International Journal of /
* Environmental Research m\DP|
and Public Health Z

Article

Mining Social Media to Identify Heat Waves

Francesca Cecinati '*1©, Tom Matthews 20, Sukumar Natarajan 1 Nick McCullen !
and David Coley !

1 Department of Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, UK;
s.natarajan@bath.ac.uk (S.N.); nm268@bath.ac.uk (N.M.); dac33@bath.ac.uk (D.C.)
Department of Geography and Environment, Loughborough University,

Loughborough, Leicestershire LE11 3TU, UK; t. matthews@lboro.ac.uk
*  Correspondence: f.cecinati@bath.ac.uk

check for
Received: 6 February 2019; Accepted: 25 February 2019; Published: 2 March 2019 updates

Abstract: Heat waves are one of the deadliest of natural hazards and their frequency and intensity
will likely increase as the climate continues to warm. A challenge in studying these phenomena is
the lack of a universally accepted quantitative definition that captures both temperature anomalies
and associated mortality. We test the hypothesis that social media mining can be used to identify
heat wave mortality. Applying the approach to India, we find that the number of heat-related tweets
correlates with heat-related mortality much better than traditional climate-based indicators, especially
at larger scales, which identify many heat wave days that do not lead to excess mortality. We conclude
that social media based heat wave identification can complement climatic data and can be used to:
(1) study heat wave impacts at large scales or in developing countries, where mortality data are
difficult to obtain and uncertain, and (2) to track dangerous heat wave events in real time.
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1. Introduction

Heat waves are amongst the deadliest of natural hazards [1-3]. The European heat wave during
the summer of 2003 resulted in 22,000 to 70,000 excess deaths [4], while the Russian heat wave of
2010 caused 56,000 [5]. The duration, frequency, intensity and extent of heat waves has also increased
since the end of 20th century, and climate models project this will continue with global warming in the
near future [6-8]. Heat waves are also expected to be exacerbated by other global trends like increasing
urbanization [9-11], and will impact human health, as well as ecosystems, economy, electricity and
water consumption [12].

To ensure consistent and comparable studies across institutions, countries, and disciplines,
a common definition of a heat wave is necessary. The Glossary of Meteorology (GoM) formally defines
a heat wave as “a period of abnormally and uncomfortably hot and usually humid weather” [13].
Whilst a widely accepted definition, it is ambiguous in the absence of quantitative guidelines. This is
reflected in the great range of heat wave definitions employed in the literature, which can differ in
terms of metrics (e.g., maximum temperature, minimum temperature, mean temperature, apparent
temperature), selected threshold that needs to be exceeded (e.g., an absolute threshold, a percentile,
or a an anomaly from the climatological mean), or duration of the exceptional conditions (usually
ranging from 2 to 5 days at least) [14]. Numerous researchers have attempted to organise the proposed
definitions [14-19], but a universal solution remains elusive. One reason is that, looking at the GoM
definition, it is relatively easy to quantify the abnormality of temperature and humidity, but the
quantification of discomfort for the population is a much harder problem.

Critical thresholds to identify heat waves are often selected through regression analysis of the
temperature-mortality relationship [19-32]. However, there are practical challenges that limit this
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approach as a universal solution. For example, the relationship between temperature metrics and
mortality has been shown to vary geographically, with socioeconomic or demographic factors, mortality
and morbidity data are sensitive, not widely available, and challenging to obtain, and the death toll
from heat events can be significantly under- or mis-reported (particularly in developing countries).

This work proposes a very different impact-led approach to identify heat waves using Twitter.
Billions of people now use social media to discuss significant world events, and Twitter, with its
concise 140-character limit, is regarded as a de-facto tool for mining “what’s happening now” [33].
This recognition has seen researchers use Twitter for event detection in the context of breaking
news [34,35], music events [36], forest fires [37], earthquakes [38], and flu outbreaks [39]. In previous
studies, Twitter has been used to identify heat-risk, but only at local scale, for a short time span and
without considering impact on population mortality [40]. Our study is the first to use the widespread
availability of Twitter data at large spatial and temporal scales, thus enabling to compare time series
with heat-related mortality.

Our study specifically considers Twitter posts (tweets) containing heat wave related phrases,
to identify heat waves in India. The choice of India as a case study is due to: (1) India being a heavily
populated country (1.34 billion in 2016) [41]; (2) extreme heat is a very prominent (and growing)
natural hazard in the country [22,42-45]; (3) India is a developing country and access to heat-related
mortality data is difficult and uncertain, due to significant under-reporting of death or mis-attribution
of causes; and (4) English is widely used for social media.

The first question we address is whether Twitter data are better than climate indicators at detecting
heat effects on public health, specifically looking at heat-related mortality. After confirming that
Twitter data is strongly correlated with heat-related mortality, we examine the differences in heat-wave
identification between Twitter and climate data. This step is pursued because we anticipate that
Twitter cannot be used for forecasting (and hence warning), which must be informed by meteorological
indicators. Hence, a thorough understanding of their similarities and differences is required.

