; Tas, B.M.; Glindemann, T.; Rave, G.; Schmidt, L.; Weißbach, F.; Susenbeth, A. Fecal crude protein content as an estimate for the digestibility of forage in grazing sheep. Anim. Feed Sci. Technol. 2009, 149, 199–208. [Google Scholar] [CrossRef]
- Peripolli, V.; Prates, Ê.R.; Barcellos, J.O.J.; Neto, J.B. Fecal nitrogen to estimate intake and digestibility in grazing ruminants. Anim. Feed Sci. Technol. 2011, 163, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Wehausen, J.D. Fecal Measures of Diet Quality in Wild and Domestic Ruminants. J. Wildl. Manag. 1995, 59, 816. [Google Scholar] [CrossRef]
- Choshniak, I.; Arnon, H. Nitrogen metabolism and kidney function in the nubian ibex (Capra ibex nubiana). Comp. Biochem. Physiol. Part A Physiol. 1985, 82, 137–139. [Google Scholar] [CrossRef]
- Barboza, P.S.; Bowyer, R.T. Sexual Segregetaion in Dimorphic Deer: A New Gastrocentric Hypothsis. J. Mammal. 2000, 81, 473–489. [Google Scholar] [CrossRef] [Green Version]
- Klein, D.R.; Schønheyder, F. Variation in ruminal nitrogen levels among some cervidae. Can. J. Zool. 1970, 48, 1437–1442. [Google Scholar] [CrossRef]
- Segelquist, C.A.; Short, H.L.; Ward, F.D.; Leonard, R.G. Quality of Some Winter Deer Forages in the Arkansas Ozarks. J. Wildl. Manag. 1972, 36, 174. [Google Scholar] [CrossRef]
- Staines, B.W.; Crisp, J.M.; Parish, T. Differences in the Quality of Food Eaten by Red Deer (Cervus elaphus) Stags and Hinds in Winter. J. Appl. Ecol. 1982, 19, 65. [Google Scholar] [CrossRef]
- Redjadj, C.; Darmon, G.; Maillard, D.; Chevrier, T.; Bastianelli, D.; Verheyden, H.; Loison, A.; Saïd, S. Intra- and Interspecific Differences in Diet Quality and Composition in a Large Herbivore Community. PLoS ONE 2014, 9, e84756. [Google Scholar] [CrossRef] [Green Version]
- Spalton, J.A. The food supply of Arabian oryx (Oryx leucoryx) in the desert of Oman. J. Zool. 1999, 248, 433–441. [Google Scholar] [CrossRef]
- Cen, H.; He, Y. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci. Technol. 2007, 18, 72–83. [Google Scholar] [CrossRef]
- Shenk, J.S.; Westerhaus, M.O. Near Infrared Reflectance Analysis with Single and Multiproduct Calibrations. Crop Sci. 1993, 33, 582–584. [Google Scholar] [CrossRef]
- Mark, H.; Ritchie, G.E.; Roller, R.W.; Ciurczak, E.W.; Tso, C.; MacDonald, S.A. Validation of a near-infrared transmission spectroscopic procedure, part A: Validation protocols. J. Pharm. Biomed. Anal. 2002, 28, 251–260. [Google Scholar] [CrossRef]
- Landau, S.; Glasser, T.; Dvash, L.; Perevolotsky, A. Faecal NIRS to monitor the diet of Mediterranean goats. S. Afr. J. Anim. Sci. 2004, 34, 76–80. [Google Scholar]
- Purnomoadi, A.; Kurihara, M.; Nishida, T.; Terada, F.; Abe, A. Prediction of Feed Digestibility Using Differences in NIRS Spectra between Feeds and Feces at a Determined Region of Wavelength. Nihon Chikusan Gakkaiho 1998, 69, 253–259. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemist: Arlington, VA, USA, 1990. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses, Apparatus, Reagents, Procedures, and Some Applications; ARS-USDA: Washington, DC, USA, 1970.
