Spatial Analysis of Urban Residential Sensitivity to Heatwave Events: Case Studies in Five Megacities in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Meteorological Datasets
2.2.2. Remote Sensing Data
2.2.3. Social Media Weibo Data
2.2.4. Other Auxiliary Datasets
2.3. Methods
2.3.1. Quantifying HWEs in Geographical Space
2.3.2. Extracting the Sensitivity to the HWEs in the Social Media
2.3.3. Matching of LST and Sensitivity to HWEs
3. Results
3.1. Temporal Correlation of HWEs and the Residential Sensitivity to HWEs
3.2. Spatial Patterns of the LST and Residential Sensitivity to HWEs
3.3. Spatial Patterns of the LST and Residential Sensitivity to HWEs
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murray, V.; Ebi, K.L. IPCC special report on managing the risks of extreme events and disasters to advance climate change adaptation (SREX). J. Epidemiol. Community Health 2012, 66, 759–760. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, C.; Tett, F.B.S.; Yan, Z.; Zhai, P.; Feng, J.; Xia, J. Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.; Lu, C.; Chen, Z. High Temperature Heat Waves and Human Health; China Meteorological Press: Beijing, China, 2009. [Google Scholar]
- Thirumalai, K.; DiNezio, P.N.; Okumura, Y.; Deser, C. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun. 2017, 8, 15531. [Google Scholar] [CrossRef] [PubMed]
- Phung, D.; Chu, C.; Tran, D.N.; Huang, C. Spatial variation of heat-related morbidity: A hierarchical Bayesian analysis in multiple districts of the Mekong Delta Region. Sci. Total Environ. 2018, 637, 1559–1565. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Kan, H.; Kovats, S. The impact of the 2003 heat wave on mortality in Shanghai, China. Sci. Total Environ. 2010, 408, 2418–2420. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, C.; Chen, F. Mapping heat-related health risks of elderly citizens in mountainous area: A case study of Chongqing, China. Sci. Total Environ. 2019, 663, 852–866. [Google Scholar] [CrossRef]
- Ma, W.; Zeng, W.; Zhou, M.; Wang, L.; Rutherford, S.; Lin, H.; Liu, T.; Zhang, Y.; Xiao, J.; Zhang, Y.; et al. The short-term effect of heat waves on mortality and its modifiers in China: An analysis from 66 communities. Environ. Int. 2015, 75, 103–109. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, C.; Suen, H.P.; Ai, S.; Bai, Y.; Bao, Y.; Bao, J.; Chen, B.; Cheng, L.; Cui, X.; et al. The 2020 China report of the Lancet Countdown on health and climate change. Lancet Public Health 2021, 6, e64–e81. [Google Scholar] [CrossRef]
- O’Malley, C.; Kikumoto, H. An investigation into the relationship between remotely sensed land surface temperatures and heat stroke incident rates in the Tokyo Prefecture 2010–2019. Sustain. Cities Soc. 2021, 71, 102988. [Google Scholar] [CrossRef]
- Yan, Y.-E.; Zhao, Y.-Q.; Wang, H.; Fan, M. Pathophysiological factors underlying heatstroke. Med. Hypotheses 2006, 67, 609–617. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate change 2014: Impacts, adaptation, and vulnerability. In Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Xiao, Z.; Wang, Z.; Pan, W.; Wang, Y.; Yang, S. Sensitivity of extreme temperature events to urbanization in the Pearl River Delta Region. Asia-Pac. J. Atmos. Sci. 2019, 55, 373–386. [Google Scholar] [CrossRef]
- Zeng, X.-M.; Wu, Z.; Xiong, S.; Song, S.; Zheng, Y.; Liu, H. Sensitivity of simulated short-range high-temperature weather to land surface schemes by WRF. Sci. China Earth Sci. 2011, 54, 581–590. [Google Scholar] [CrossRef]
- Spangler, K.R.; Wellenius, G.A. Spatial patterns of recent US summertime heat trends: Implications for heat sensitivity and health adaptations. Environ. Res. Commun. 2020, 2, 035002. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.J.; Perkins-Kirkpatrick, S.E.; Sharples, J.J. Intensifying Australian heatwave trends and their sensitivity to observational data. Earth’s Futur. 2021, 9, e2020EF001924. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.Z.; Ou, C.Q.; Lin, G.Z.; Ding, Y.; Zhou, Q.; Shen, J.C.; Chen, P.Y. Impact of heat wave in 2005 on mortality in Guangzhou, China. Biomed. Environ. Sci. 2013, 26, 647–654. [Google Scholar] [CrossRef]