2. Materials and Methods

Our analysis is divided in four parts. At first, we obtain and analyses Twitter data related to
heat waves in India. Subsequently, we compare these data with heat-related mortality data, as well as
climatic indicators. We repeat this analysis for the two Indian states most affected by heat waves in the
study period, to demonstrate the validity of the approach at regional scale as well. Finally, we compare
the Twitter data and common heat wave definitions.

2.1. Datasets

2.1.1. Twitter Data

We download and count the tweets containing the phrases “heat wave India” and “heatwave
India” between 1 January 2010 and 31 December 2017 and the dataset is fully available [46].
To overcome the Twitter API limitations in the number of downloadable tweets and the time span
that can be covered, we use a “scraping” algorithm contained in the GetOldTweets-Python package
that accesses the Twitter platform, searches for the desired phrases, scrolls down and downloads
all the results [47]. The drawback of the methodology is that it cannot access the tweet geolocation.
For this reason we include the country name in the search phrase. These data are likely to only cover
a small fraction of the tweets related to extreme temperatures within the country, as many people will
presumably not include “India” in the tweet, or may use different, possibly more expressive, wording,
but by using a single phrase we ensure consistency. The selected keyword is less ambiguous than
other common expressions like “hot”. We can assume that the use of a subset of all tweets referring
to Indian heat waves is representative of the full sample and filters only the most significant events,
which are likely the ones affecting population health. This approach hence provides a conservative
test of our hypothesis.
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The number of daily tweets about heat waves in India is then normalised to account for the
varying number of active Twitter users over time. The global number of active Twitter users per
quarter, between 2010 and 2017, was accessed through the Statista website that collected and organised
publicly available data from Twitter [48]. The dataset is shown in Figure 1. For finer temporal
resolutions, a linear interpolation is used.
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Figure 1. The figure shows the number of Twitter users active globally.

Finally, to compare Twitter data to heat wave definitions, the time series of daily tweets about
heat waves in India is converted to binary using a 2-tweet threshold: i.e., we consider that a heat wave
has occurred if we count at least two tweets per day (other thresholds were tested as well, but resulted
in lower correlation with climate-based heat wave definitions).

2.1.2. Climate Data

To calculate climatic indicators and heat wave definitions we need temperature and relative
humidity data for India. Station data at a daily temporal resolution is not easy to access in India, spatial
coverage is not always sufficient, records length variable, and quality inconsistent; thus we use the
European Centre for Medium-range Weather Forecasts (ECMWF) ERA-interim re-analysis, available
between 1979 and 2017 at 0.75° lat/lon and 6 h resolution through the ECMWEF API service [49].
ERA-interim provides air temperature at 2 m and relative humidity is derived from air and dew point
temperatures [50]:

R =100 (10-exp( 074 ) ) / (10 exp (5557 )) M

where R is the relative humidity in [%], T, is the dew point temperature in [°C], and T is the air
temperature [°C]. Data between 1980 and 2009 are used to obtain the 30-year climatological statistics,
while data between 2010 and 2017 are used for the analysis. Mean and percentiles are calculated for
each pixel, over the whole 30-year time series, without differentiating the day of the year or the season.

2.1.3. Population Data

We hypothesise that the mortality impact of a heat wave is proportional to the number of affected
people. To consider this aspect, temperature, Heat Index and Excess Heat Factor (better defined in
Section 2.4) scaled with population data are also considered and compared to mortality datasets.
Population data is obtained from the Gridded Population of the World dataset, adjusted according to
the United Nation World Population Prospect (UN WPP-Adjusted Population Density, v 4.10) [51].
The dataset refers to 2015 and is downloaded at a resolution of 0.25° lat/lon, subsequently re-gridded
on the 0.75° grid of the ERA-interim climatic data.



Int. J. Environ. Res. Public Health 2019, 16, 762 4 0f 19

2.1.4. Heat-Wave Related Mortality

We use three heat wave excess mortality datasets to account for the uncertainty in heat-related
mortality data: (1) the international EM-DAT database [52], (2) the official data from the National
Disaster Management Authority (NDMA) [53] and (3) the data manually extracted from the seasonal
and annual reports from India Meteorological Department (IMD) retrieved from the MAUSAM:
Quarterly Journal of Meteorology, Hydrology, and Geophysics repository. All the sources provide
annual data and the IMD reports also provide data at monthly resolution, which is then used to
reinforce the analysis at a finer temporal scale.

2.2. Selection of Climatic Indicators

The correlation between mortality data, number of tweets and a set of nine climatic indicators is
considered. As mortality data is only available at yearly scale, yearly climatic indicators are selected as
well. The selected indicators are chosen to cover a variety of metrics (maximum daily temperature,
mean daily temperature, Heat Index, Excess Heat Factor and affected population) and different
statistics (absolute maximum or threshold exceedance):

e  Maximum mean daily temperature reached in the year (T;;p1)

e Maximum maximum daily temperature reached in the year (Tpsp1)

e  Maximum heat index reached in the year (HIy)

e  Maximum excess heat factor reached in the year (EHF))

e  Maximum difference between the mean daily temperature and the 95th percentile of mean daily
temperature reached in the year (Tyifram)

e  Maximum difference between the heat index and the 95th percentile of heat index reached in the
year (Hlgifrm)

e  Maximum difference between the mean daily temperature and the 95th percentile of mean daily
temperature scaled by the affected population (Ty;¢£a1p0p)

e  Maximum difference between the heat index and the 95th percentile of heat index scaled by the
affected population (Hl;tfampop)

e  Maximum Excess Heat Factor scaled by the affected population (EH Fp1pop)

2.3. Selection of Regions Most Affected by Heat Waves

Most of the data in this work is not available at regional scale. However, the IMD reports about
the weather offer some information on the distribution of the heat-related deaths throughout the
different Indian states.