- Tilley, J.M.A.; Terry, R.A. A Two-Stage Technique for the In Vitro Digestion of Forage Crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; O & B Books: Corvallis, OR, USA, 1982. [Google Scholar]
- Nocek, J.E. In situ and Other Methods to Estimate Ruminal Protein and Energy Digestibility: A Review. J. Dairy Sci. 1988, 71, 2051–2069. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- ISI. WinISI, the Complete Software Solution for Routine Analysis, Robust Calibrations and Networking; Infrasoft International LLC: State College, PA, USA, 1999. [Google Scholar]
- Glasser, T.; Landau, S.; Ungar, E.D.; Perevolotsky, A.; Dvash, L.; Muklada, H.; Kababya, D.; Walker, J.W. A fecal near-infrared reflectance spectroscopy-aided methodology to determine goat dietary composition in a Mediterranean shrubland. J. Anim. Sci. 2004, 86, 1345–1356. [Google Scholar] [CrossRef] [Green Version]
- Shenk, J.S.; Westerhaus, M.O. Population Definition, Sample Selection, and Calibration Procedures for Near Infrared Reflectance Spectroscopy. Crop Sci. 1991, 31, 469–474. [Google Scholar] [CrossRef]
- Martens, H.; Naes, T. Multivariate calibration by data comparison. In Near-Infrared Technology in the Agricultural and Food Industry; Williams, P.C., Norris, K., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 1987. [Google Scholar]
- Naes, T.; Isakson, T.; Fearn, T.; Davies, T. Validation. In A User-Friendly Guide to Multivariate Calibration and Classification; Naes, T., Isakson, T., Fearen, T., Davies, T., Eds.; NIR Publications: Chichester, UK, 2002; pp. 155–177. [Google Scholar]
- Williams, P.; Sobering, D.C. Near Infrared Spectroscopy: The Future Waves; Davies, A.M.C., Williams, P.C., Eds.; NIR Publications: Chichester, UK, 1995; pp. 6–11. [Google Scholar]
- Glasser, T.A.; Landau, S.Y.; Ungar, E.D.; Perevolotsky, A.; Dvash, L.; Muklada, H.; Kababya, D.; Walker, J.W. Foraging selectivity of three goat breeds in a Mediterranean shrubland. Small Rumin. Res. 2012, 102, 7–12. [Google Scholar] [CrossRef]
- Kababya, D.; Perevolotsky, A.; Bruckental, I.; Landau, S.Y. Selection of diets by dual-purpose Mamber goats in Mediterranean woodland. J. Agric. Sci. 1998, 131, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Maloiy, G.M.O.; Rugangazi, B.M.; Clemens, E.T. Nitrogen metabolism and renal function in the dik-dik antelope (Rhynchotragus kirkii). Small Rumin. Res. 2000, 37, 243–248. [Google Scholar] [CrossRef]
- Silanikove, N.; Tagari, H.; Shkolnik, A. Gross energy digestion and urea recycling in the desert black Bedouin goat. Comp. Biochem. Physiol. Part A Physiol. 1980, 67, 215–218. [Google Scholar] [CrossRef]
- Schwartz, A.L.W.; Shilling, F.M.; Perkins, S.E. The value of monitoring wildlife roadkill. Eur. J. Wildl. Res. 2020, 66, 18. [Google Scholar] [CrossRef] [Green Version]
- Krumm, C.E.; Conner, M.M.; Miller, M.W. Relative Vulnerability of Chronic Wasting Disease Infected Mule Deer to Vehicle Collisions. J. Wildl. Dis. 2005, 41, 503–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, J.R.; Colom-cadena, A.; Marco, I.; Ramanzin, M.; Ferna, X.; Albanell, E. Predicting herbivore faecal nitrogen using a multispecies near-infrared reflectance spectroscopy calibration. PLoS One 2017, 12, e0176635. [Google Scholar]
- Mendelsshon, H.; Yom-Tov, Y.; Groves, C. Gazella gazella. Mamm. Species 1995, 490, 1–7. [Google Scholar]
- Demment, M.; Van Soest, P.J. A Nutritional Explanation for Body-Size Patterns of Ruminant and Nonruminant Herbivores. Am. Nat. 1985, 125, 641–672. [Google Scholar] [CrossRef]
- Mysterud, A.; Langvatn, R.; Stenseth, N.C. Patterns of reproductive effort in male ungulates. J. Zool. 2004, 264, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Baharav, D. Reproductive strategies in female Mountain and Dorcas gazelles (Gazella gazella gazella and Gazella dorcas). J. Zool. 1983, 200, 445–453. [Google Scholar] [CrossRef]
- Landau, S.Y.; Provenza, F.D. Of browse, goats, and men: Contribution to the debate on animal traditions and cultures. Appl. Anim. Behav. Sci. 2020, 232, 105127. [Google Scholar] [CrossRef]
- Israel Meteorological Service. Available online: https://ims.gov.il/en (accessed on 1 June 2021).