- Knowlton, K.; Rotkin-Ellman, M.; King, G.; Margolis, H.G.; Smith, D.; Solomon, G.; Trent, R.; English, P. The 2006 California heat wave: Impacts on hospitalizations and emergency department visits. Environ. Health Perspect. 2009, 117, 61–67. [Google Scholar] [CrossRef]
- Åström, C.; Ebi, K.L.; Langner, J.; Forsberg, B. Developing a heatwave early warning system for Sweden: Evaluating sensitivity of different epidemiological modelling approaches to forecast temperatures. Int. J. Environ. Res. Public Health 2015, 12, 254–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Hou, Y.; Chen, W. Enhanced sensitivity of the urban heat island effect to summer temperatures induced by urban expansion. Environ. Res. Lett. 2019, 14, 094005. [Google Scholar] [CrossRef] [Green Version]
- Kotroni, V.; Lagouvardos, K.; Retalis, A. The heat wave of June 2007 in Athens, Greece—Part 2: Modeling study and sensitivity experiments. Atmos. Res. 2011, 100, 1–11. [Google Scholar] [CrossRef]
- Xue, Q.; Xie, M.; Guo, Q.; Wang, Y.; Wu, R.; Liu, Q. Research progress on urban heat wave vulnerability assessment: A geographical perspective. Prog. Geogr. 2020, 39, 157–166. (In Chinese) [Google Scholar]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Nichol, J.E.; Fung, W.Y.; Lam, K.S.; Wong, M.S. Urban heat island diagnosis using ASTER satellite images and ‘in situ’ air temperature. Atmos. Res. 2009, 94, 276–284. [Google Scholar] [CrossRef]
- Tong, L.; Li, X.; Si, Q.; Zhang, J. Risk assessment of population exposure to heat wave: A case of Baotou City, Inner Mongolia, China. Arid. Land Geogr. 2017, 40, 284–292. (In Chinese) [Google Scholar]
- He, C.; Ma, L.; Zhou, L.; Kan, H.; Zhang, Y.; Ma, W.; Chen, B. Exploring the mechanisms of heat wave vulnerability at the urban scale based on the application of big data and artificial societies. Environ. Int. 2019, 127, 573–583. [Google Scholar] [CrossRef]
- Dai, X.; Liu, Q.; Wu, X.; Huang, C. The Risk of heat wave along the jakarta-bandung high speed railway in Indonesia. Trop. Geogr. 2021, 41, 147–158. (In Chinese) [Google Scholar]
- Miao, H.; Yongming, X.; Ning, L.; Lin, B. Assessing Heat Wave Risk in Beijing by Multi-Source Remote Sensing; Nangjing University of Information Science & Technology: Nanjing, China, 2019. (In Chinese) [Google Scholar]
- Fu, H.; Deng, F.; Yang, F. Assessing heat wave risk of urban agglomeration in the middle–lower Yangtze river based on remote sensing. Resour. Environ. Yangtze Basin 2020, 29, 1174–1182. (In Chinese) [Google Scholar]
- Thompson, R.; Hornigold, R.; Page, L.; Waite, T. Associations between high ambient temperatures and heat waves with mental health outcomes: A systematic review. Public Health 2018, 161, 171–191. [Google Scholar] [CrossRef]
- Hu, J.; Wen, Y.; Duan, Y.; Yan, S.; Liao, Y.; Pan, H.; Zhu, J.; Yin, P.; Cheng, J.; Jiang, H. The impact of extreme heat and heat waves on emergency ambulance dispatches due to external cause in Shenzhen, China. Environ. Pollut. 2020, 261, 114156. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Huang, B.; Kim, J.S.; Wen, J.; Li, R. Fine-scale mapping of an evidence-based heat health risk index for high-density cities: Hong Kong as a case study. Sci. Total Environ. 2020, 718, 137226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J. Countermeasures of a Heat Wave Based on Its Correlation with Urban Form; Dalian University of Technology: Dalian, China, 2020. (In Chinese) [Google Scholar]
- Li, H.; Zhang, M. Framework and application of health risk assessment for heat wave in Beijing. J. Environ. Health 2020, 37, 58–65. (In Chinese) [Google Scholar]