A summary is shown in Table 1, and the position of the selected states and all the other states
is shown in Figure 2. We cannot repeat the analysis for all the Indian states, thus we select the two
most affected ones in the study period (IMD reports available only up to 2015). It must be noted that
the IMD source of mortality data is the most uncertain one, thus we decided to test the approach
on only two states, as the uncertainty becomes too large for smaller mortality numbers. According
to the table, we select the states of Andhra Pradesh and Telangana. Subsequently, we download
tweets containing the strings “heat wave Andhra Pradesh”, “heatwave Andhra Pradesh”, “heat wave
Telangana”, and “heatwave Telangana”.
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Table 1. Number of heat-related deaths per year per Indian state according to IMD weather reports.

State 2010 2011 2012 2013 2014 2015 Total
Andhra Pradesh 75 0 5 442 0 1722 2244
Telangana 0 0 0 0 0 585 585
Maharashtra 158 1 1 5 0 0 165
Odisha 33 0 30 4 47 41 155
West Bengal 18 0 11 5 4 0 38
Jharkhand 19 0 7 6 0 0 32
Chattisgarh 9 0 3 0 0 0 12
Madhya Pradesh 9 0 0 3 0 0 12
Kerala 2 3 0 3 0 0 8
Uttar Pradesh 3 0 0 5 0 0 8
Gujarat 1 0 0 0 0 7 8
Punjab 0 0 0 6 0 0 6
Haryana 0 0 0 2 0 2 4
Rajasthan 7 0 0 0 0 0 7
Bihran 3 0 0 0 0 0 3
Chandigarh 0 1 1 0 0 0 2

0 500 1000 1500 ki
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Figure 2. Indian states. The two selected for the regional analysis being the most affected by heat
waves in the study period, Andhra Pradesh and Telangana, are highlighted in the figure.
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2.4. Selection of Heat Wave Definitions

Heat wave definitions, contrarily to climatic indicators, only return a binary outcome (heat wave/no
heat wave) calculated on the basis of climatic data. Here some of the most common are selected.

2.4.1. The Official IMD Definition (IMD)

The IMD adopts a heat wave definition that uses a mix of absolute and relative thresholds. A heat
wave is declared in any Indian location if at least one of the following three conditions occurs [43]:

(Tp > 45°C) V (Tas > T +4°C| Tag > 40 °C) V (Tag > Ty +5°C | Ty < 40 °C) )

where T is the maximum daily temperature, T); is the average of the maximum daily temperature
over the 30-year reference period, and the symbol V represent the logical operation “or”. No minimum
duration is set.

2.4.2. The 95th Percentile for 2+ Days of Daily Mean Temperature (T95)

Heat wave definitions based on the exceedance of a relative threshold for a certain duration are
very popular and several combinations of relative thresholds and durations are tested in literature.
Here we select a threshold equal to the 95th percentile of daily mean temperatures for a duration of 2
or more days, as it is popular in literature [20,25,27,54].

2.4.3. The 95th Percentile for 2+ Days of Daily Heat Index (HI95)

The Heat Index (HI) has been used for a long time, especially in the USA, and is also known as
apparent temperature. Although many definitions exist, we use an empirical equation that describes
HI[-] as function of air temperature T[°F] and relative humidity R[%] [55]:

HI = —42.38+2.05-T +10.14-R — 0.22-TR — 6.84-1073T2 — 5.48-10"2R2+

+1.23-1073T2R + 8.53-1074TR? — 1.99-10~ 6 T2 R2 ®)

A heat wave is defined as a period of at least two days in which the mean daily heat index exceeds
the 95th percentile of mean daily heat index [56].

2.4.4. The Excess Heat Factor (EHF)

The Excess Heat Factor (EHF) has been introduced relatively recently [3,57], but has grown in
popularity [22,58-60]. The EHF is the combination of two components: the Significance Excess Heat
Index (EHI;¢) represents the 3-day average temperature to capture unusually high heat that is not
sufficiently discharged overnight, while the Acclimatisation Excess Heat Index (EH1,;) represents
the 30-day average temperature, to consider people adaptation to previous climatic conditions:

EHF = max (0, EHIy) - max(1, EHI ) 4)
EHIsig = m — Tos ®)
EHIyq = E — T304 (6)

where T34 is the average of the mean daily temperature over three days, Tos is the 95th percentile of
mean daily temperatures and T34 is the 30-day average of mean daily temperatures. A heat wave is
defined as a period of any length when the EHF is positive.

