Ecogeomorphological Transformations of Aeolian Form—The Case of a Parabolic Dune, Poland
Abstract
:1. Introduction
2. Object of the Survey
3. Data and Methods
3.1. Cartographic and Remote Sensing Data
3.2. GNSS Measurements
3.3. UAV Mission
3.4. Geostatistic Analysis
3.5. Data Processing from Sentinel-2A and UAV Image Fusion
3.6. Analysis of the Vegetation Condition
4. Results
4.1. Present and Primary Relief
4.2. Vegetation Condition on the Dune and Its Surrounding
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goudie, A. The Human Impact on the Natural Environment: Past, Present and Future, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 9781405127042. [Google Scholar]
- Omotehinse, A.O.; Ako, B.D. The environmental implications of the exploration and exploitation of solid minerals in Nigeria with a special focus on Tin in Jos and Coal in Enugu. J. Sustain. Min. 2019, 18, 18–24. [Google Scholar] [CrossRef]
- Sobczyk, W.; Kowalska, A.; Sobczyk, J. Exploitation of Mineral Resources for Sustainable Development on the Example of Poland. J. Educ. Technol. Comput. Sci. 2020, 31, 49–52. [Google Scholar] [CrossRef]
- Gavriletea, M. Environmental Impacts of Sand Exploitation. Analysis of Sand Market. Sustainability 2017, 9, 1118. [Google Scholar] [CrossRef] [Green Version]
- Govorushko, S.M. Mining and Mineral Processing. In Natural Processes and Human Impacts. Interactions between Humanity and the Environment; Springer: Dordrecht, The Netherlands, 2011; pp. 485–511. ISBN 978-94-007-1423-6. [Google Scholar]
- Kowalska, A.; Sobczyk, W. Negative and positive effects of the exploitation of gravel-sand. Inz. Miner. 2014, 15, 105–109. [Google Scholar]
- Mkpuma, R.O.; Okeke, O.C.; Abraham, E.M. Environmental Problems of Surface and Underground Mining: A review. Int. J. Eng. Sci. 2015, 4, 12–20. [Google Scholar]
- Navarro, A.; Collado, D.; Carbonell, M.; Sanchez, J.A. Impact of mining activities on soils in a semi-arid environment: Sierra Almagrera district, SE Spain. Environ. Geochem. Health 2004, 26, 383–393. [Google Scholar] [CrossRef]
- Unanaonwi, O.E.; Amonum, J.I. Effect of Mining Activities on Vegetation Composition and nutrient status of Forest Soil in Benue Cement Company, Benue State, Nigeria. Int. J. Environ. Agric. Biotechnol. 2017, 2, 297–305. [Google Scholar] [CrossRef]
- Warhate, S.R.; Yenkie, M.K.N.; Pokale, W.K. Impacts of mining on water and soil. J. Environ. Sci. Eng. 2007, 49, 143–152. [Google Scholar]
- Boengiu, S.; Ionuş, O.; Marinescu, E. Man-made Changes of the Relief Due to the Mining Activities within Husnicioara Open Pit (Mehedinţi County, Romania). Procedia Environ. Sci. 2016, 32, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Jaskulski, M.; Nowak, T. Transformations of Landscape Topography of the Bełchatów Coal Mine (Central Poland) and the Surrounding Area Based on DEM Analysis. ISPRS Int. J. Geo-Inf. 2019, 8, 403. [Google Scholar] [CrossRef] [Green Version]
- Riquelme, A.; Del Soldato, M.; Tomás, R.; Cano, M.; Jordá Bordehore, L.; Moretti, S. Digital landform reconstruction using old and recent open access digital aerial photos. Geomorphology 2019, 329, 206–223. [Google Scholar] [CrossRef]
- Rossi, P.; Mancini, F.; Dubbini, M.; Mazzone, F.; Capra, A. Combining nadir and oblique UAV imagery to reconstruct quarry topography: Methodology and feasibility analysis. Eur. J. Remote Sens. 2017, 50, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Zarychta, R. Krajobraz poeksploatacyjny kamieniołomu Liban w Krakowie. Przegląd Geol. 2019, 67, 1002–1011. [Google Scholar] [CrossRef]
- Zarychta, R.; Zarychta, A.; Bzdęga, K. Progress in the Reconstruction of Terrain Relief Before Extraction of Rock Materials—The Case of Liban Quarry, Poland. Remote Sens. 2020, 12, 1548. [Google Scholar] [CrossRef]