- Li, X.; Chen, Z.; Wu, J.; Wang, W.; Qu, L.; Zhou, S.; Han, X. Gridding methods of city permanent population based on night light data and spatial regression models. J. Geo-Inf. Sci. 2017, 19, 1298–1305. (In Chinese) [Google Scholar]
- Jin, P.; Xu, P. A study of urbanization progress and spatial pattern using DMSP/OLS nighttime light data: A case study of Hangzhou City. Remote Sens. Land Resour. 2017, 29, 205–213. (In Chinese) [Google Scholar]
- Liu, Y. Revisiting several basic geographical concepts: A social sensing perspective. Acta Geogr. Sin. 2016, 4, 564–575. (In Chinese) [Google Scholar]
- Sobrino, J.; Oltra-Carrió, R.; Sòria, G.; Bianchi, R.; Paganini, M. Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sens. Environ. 2012, 117, 50–56. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J.; Sun, C.; Zhang, X.; Kahn, M.E. Air pollution lowers Chinese urbanites’ expressed happiness on social media. Nat. Hum. Behav. 2019, 3, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Cecinati, F.; Matthews, T.; Natarajan, S.; McCullen, N.; Coley, D. Mining social media to identify heat waves. Int. J. Environ. Res. Public Health 2019, 16, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Meng, B.; Pei, T.; Du, Y.; Zhang, J.; Chen, S.; Tian, B.; Zhi, G. Mapping the exposure and sensitivity to heat wave events in China’s megacities. Sci. Total Environ. 2021, 755, 142734. [Google Scholar] [CrossRef]
- Smid, M.; Russo, S.; Costa, A.C.; Granell, C.; Pebesma, E. Ranking European capitals by exposure to heat waves and cold waves. Urban. Clim. 2019, 27, 388–402. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Dawson, R.J.; Kilsby, C.; Lewis, E.; Ford, A. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 2018, 13, 034009. [Google Scholar] [CrossRef]
- Hondula, D.M.; Davis, R.E.; Saha, M.V.; Wegner, C.R.; Veasey, L.M. Geographic dimensions of heat-related mortality in seven U.S. cities. Environ. Res. 2015, 138, 439–452. [Google Scholar] [CrossRef]
- Jin, X.; Qi, X.; Lu, Y.; Ye, H.; Wang, Y. Evaluation and spatial differentiation of heat waves risk of Fujian Province. J. Geo-Inf. Sci. 2018, 20, 136–145. (In Chinese) [Google Scholar]
- Chen, Q.; Ding, M.; Yang, X.; Hu, K.; Qi, J. Spatially explicit assessment of heat health risks using multi-source data: A case study of the Yangtze River Delta region, China. J. Geo-Inf. Sci. 2017, 11, 1475–1484. (In Chinese) [Google Scholar]
- Zheng, X.; Wang, Y.; Wu, X.; Qi, X.; Qi, X. Comparison of heat wave vulnerability between coastal and inland cities of Fujian Province in the past 20 years. Prog. Geogr. 2016, 35, 1197–1205. (In Chinese) [Google Scholar]
- Wang, J.; Meng, B.; Fu, D.; Pei, T.; Xu, C. Mapping Spatiotemporal Patterns and Multi-Perspective Analysis of the Surface Urban Heat Islands across 32 Major Cities in China. ISPRS Int. J. Geo-Inf. 2018, 7, 207. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wang, X.; Wu, J.; Wang, R.; Yang, S. Performance of heat-health warning systems in Shanghai evaluated by using local heat-related illness data. Sci. Total Environ. 2020, 715, 136883. [Google Scholar] [CrossRef] [PubMed]
- Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat waves and urban heat islands in Europe: A review of relevant drivers. Sci. Total Environ. 2016, 569–570, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Lao, X.Q.; Rutherford, S.; Xu, Y.; Xu, X.; Lin, H.; Liu, T.; Luo, Y.; Xiao, J.; Hu, M.; et al. The effect of heat waves on mortality and effect modifiers in four communities of Guangdong Province, China. Sci. Total Environ. 2014, 482–483, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Tang, Y. Identification of urban areas vulnerable to heat waves and coping strategies: A case study of Beijing central city. City Plan. Rev. 2019, 43, 37–44+77. (In Chinese) [Google Scholar]