2.5. Evaluation of Climatic Heat Wave Definitions

As heat wave definitions are binary, we select five binary skill scores to compare the heat wave
definitions to the Twitter data. The binary skill scores are described in Equations (7)—(11). They are
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based on the following definitions: a is the number of heat wave days both identified by Twitter and
by the considered climatic definition; b is the number of heat wave days occurred according to Twitter,
but not captured by the climatic definition; ¢ are the number of heat wave days that are not identified
by Twitter, but that the climatic definition considers as heat wave days; d is the number of days that
are not considered as heat wave days by neither Twitter nor the climatic definition:

Percentage Correct = % )
Hit Rate = ;1 (8)

Miss Rate = ;4 )

False Alarm Rate = ﬁ (10)
Bigs = it (11)

3. Results

3.1. Characteristics of Twitter Data

Examples of heat wave related tweets are given in Tables 2 and 3. Table 2 shows tweets containing
the phrase “heat wave India” in January 2015, as an example of tweets that are not related to real-time
heat wave events in India (as January is a month of lower temperatures).

Table 2. Example Tweets containing the phrase “heat wave India” in January 2015.

@ corrado_19 @ PatrickGorman3 # Rejected Yankee Candles India

2015-01-29 04:41:09 during a heat wave

5 June 2003—A severe heat wave across Pakistan and India reaches its

2015-01-28 12:30:35 peak, as temperatures exceed 50 °C (122 °F) in the region

5 June 2003—A severe heat wave across Pakistan and India reaches its
peak, as temperatures exceed 50 °C (122 °F) in the region

Wet shoes like the Southern India heat wave of 2003, leading to the
deaths of 1500.

A bent phone a bit like the Southern India heat wave of 2003 which
killed 1500.

2015-01-23 09:15:34

2015-01-18 19:04:11

2015-01-12 22:00:48

Table 3. Some of the tweets containing the phrase “heat wave India” in April 2015. The heat wave of
2015 started in April and reached its peak in May.

Mercury crosses 40-degrees celsius mark in north India: Heat wave-like

2015-04-19 18:28:06 conditions prevailed at several places ... http://bit.ly/1cMar4X

Check this @ SuryaRay Mercury crosses 40-degrees celsius mark in north India:

2015-04-19 18:33:10 Heat wave-like ... http://dlvr.it/9SZKBK#SuryaRay#India

Mercury crosses 40 °C mark in north India: Heat wave-like conditions

2015-04-19 18:46:57 prevailed at several places across the cou . .. http://bit.ly/1DpuPOL

Mercury crosses 40-degrees celsius mark in north India—Heat wave-like

2015-04-19 19:05:45 conditions prevailed at several places acr ... http://ow.ly/2XAYX9

RT- Mercury crosses 40-degrees celsius mark in north India: Heat wave-like

2015-04-19 19:21:47 conditions prevailed at sever ... http://bit.ly /1DpKlox#News

Mercury crosses 40-degrees celsius mark in north India: Heat wave-like

2015-04-19 19:21:51 conditions prevailed at several places ... http://bit.ly/1F2bfhg
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Table 3. Cont.

Mercury crosses 40-degrees celsius mark in North India: Heat wave-like
conditions prevailed at several places ... http://bit.ly/1DrnY7]

MET DEPARTMENT WARNS OF HEAT WAVE IN WESTERN INDIA.
Ahmedabad temp. can be max 44* Be aware have full water, cover face & head.

India, Asia at Thu, 30 April 2015 03:19:28 +0000 | # Heat Wave event has been
observed in India, Asia | http:/ /bit.ly /1zrQ1sk

# incident: Heat Wave—Asia—India: 30.04.2015—03:18:46—Heat Wave event
happened in Asia/India. http://bit.ly/1IbW]pYu

2015-04-30 04:24:43  Heat Wave—Asia—India http:/ /bit.ly /1bW]pYudmolnfoClkDescrption

Heat Wave—Asia—India: 30.04.2015—03:18:46—Heat Wave event happened in
Asia/India. http://dlvr.it/9c¢4B1q via @ RSOE_EDIS

2015-04-30 04:26:06 # RSOE_EDIS Heat Wave—Asia—India http:/ /dlvr.it/9c4DyY
2015-04-30 04:27:07  Heat Wave—Asia—India | Details: http:/ /ift.tt/1ETge5e

2015-04-30 04:27:32  Reporte: RSOE-EDIS Heat Wave—Asia—India http:/ /ift.tt/1ETge5e
2015-04-30 05:00:07  Heat Wave—Asia—India http:/ /dlvr.it/9c57pG

2015-04-20 03:41:16

2015-04-21 10:14:57

2015-04-30 04:19:29

2015-04-30 04:24:41

2015-04-30 04:26:05

Table 3 shows a small extract of the tweets containing the same phrase in April 2015 as an example
of tweets likely related to an event happening in real-time, as April and May 2015 experienced one of
the worst recent heat waves in India [61].