- Chaussard, E.; Kerosky, S. Characterization of Black Sand Mining Activities and Their Environmental Impacts in the Philippines Using Remote Sensing. Remote Sens. 2016, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Twerefou, D.K. Mineral Exploitation, Environmental Sustainability and Sustainable Development in EAC, SADC, and ECOWAS Regions; African Trade Policy Centre, Economic Commission for Africa: Addis Ababa, Ethiopia, 2009. [Google Scholar]
- Macdonald, S.E.; Landhäusser, S.M.; Skousen, J.; Franklin, J.; Frouz, J.; Hall, S.; Jacobs, D.F.; Quideau, S. Forest restoration following surface mining disturbance: Challenges and solutions. New For. 2015, 46, 703–732. [Google Scholar] [CrossRef] [Green Version]
- Loksa, G. Variations in microclimate modified by open-cast mining: Case studies from Hungary. Geogr. Fis. E Din. Quat. 2007, 30, 215–218. [Google Scholar]
- Sewerniak, P.; Jankowski, M. Topographically-controlled site conditions drive vegetation pattern on inland dunes in Poland. Acta Oecologica 2017, 82, 52–60. [Google Scholar] [CrossRef]
- Medjkane, M.; Maquaire, O.; Costa, S.; Roulland, T.; Letortu, P.; Fauchard, C.; Antoine, R.; Davidson, R. High-resolution monitoring of complex coastal morphology changes: Cross-efficiency of SfM and TLS-based survey (Vaches-Noires cliffs, Normandy, France). Landslides 2018, 15, 1097–1108. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, G.; Bao, Y.; Xiong, L.; Guzman, V.; Kearns, T.J. Delineating Beach and Dune Morphology from Massive Terrestrial Laser-Scanning Data Using Generic Mapping Tools. J. Surv. Eng. 2017, 143, 04017008. [Google Scholar] [CrossRef]
- Łajczak, A.; Zarychta, R.; Wałek, G. Changes in the topography of Krakow city centre, Poland, during the last millennium. J. Maps 2020, 1–8. [Google Scholar] [CrossRef]
- Casella, E.; Drechsel, J.; Winter, C.; Benninghoff, M.; Rovere, A. Accuracy of sand beach topography surveying by drones and photogrammetry. Geo-Mar. Lett. 2020, 40, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: Current status and future perspectives. Int. J. Coal Sci. Technol. 2019, 6, 320–333. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.C.; Kumar, A. Analysing topographical changes in open cast coal-mining region of Patratu, Jharkhand using CARTOSAT-I Stereopair satellite images. Geocarto Int. 2014, 29, 731–744. [Google Scholar] [CrossRef]
- Rishikeshan, C.A.; Ramesh, H. A novel mathematical morphology based algorithm for shoreline extraction from satellite images. Geo-Spat. Inf. Sci. 2017, 20, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Zhang, W.; Qu, J.; Zhang, K.; An, Z.; Wang, X. Aeolian sand transport over gobi with different gravel coverages under limited sand supply: A mobile wind tunnel investigation. Aeolian Res. 2013, 11, 67–74. [Google Scholar] [CrossRef]
- Mayaud, J.R.; Bailey, R.M.; Wiggs, G.F.S. Modelled responses of the Kalahari Desert to 21st century climate and land use change. Sci. Rep. 2017, 7, 3887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudie, A.S.; Middleton, N.J. Saharan dust storms: Nature and consequences. Earth-Sci. Rev. 2001, 56, 179–204. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, H.; Goloub, P.; Li, Z.; Veselovskii, I.; Podvin, T.; Li, K.; Korenskiy, M. The characterization of Taklamakan dust properties using a multiwavelength Raman polarization lidar in Kashi, China. Atmos. Chem. Phys. 2020, 20, 13817–13834. [Google Scholar] [CrossRef]
- Garzanti, E.; Ghassemi, M.R.; Limonta, M.; Resentini, A. Provenance of karakum desert sand (Turkmenistan): Lithic-rich orogenic signature of central Asian dune fields. Riv. Ital. Di Paleontol. E Stratigr. 2019, 125, 77–89. [Google Scholar] [CrossRef]