- McMichael, A.J.; Wilkinson, P.; Kovats, R.S.; Pattenden, S.; Hajat, S.; Armstrong, B.; Vajanapoom, N.; Niciu, E.M.; Mahomed, H.; Kingkeow, C.; et al. International study of temperature, heat and urban mortality: The ‘ISOTHURM’ project. Int. J. Epidemiol. 2008, 37, 1121–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curriero, F.C.; Heiner, K.S.; Samet, J.M.; Zeger, S.L.; Strug, L.; Patz, J.A. Temperature and mortality in 11 cities of the Eastern United States. Am. J. Epidemiol. 2002, 155, 80–87. [Google Scholar] [CrossRef]
- Jin, X. The Risk Evaluation and Regionalization of Heat Wave in Fujian Province within the Background of Risk Society; Fujian Normal University: Fuzhou, China, 2017. (In Chinese) [Google Scholar]
- Öke, K. The Armenian Question; Turkish Historical Society Printing House: Ankara, Turkey, 2001; p. 297. [Google Scholar]
- Cai, J.; Huang, B.; Song, Y. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sens. Environ. 2017, 202, 210–221. [Google Scholar] [CrossRef]
- Ning, P.F.; Wan, Y.C.; Ren, F. Sina Weibo for the data of time and space hot event detection method. Geomat. Spat. Inf. Technol. 2017, 40, 33–43. (In Chinese) [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar]
- Deilami, K.; Kamruzzaman, M.; Hayes, J.F. Correlation or causality between land cover patterns and the urban heat island effect? Evidence from Brisbane, Australia. Remote Sens. 2016, 8, 716. [Google Scholar] [CrossRef] [Green Version]
- Mu, H.; Xue, Z.; Li, J. Variation characteristics of Shanghai ground-air temperature difference and its influence factors. Acta Agric. Shanghai 2018, 34, 55–62. (In Chinese) [Google Scholar]
_id | Content | PubTime | Latitude | Longitude |
---|---|---|---|---|
6202527610-M_F72PRtRlO | It’s extra hot in Beijing today, and the hot wind is blowing in the face. #Beijing# | 2017/6/9 18:12 | 39.90554 | 116.45202 |
5045403075-M_F71Edysm4 | On the way to work, hot,hot,hot. | 2017/6/9 15:11 | 39.90844 | 116.6659 |
5381580106-M_FfOPwAaCa | Too hot to breathe. | 2017/8/6 11:06 | 39.913162 | 116.397163 |
City | Number of HWE Days | Weibo Data Points Related to HWEs | Number of Weibo Data Points |
---|---|---|---|
Beijing | 19 | 14,563 | 34,419 |
Guangzhou | 19 | 3753 | 9390 |
Nanjing | 23 | 4312 | 8801 |
Wuhan | 21 | 5080 | 11,340 |
Xi’an | 42 | 13,446 | 27,545 |
R | Low (<0.5 std. Dev) | High (≥0.5 std. Dev) | |
---|---|---|---|
LST | |||
Low (<37 °C) | Low–Low | High–Low | |
High (≥37 °C) | Low–High | High–High |
City | Classify of LST Patterns and Sensitivities on Weibo | |||
---|---|---|---|---|
Beijing | R | Low | High | |
LST | ||||
Low | 94 | 428 | ||
High | 228 | 964 | ||
Guangzhou | R | Low | High | |
LST | ||||
Low | 288 | 171 | ||
High | 475 | 354 | ||
Nanjing | R | Low | High | |
LST | ||||
Low | 245 | 102 | ||
High | 430 | 301 | ||
Wuhan | R | Low | High | |
LST | ||||
Low | 227 | 126 | ||
High | 469 | 325 | ||
Xi’an | R | Low | High | |
LST | ||||
Low | 389 | 133 | ||
High | 769 | 504 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, G.; Meng, B.; Wang, J.; Chen, S.; Tian, B.; Ji, H.; Yang, T.; Wang, B.; Liu, J. Spatial Analysis of Urban Residential Sensitivity to Heatwave Events: Case Studies in Five Megacities in China. Remote Sens. 2021, 13, 4086. https://doi.org/10.3390/rs13204086
Zhi G, Meng B, Wang J, Chen S, Tian B, Ji H, Yang T, Wang B, Liu J. Spatial Analysis of Urban Residential Sensitivity to Heatwave Events: Case Studies in Five Megacities in China. Remote Sensing. 2021; 13(20):4086. https://doi.org/10.3390/rs13204086
Chicago/Turabian StyleZhi, Guoqing, Bin Meng, Juan Wang, Siyu Chen, Bin Tian, Huimin Ji, Tong Yang, Bingqing Wang, and Jian Liu. 2021. "Spatial Analysis of Urban Residential Sensitivity to Heatwave Events: Case Studies in Five Megacities in China" Remote Sensing 13, no. 20: 4086. https://doi.org/10.3390/rs13204086
APA StyleZhi, G., Meng, B., Wang, J., Chen, S., Tian, B., Ji, H., Yang, T., Wang, B., & Liu, J. (2021). Spatial Analysis of Urban Residential Sensitivity to Heatwave Events: Case Studies in Five Megacities in China. Remote Sensing, 13(20), 4086. https://doi.org/10.3390/rs13204086