We count the number of tweets containing the phrase “heat wave India” or “heatwave India”
each day to obtain a quantitative indicator (Figure 3). The time series have an exponential behaviour,
which persists even after scaling by the global number of active Twitter users. Figure 4 shows the
histograms of the number of tweets per day and of the number of tweets per day per million Twitter
users in a log-log scale and the histograms show an almost linear behaviour.
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Figure 3. Time series of daily tweets regarding heat waves in India are plotted in panel (a) and in panel
(c) using a logarithmic scale. In panel (b) time series of daily tweets are scaled by the number of Twitter
users globally and the same time series is plotted in panel (d) in logarithmic scale.
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Figure 4. Histograms representing the distribution of the number of tweets per day (a) and the number
of tweets per day per million users (b).

3.2. Comparison with Mortality Data

The number of tweets per year containing the phrases “heat wave India” and “heatwave India”
scaled by the number of active Twitter users shows a significant correlation with the three heat-related
mortality datasets (Figure 5). Three mortality datasets (EM-DAT, National Disaster Management
Authority—NDMA, and India Meteorological Department—IMD), are used to better account for the
uncertainty in heat-related excess death information. The Pearson and the Spearman’s ranking
correlation coefficients, measuring the degree of linear and monotonic relationship respectively,
are calculated between the mortality data, the tweets, and the nine climate-based heat wave indicators
presented in Section 2.2 are compared as well. The correlation between heat-related tweets and
mortality is much stronger than between mortality and the climate-based indicators (Table 4). Twitter
interest captures the extraordinary 2015 heat wave particularly well. We note also that this outlier does
not overly affect the correlation, as it remains significant if the Spearman’s Rank coefficient (which is
more robust to outliers) is used instead (Table 5).
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Figure 5. The annual number of heat wave related tweets per million users compared to three heat
related mortality datasets.
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databases and the Twitter and heat wave indicators, together with their significance (1 — p).

Pearson Correlation Coefficient Significance

EM-DAT NDMA IMD EM-DAT NDMA IMD

Twitter 0.94 0.97 0.82 >0.99 >0.99 0.98
Tinm —0.62 —0.49 -0.70 0.90 0.78 0.92
Tum —0.36 -0.27 —0.31 0.62 0.47 0.50
HIp 0.11 0.03 0.16 0.20 0.06 0.26
EHF 0.07 0.15 0.06 0.13 0.27 0.11
T 0.05 0.15 —0.10 0.09 0.27 0.16
Hl i 0.08 —0.07 0.13 0.14 0.13 0.22
Taignpop —0.01 0.07 0.16 0.02 0.13 0.27
Hlgigpop 0.11 0.27 0.22 0.20 0.49 0.37
EHF pmpop 0.12 0.19 0.28 0.22 0.35 0.46

Table 5. Spearman’s ranking correlation coefficient between mortality data according to the three
available mortality databases and the considered Twitter and climatic heat wave indicators, together
with their significance.

Spearman’s Ranking

Correlation Coefficient Significance

EM-DAT NDMA IMD EM-DAT NDMA IMD
Twitter 0.62 0.67 0.71 0.90 093 093
Tyt —043 029 064 071 051 088
Tvim ~0.29 000  —018 051 000 030
HIy ~019 019  —014 035 035 024
EHFy 0.19 0.19 0.00 0.35 035  0.00
Tuigv 0.19 048  —014 035 077 024
Hlgigna ~012  -029  —011 022 051 018
Taigivipop 0.05 0.24 0.32 0.09 043 052
Hlgigngpoy 000 0.60 0.43 0.00 0.88 0.6
EHFtpop 0.21 0.33 0.21 0.39 058 036

The number of tweets scaled with the number of Twitter users is the only dataset that consistently
reaches a significantly high correlation with all the three mortality datasets, both in terms of Pearson
and Spearman’s ranking correlation coefficient (significance above 0.9 for both correlation coefficients
and for all mortality datasets). Given the small number of samples and the uncertainty in the mortality
data, some of the other indicators also reach high correlation values with good significance, but are
not consistent throughout the three mortality datasets and score lower correlation and significance
values than the Twitter dataset (see for example Ty, in Table 4 or Ty;rp and Hlyifsarpop in Table 5).
Our results therefore indicate that Twitter data is a better indicator of aggregate heat mortality than
climatic indicators.

Mortality data from the EM-DAT and the NDMA datasets are only available at yearly scale.
However, the IMD reports account for mortality at monthly scale too. The Pearson correlation
coefficient between the number of Tweets per month per million user and the heat-related mortality
per month is 0.96, while the Spearman’s ranking correlation coefficient is 0.56 (both with significance



Int. J. Environ. Res. Public Health 2019, 16, 762 11 of 19

>0.99), showing that the correlation holds at monthly scale as well. Figure 6 shows how the number of
tweets per million user and the number of heat-related deaths compare at monthly scale.
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Figure 6. Number of tweets about heat waves in India per million users per month and number of
heat-related deaths per month.

3.3. Regional Comparison with Mortality Data

The same analysis is repeated for the states of Andhra Pradesh and Telangana. Results are
reported in Tables 6 and 7.