- Hernández, L.; Alonso, I.; Sánchez-Pérez, I.; Alcántara-Carrió, J.; Montesdeoca, I. Shortage of Sediments in the Maspalomas Dune Field (Gran Canaria, Canary Islands) Deduced from Analysis of Aerial Photographs, Foraminiferal Content, and Sediment Transport Trends. J. Coast. Res. 2007, 234, 993–999. [Google Scholar] [CrossRef]
- Morkūnait, R.; Radžiūnien, J.; Navickas, K.; Gudynienė, V.; Bautrnas, A. Assessment of degradation of white and grey dune habitats in the Curonian Spit: A case study of Parnidis Dune (Nida environs, Lithuania). Z. Für Geomorphol. 2016, 60, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Povilanskas, R.; Satkūnas, J.; Taminskas, J. Results of cartometric investigations of dune morphodynamics on the Curonian Spit. Geologija 2006, 53, 22–27. [Google Scholar]
- Bertran, P.; Andrieux, E.; Bateman, M.D.; Fuchs, M.; Klinge, M.; Marembert, F. Mapping and chronology of coversands and dunes from the Aquitaine basin, southwest France. Aeolian Res. 2020, 47, 100628. [Google Scholar] [CrossRef]
- Sánchez-Pérez, I.; Alonso, I.; Usera, J. Determination of the sediment inputs from the upper shelf towards the beaches and dunes of Maspalomas (Gran Canaria) by foraminifera analysis. J. Coast. Res. 2005, 46–51. [Google Scholar]
- Derbyshire, E.; Owen, L.A. Glacioaeolian Processes, Sediments, and Landforms. In Past Glacial Environments; Elsevier: Amsterdam, The Netherlands, 2018; pp. 273–308. ISBN 9780081005248. [Google Scholar]
- Goudie, A.S. Parabolic Dunes: Distribution, Form, Morphology and Change. Ann. Arid. Zone 2011, 50, 1–7. [Google Scholar]
- Hanoch, G.; Yizhaq, H.; Ashkenazy, Y. Modeling the bistability of barchan and parabolic dunes. Aeolian Res. 2018, 35, 9–18. [Google Scholar] [CrossRef]
- Alvarez, C.A.; Franklin, E.M. Shape evolution of numerically obtained subaqueous barchan dunes. Phys. Rev. E 2020, 101, 012905. [Google Scholar] [CrossRef] [Green Version]
- Filho, W.L.; Hunt, J.; Lingos, A.; Platje, J.; Vieira, L.W.; Will, M.; Gavriletea, M.D. The unsustainable use of sand: Reporting on a global problem. Sustainability 2021, 13, 3356. [Google Scholar] [CrossRef]
- Strandberg, G.; Kjellström, E. Climate impacts from afforestation and deforestation in Europe. Earth Interact. 2019, 23, 1–27. [Google Scholar] [CrossRef]
- Łabuz, T.A. The methods of field research in the analysis of accumulative foredunes development on the Polish coast. Landf. Anal. 2015, 28, 45–60. [Google Scholar] [CrossRef]
- Koprowski, M.; Winchester, V.; Zielski, A. Tree reactions and dune movements: Slowinski National Park, Poland. Catena 2010, 81, 55–65. [Google Scholar] [CrossRef]
- Pełka-Gościniak, J.; Zatoński, J. Dunes in the neighborhood of Gidle and Pławno (NW part of the Włoszczowa Basin)—Initial remarks. In Selected Issues of Aeolian Geomorphology: Monography Dedicated to dr hab. Bogdana Izmaiłow on the 44. Anniversary of Scientific Work; Święchowicz, J., Michno, A., Eds.; Stitute of Geography and Spatial Management of Jagiellonian University in Cracow: Kraków, Poland, 2017; pp. 265–277. [Google Scholar]
- Twardy, J. Transformation of selected relief landforms of the łódź voivodeship in the last century. Acta Geogr. Lodz. 2019, 109, 11–28. [Google Scholar] [CrossRef] [Green Version]
- Mycielska-Dowgiałło, E.; Korokaj-Kokoszczyńska, M.; Smolska, E.; Rutkowski, J. Dynamic and Applied Geomorphology; Department of Geography and Regional Studies of Warsaw University: Warsaw, Poland, 2001; ISBN 83-85785-91-4. [Google Scholar]
- Hermańska, A.; Smyka, R. Detailed Geological Map of Poland; 1:50,000, Sheet 811-Żytno; Wydawnictwa Geologiczne: Warsaw, Poland, 1990. [Google Scholar]
- Tactical Map of Poland; 1:10,000, M-34-40-A-b-1; WIG: Warsaw, Poland, 1986.