Month | 2018 | 2019 | 2020 | Total |
---|---|---|---|---|
January | - | 3 | 4 | 7 |
February | - | 3 | 2 | 5 |
March | - | 4 | 1 | 5 |
April | 3 | 5 | 4 | 12 |
May | 6 | 11 | 2 | 19 |
June | 1 | 7 | - | 8 |
July | 3 | 2 | 3 | 8 |
August | 2 | 5 | 1 | 8 |
September | 2 | - | 1 | 3 |
October | 1 | 3 | 4 | 8 |
November | 2 | 6 | 7 | 15 |
December | 2 | 6 | 1 | 9 |
Total | 22 | 55 | 30 | 107 |
Category | Male | Female | All |
---|---|---|---|
Young | 15.40 ± 3.67; n = 13 | 12.27 ± 2.72; n = 12 | 13.96 ± 3.58; n = 25 |
Adult | 22.38 ± 2.63; n = 47 | 17.26 ± 2.55; n = 33 | 20.38 ± 3.79; n = 80 |
All | 20.90 ± 4.39; n = 60 | 15.89 ± 3.41; n = 45 | 18.70 ± 4.70; n = 105 |
Dataset | Sample Type | Constituents Predicted by the Dataset |
---|---|---|
Carcasses | Rumen contents | CP (96), NDF (96), ADF (96), ash (96), IVDMD (36), C (80), N (80), C:N (80) |
Feeds | Food items: herbaceous and woody forage plants, both cultivated and wild | CP (619), NDF (619), ADF (619), ash (511), IVDMD (292), PEG-b-t (116) |
Calibration Dataset | Constituent | n | Mean | SD | SEC | R2cal | SECV | R2cv | RPD | DER |
---|---|---|---|---|---|---|---|---|---|---|
Carcasses | Crude protein | 88 | 11.97 | 4.15 | 0.78 | 0.96 | 1.22 | 0.91 | 3.39 | 1 |
ADF | 93 | 53.67 | 9.26 | 3.64 | 0.85 | 4.55 | 0.76 | 2.04 | 2 | |
NDF | 94 | 70.92 | 10.59 | 3.43 | 0.89 | 4.89 | 0.8 | 2.16 | 1 | |
IVDMD | 28 | 30.00 | 12.0 | 4.0 | 0.92 | 5.00 | 0.86 | 2.69 | 1 | |
Ash | 92 | 6.87 | 3.48 | 1.2 | 0.88 | 1.33 | 0.85 | 2.62 | 1 | |
C | 67 | 45.74 | 2.42 | 0.62 | 0.93 | 0.81 | 0.89 | 3 | 1 | |
N | 70 | 2.85 | 1.01 | 0.2 | 0.96 | 0.28 | 0.92 | 3.64 | 2 | |
C:N | 69 | 18.28 | 6.81 | 1.98 | 0.92 | 2.72 | 0.84 | 2.5 | 1 | |
Feeds | Crude protein | 584 | 11.93 | 5.18 | 0.92 | 0.97 | 1 | 0.96 | 5.18 | 1 |
ADF | 584 | 29.29 | 7.44 | 2.4 | 0.9 | 2.6 | 0.88 | 2.87 | 1 | |
NDF | 586 | 45.43 | 12.31 | 3.38 | 0.92 | 3.69 | 0.91 | 3.34 | 1 | |
IVDMD | 280 | 55.16 | 17.45 | 3.25 | 0.97 | 3.64 | 0.96 | 4.8 | 1 | |
Ash | 477 | 7.93 | 3.25 | 0.96 | 0.91 | 1.08 | 0.89 | 3 | 2 | |
PEG-b-t | 111 | 6.55 | 5.59 | 1 | 0.97 | 1.29 | 0.95 | 4.35 | 1 |
Constituent | Variable | Season | Ecosystem | Season x Ecosystem | Age-Class | Sex | Mean Square | df |
---|---|---|---|---|---|---|---|---|
Protein | F Statistic | 5.69 | 2.94 | 0.34 | 3.35 | 105.68 | 87 | |
p-value | 0.0013 | 0.090 | 0.79 | 0.071 | ||||
ADF | F Statistic | 7.3105 | 2.7957 | 0.7422 | 140.57 | 88 | ||
p-value | 0.0002 | 0.098 | 0.53 | |||||
NDF | F Statistic | 4.18 | 5.37 | 0.35 | 196.17 | 87 | ||
p-value | 0.0081 | 0.0228 | 0.79 | |||||
IVDMD | F Statistic | 6.65 | 4.83 | 0.25 | 296.96 | 88 | ||
p-value | 0.0004 | 0.0305 | 0.86 | |||||
Ash | F Statistic | 3.32 | 5.99 | 0.81 | 6.20 | 19.38 | 87 | |
p-value | 0.0234 | 0.0164 | 0.49 | 0.0147 | ||||
C:N | F Statistic | 3.40 | 4.15 | 33.89 | 89 | |||
p-value | 0.0211 | 0.0447 | ||||||