Table 6. Pearson correlation coefficient between IMD mortality data, Twitter and heat wave indicators,
together with their significance (1 — p) for Andhra Pradesh and Telangana.

Andhra Pradesh Telangana Andhra Pradesh Telangana

Twitter 0.97 >0.99 >0.99 >0.99

Tyt 0.57 0.22 0.76 0.32
Thim —031 —0.27 0.45 0.40
HIyp 0.55 0.77 0.74 0.93
EHF 0.48 0.37 0.66 0.53
oy 0.26 0.25 0.39 0.37
Hlgigoa 0.61 0.79 0.80 0.94
Taivtpop —0.05 —0.04 0.07 0.07

Hlgigivipop 0.23 0.28 0.33 0.41

EHF ptpop 0.23 0.19 0.34 0.29
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Table 7. Spearman’s ranking coefficient between IMD mortality data, Twitter and heat wave indicators,
together with their significance (1 — p) for Andhra Pradesh and Telangana.

Andhra Pradesh Telangana Andhra Pradesh Telangana

Twitter 0.81 0.65 0.95 0.84
Tyum 0.81 0.13 0.95 0.20
Tym ~0.29 ~0.13 0.42 0.20
HIyy 0.64 0.65 0.83 0.84
EHF 0.64 0.39 0.83 0.56
Taigm 0.43 0.39 0.61 0.56

Hlgigou 0.81 0.65 0.95 0.84

Taigvipop 0.00 ~0.13 0.00 0.20

Hlgigivipop 0.70 0.39 0.88 0.56

EHF ptpop 0.58 0.13 0.77 0.20

3.4. Evaluation of Climatic Heat Wave Definitions

We have shown that heat wave related tweets are better correlated to heat-related mortality
than other climatic indicators. Nevertheless, the use of climatic heat wave definitions is necessary,
as weather data usually have longer historical records, at finer spatio-temporal resolution and allow
for forecasting. Because mortality data are limited to the annual timescale, we investigate impactful
heat wave detection by climate-based definitions using the daily twitter series as our reference heat
wave series. This decision reflects the established strong correlation between mortality and heat wave
tweets, which we assume can also identify impactful heat episodes at the daily timescale. We therefore
converted the tweets to a binary series of heat wave occurrence based on a threshold of two heat
wave tweets per day. Other thresholds were tested as well, but resulted in lower correlation with
climate-based heat wave definitions.

These definitions are chosen either because of their relevance for the case study (IMD), or because
of their popularity in literature (T95, HI95, and EHF). Contrary to the continuous climatic indicators
considered for comparison with mortality, heat wave definitions are binary;, i.e., differentiate between
heat wave and no heat wave occurrence. For parity in our use of Twitter data as a reference we
consider a heat wave day when at least two tweets about heat waves in India occur in the same day.
The verification problem is of binary nature (heat wave/no heat wave), and five binary skill scores
are used: Percentage Correct, Hit Rate, Miss Rate, False Alarm Rate, and Bias. The skill scores are
calculated for each of the climate-based definitions and reported in Table 8.

Table 8. Skill scores evaluating the performance of the climate-based heat wave definitions against the
Twitter based definition.

IMD T95 HI9% EHF
Percentage Correct 0.62  0.67  0.60 0.68

Hit Rate 090 087 0.86 0.86
Miss Rate 0.10 0.13 0.14 0.14
False Alarm Rate 051 042 052 0.41
Bias 200 178 2.00 1.74

The calculated scores provide information on different aspects of the heat wave/no heat wave
distribution identified with the different definitions. The Bias shows that all the definitions significantly
over estimate the number of heat wave days, of 1.74 to 2.00 times the number of days identified as
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heat waves with Twitter. This has an effect on the False Alarm Rate, which is very high (0.4 to 0.52).
However, not all the days identified as heat waves by Twitter are identified as heat waves by the other
definitions, resulting in a Hit Rate between 0.86 and 0.90 (and a complimentary Miss Rate of 0.10 to
0.14). This overestimation of heat wave days is confirmed by the ratio between the number of heat
wave days and the total number of days between 2010 and 2017 (Table 9).

Table 9. Ratio between the number of days identified as heat wave days and the total number of days
considered (TW = Twitter).

IMD T95 HI95 EHF TW
Absolute fraction of heat wave days 0.63 0.56 0.63 055 0.32

4. Discussion

At first, we look at the tweets containing the phrases “heat wave India” or “heatwave India”.
The occurrence of such tweets when no real-time heat wave event happens is rare and isolated in
time, while the tweets referring to an event happening in real-time are much more frequent and
tend to be re-tweeted multiple times (as shown by the repetition of the same text in multiple tweets).
The tweets referring to a real-time heat wave event in India seem to be mostly from news channels or
informative webpages (web links in Table 3), confirming that Twitter can be used as a proxy for news
media [34,35,62]. This is also due to the use of the keywords “heat wave” and “heatwave”, which is
more formal than other popular expressions. However, when an event occurs, re-tweets, presumably
mostly from the general public, constitute the majority of tweets, which suggests that Twitter can
capture the reaction of the affected population. The tweet containing the string “Mercury crosses
40-degrees Celsius mark in north India”, shown 6 times in Table 3, is actually re-tweeted 38 times on
the 19th April alone and during the peak of the 2015 heat wave the count of heat wave related tweets
reached more than 9000 tweets in one day on the 26th May 2015. Most of the tweets also contain a link
to a webpage, where more information about the context can be retrieved.