PEG-b-t | F Statistic | 0.44 | 0.43 | 0.31 | 26.11 | 88 | ||
p-value | 0.72 | 0.51 | 0.82 |
Season | Ecosystem Type | Age Class | Sex | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Constituent | Level | Win. | Spr. | Sum. | Aut. | Dry | Med. | Adu. | You. | Fem. | Mal. |
NDF | Mean | 46.4 | 49.3 | 49.2 | 53.7 | 52.1 | 48.8 | 48.0 | 50.9 | 48.7 | 48.2 |
SE | 1.8 | 1.46 | 1.63 | 1.68 | 1.18 | 0.81 | 0.84 | 1.33 | 1.01 | 1.04 | |
ADF | Mean | 27.2 | 32.4 | 32.1 | 34.7 | 32.3 | 29.7 | 30.3 | 32.4 | 30.8 | 32.3 |
SE | 1.32 | 1.07 | 1.19 | 1.23 | 1.13 | 0.71 | 0.73 | 0.99 | 0.87 | 0.86 | |
C:N | Mean | 12.1 | 12.6 | 12.8 | 14.8 | 13.3 | 12.5 | 12.6 | 14.1 | 12.9 | 12.9 |
SE | 0.65 | 0.47 | 0.57 | 0.59 | 0.68 | 0.41 | 0.33 | 0.52 | 0.44 | 0.52 | |
IVDMD | Mean | 47.6 | 45.4 | 45.0 | 37.0 | 41.0 | 45.0 | 45.9 | 42.4 | 44.9 | 45.6 |
SE | 1.92 | 1.56 | 1.73 | 1.79 | 1.44 | 1.0 | 0.73 | 0.99 | 1.12 | 1.19 | |
Crude protein | Mean | 24.9 | 22.9 | 21.7 | 18.9 | 20.8 | 22.4 | 23.8 | 21.6 | 21.4 | 22.6 |
SE | 1.15 | 0.93 | 1.06 | 1.08 | 0.99 | 0.69 | 0.56 | 1.2 | 0.79 | 0.65 | |
Ashes | Mean | 11.01 | 9.6 | 9.2 | 9.1 | 8.9 | 10.0 | 10.0 | 8.7 | 10.2 | 10.2 |
SE | 0.51 | 0.42 | 0.45 | 0.46 | 0.38 | 0.27 | 0.26 | 0.39 | 0.34 | 0.35 | |
PEG-b-t | Mean | 2.13 | 2.54 | 2.12 | 2.0 | 2.46 | 2.12 | 2.21 | 2.07 | 2.12 | 2.14 |
SE | 0.57 | 0.46 | 0.51 | 0.53 | 0.43 | 0.3 | 0.27 | 0.44 | 0.34 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnon, A.; Landau, S.Y.; Izhaki, I.; Malkinson, D.; Levy-Paz, Y.; Deutch-Traubman, T.; Voet, H.; Segev, O.; Dovrat, G. A NIRS-Aided Methodology to Elucidate the Nutrition of the Endangered Mountain Gazelle (Gazella gazella) Using Samples of Rumen Contents from Roadkills. Remote Sens. 2021, 13, 4279. https://doi.org/10.3390/rs13214279
Arnon A, Landau SY, Izhaki I, Malkinson D, Levy-Paz Y, Deutch-Traubman T, Voet H, Segev O, Dovrat G. A NIRS-Aided Methodology to Elucidate the Nutrition of the Endangered Mountain Gazelle (Gazella gazella) Using Samples of Rumen Contents from Roadkills. Remote Sensing. 2021; 13(21):4279. https://doi.org/10.3390/rs13214279
Chicago/Turabian StyleArnon, Amir, Serge Yan Landau, Ido Izhaki, Dan Malkinson, Yaniv Levy-Paz, Tova Deutch-Traubman, Hillary Voet, Ori Segev, and Guy Dovrat. 2021. "A NIRS-Aided Methodology to Elucidate the Nutrition of the Endangered Mountain Gazelle (Gazella gazella) Using Samples of Rumen Contents from Roadkills" Remote Sensing 13, no. 21: 4279. https://doi.org/10.3390/rs13214279
APA StyleArnon, A., Landau, S. Y., Izhaki, I., Malkinson, D., Levy-Paz, Y., Deutch-Traubman, T., Voet, H., Segev, O., & Dovrat, G. (2021). A NIRS-Aided Methodology to Elucidate the Nutrition of the Endangered Mountain Gazelle (Gazella gazella) Using Samples of Rumen Contents from Roadkills. Remote Sensing, 13(21), 4279. https://doi.org/10.3390/rs13214279