The number of tweets containing the heat wave related phrases is the main indicator used in this
work and is scaled by the number of active Twitter users over time to account for the different tweeting
base. The number of users active worldwide is used because we do not limit the origin of tweets
geographically. Twitter is used by around 30 million people in India, about 2.2% of the population [63].
However, we observed that many of the tweets are from media sources and other informative channels,
which report significant events in the whole country. Furthermore, it is reasonable to assume that
Twitter users are concentrated in cities, where about 40% of the Indian population lives, thus making
the tweets relevant for a larger share of the population. Even after being scaled by the number of
users, the number of tweets per day have an power law behaviour, probably due to the occurrence of
re-tweets and strongly non-linear popularity dynamics [64,65] (Figures 3 and 4). This might be one of
the reasons why annual Twitter data correlate better than temperature indicators with mortality data,
suggesting that heat related mortality could have an exponential behaviour, as no significant adverse
health effects are expected up to certain temperatures and then the impact on health gets exponentially
worse for any increase in temperature or heat wave duration [66-68].

The comparison with some yearly temperature indicators in Tables 4 and 5 highlights the reason
why a simple quantitative definition of heat wave is not easy to find: although temperature is the
trigger for heat-related mortality by definition, it is not easy to identify one single indicator that
summarises the heat threat to human health, but rather many factors (maximum daily temperature,
minimum night temperature, duration of the extreme weather, indoor/outdoor conditions, humidity,
adaptation, and more) play a role. While the climatic heat wave definitions try to identify heat waves
using a combination of causes (it is hot, thus people feel uncomfortable), the Twitter-based heat wave
identification detects heat waves using an effect (people feel uncomfortable, thus they tweet about
it), which makes the nature of the datasets very different. For this reason, it is expected that the tweet
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indicator implicitly takes into consideration a multitude of complex effects (e.g., adaptation—people
start tweeting less about heat wave as they get adapted to certain heat conditions).

The strong correlation between the number of tweets per million users and the number of
heat-related deaths holds at monthly scale as well, suggesting that the relationship is strong at finer
temporal scale as well.

Repeating the analysis at regional level on the two states of Andhra Pradesh and Telangana
confirms the good ability of Twitter to capture the consequences of heat waves, in this case represented
by heat-related mortality. In particular, a very high Pearson correlation coefficient is observed,
which may be skewed by the 2015 event, but a high Spearman’s ranking coefficient is observed
as well, less affected by outliers. However, a better performance of climatic indicators is observed
at regional level, in particular of the HI indicator, which seems to capture well the causality of
heat waves and their consequences in the studied regions. Indeed, the two most affected states are
geographically proximal, as shown in Figure 2, thus the climatic dynamics causing mortal heat waves
are similar and more uniform, therefore easier to summarise in one climatic indicator. The South-East
of India is more tropical and humid than other heatwave-prone states like Maharashtra, Madhya
Pradesh, Uttar Pradesh or Gujarat. This means that the Heat Index, considering humidity as well as
temperature, does well for Andhra Pradesh and Telangana, but is not able to capture all the different
climatic dynamics causing uncomfortably hot conditions in India. Twitter, instead, seems to be able to
capture heat-related mortality trends particularly well at medium-large scales, and therefore its added
values lies in particular at larger scales.

Twitter-based heat wave identification shows very different characteristics compared to the
climatic heat wave definitions. To start, notice the ratio between heat wave days and total days
(Table 9): it is striking that the climatic heat wave definitions identify a heat wave occurring in the
Indian subcontinent almost 2 days out of 3, while Twitter identifies only 1 out of 3. Although they look
like high figures, there are two aspects that need to be considered: (1) in this work a day is considered as
a heat wave day if even only 1 location in India, a country of 3.3 million km?, is experiencing heat wave
conditions; (2) all the climatic definitions are based on climatological statistics (mean or percentiles)
that are calculated over the previous 30-year period and are hence not adjusted to warming in current
climate. Several studies have already observed climatic changes on the Indian climate, with increases
in mean and extreme temperatures [69,70], but also an increase in heat wave frequency [44,45] and our
results are consistent with this trend. However, it is still noteworthy that Twitter identifies only around
half the heat wave days compared to climatic definitions (Table 9). This suggests that, while climatic
definitions are more conservative, which is a good characteristic for forecasts and warnings (i.e., it is
better to have a false alarm than a missed warning), Twitter can better identify the days that are
uncomfortable to the population. It must also be considered that we used an empirical two-tweet
threshold for the binary Twitter time series: if we used a higher threshold, it would have resulted in
an even larger difference between Twitter heat wave identification and climatic heat wave definitions.

Finally, four different climatic heat wave definitions are compared. The definition by IMD has the
best hit rate (and complementarily the lowest miss rate). The T95 definition and the EHF definitions
have a lower bias (—11% and —12% respectively, compared to IMD), resulting in a lower false alarm
rate (—18% and —20% respectively) and higher percentage correct value (+8% and +10% respectively),
which denotes less over-estimation of heat wave days, but have a lower hit rate (—3% and —2%
respectively), which denotes less precision. The differences between the T95 and the EHF scores are
minimal, but the EHF bias is slightly lower (—2%), suggesting that considering cumulative short-term
effects and seasonal adaptation has a small, but observable effect. Finally, the HI95 definition, based
on the Heat Index and thus corrected for humidity performs a little worse, having both high bias
and low hit rate. The reason why the Heat Index is not performing as well as other indices is due
to the fact that heat waves occur during the dry season in India, when humidity is low. Our results
provide confidence in the IMD definition, which is operationally used to issue warnings. The high bias
shows that, although lacking some precision, the definition is conservative and issues warnings in
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most potentially dangerous situations, while the high hit rate suggests precision in identifying heat
waves in the Indian climate.

However, it is clear that, despite the differences between them, the climate-based definitions
produce results more similar to each other than the heat wave identification method based on Twitter.
The conservative nature of the climatic heat wave definitions, the possibility to be applied to future
weather forecasts, and the availability of weather data at fine spatio-temporal scale makes the use of
climatic heat wave definitions particularly well-suited to issue warnings and forecasts. Additionally,
the availability of long time series of weather data allows the use of climate-based definitions when
considering heat wave trends and climate change. However, Twitter showed significantly better
performance in estimating heat related mortality that is not addressed by climatic heat wave definitions.
More complex heat wave definitions considering climatic, socioeconomic and demographic factors
could have performed better in capturing heat-related mortality, but it would reinforce the concept that
heat-related mortality is not captured by any simple climatic indicator, but by a complex combination
of factors. The Twitter signal and the climatic definitions can, therefore, be seen as complementary to
one another.

The presented work is the first analysing the use of Twitter for heat wave identification at large
geographical scale and as such it is more of a proof of concept rather than an exhaustive analysis of the
methodology’s advantages and disadvantages. India has been selected as a case study as it is a large
developing country strongly affected by heat waves, but only limited and uncertain data was available
for the analysis. Following work will need to verify how Twitter works to identify heat waves in
different contexts and with more data, maybe using other languages than English. The use of Twitter
data to identify heat waves is used as a proxy for heat wave mortality and morbidity, and as such
it has a limitations: (1) only a part of the population uses Twitter and usually not the most affected
portion (elderly, infants, homeless); (2) the selected keywords do not capture all the tweets about heat
waves and not all the identified tweets are indeed about real time heat waves; (3) social media data is
affected by popularity of certain topics and complex social dynamics, which may vary the frequency
of heat wave related tweets independently on the heat wave occurrence. However, in spite of these
approximations the proxy still shows a significant ability to identify dangerous heat wave events and
therefore can be very useful.

A real-time tracking of heat wave related tweets can be used to identify real-time discomfort
conditions, prioritising any response in space and time. This has already been used successfully for
earthquake response for example [38], and our results suggest that a similar approach could be used to
identify dangerous heat waves in real time as well. Additionally, heat wave related tweets can also
be used as a time series of past heat waves, identifying impactful events to improve understanding
of event drivers [71] and facilitate targeted adaptation [72]. This would be particularly, useful in
developing countries where mortality data are scarce, difficult to access, and very uncertain, and for
studies at larger scales. Indeed, one of the biggest limitations of heat wave impact studies so far is that
they usually cannot address large (national/international) scales, as mortality data are available only
at hospital/community level. Twitter data could help fill this gap in research.

5. Conclusions

This study has shown that the number of tweets about heat waves in India has a strong correlation
with the number of heat-related excess deaths, holding through spatial and temporal scales, and that
Twitter is more precise in identifying heat wave events that have an impact on the population. This is
a precious resources that should not be seen as a replacement of climatic data, but rather an integration.

We see two primary role of Twitter data for heat wave identification. On the one hand, Twitter
can be used in real time to detect heat wave events that are dangerous for the population, in particular
at larger geographical scales. On the other hand, the scientific community is working hard to identify
quantitative heat wave definitions able to capture the health effects of heat, but a great challenge is the
lack of consistent, large scale, heat-related mortality or morbidity datasets. Several studies in several
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different communities result in different conclusions about the best heat wave definition in this regard.
Twitter data, although less precise than hospital records, are available worldwide, are much more
easily accessible, and could make the difference in identifying heat wave definitions that are effective
in capturing heat impact on health globally. Although this study only analyses India and availability
of data is limited, the conclusions could be relevant for other developing countries and more work
needs to be done to evaluate Twitter strengths and limitations in a heat wave identification context.
It is clear from this work, that the use of social media in identifying heat waves holds considerable
promise for increasing societal resilience to the growing challenges posed by extreme heat.
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