- “Europe”. Carlos Efraín Porto Tapiquén. Orogénesis Soluciones Geográficas. Porlamar, Venezuela 2015. Based on Shapes from Enviromental Systems Research Institute (ESRI). Free Distribuition. Available online: http://tapiquen-sig.jimdo.com (accessed on 3 March 2021).
- Tactical Map of Poland; 1:100,000, Sheet e38 Koniecpol, a 45 b 29; WIG: Warsaw, Poland, 1926.
- Tactical Map of Poland; 1:100,000, Sheet Koniecpol, LINE 45 COLUMN 29; WIG: Warsaw, Poland, 1935.
- Tactical Map of Poland; 1:25,000, Sheet Żytno, LINE 45 COLUMN 29-B; WIG: Warsaw, Poland, 1937.
- Clark, I. Practical Geostatistics; Applied Science Publishers: London, UK, 1979; Volume 3. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Zhao, L.; Shi, Y.; Liu, B.; Hovis, C.; Duan, Y.; Shi, Z. Finer Classification of Crops by Fusing UAV Images and Sentinel-2A Data. Remote Sens. 2019, 11, 3012. [Google Scholar] [CrossRef] [Green Version]
- Jenerowicz, A.; Woroszkiewicz, M. The pan-sharpening of satellite and UAV imagery for agricultural applications. Remote Sens. Agric. Ecosyst. Hydrol. XVIII 2016, 9998, 99981S. [Google Scholar] [CrossRef]
- Yilmaz, V.; Gungor, O. Fusion of very high-resolution UAV images with criteria-based image fusion algorithm. Arab. J. Geosci. 2016, 9, 59. [Google Scholar] [CrossRef]
- Kaplan, G. Sentinel-2 Pan Sharpening—Comparative Analysis. Proceedings 2018, 2, 345. [Google Scholar] [CrossRef] [Green Version]
- Haboudane, D. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Bzdęga, K.; Zarychta, A.; Urbisz, A.; Szporak-Wasilewska, S.; Ludynia, M.; Fojcik, B.; Tokarska-Guzik, B. Geostatistical models with the use of hyperspectral data and seasonal variation – A new approach for evaluating the risk posed by invasive plants. Ecol. Indic. 2021, 121, 107204. [Google Scholar] [CrossRef]
- Lowe, S.; Browne, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database; Invasive Species Specialist Group: Auckland, North Island, New Zealand, 2000; Volume 12. [Google Scholar]
- Fubelli, G.; Della Seta, M.; Amato, G. Drainage system adjustment in response to the opening of the Rieti intermontane basin (Central Italy): Geostatistical reconstruction of the PaleoFarfa River alluvial plain. Rend. Lincei 2014, 25, 167–176. [Google Scholar] [CrossRef]
- Cvijetinović, Ž.; Mihajlović, D.; Vojinović, M.; Mitrović, M.; Milenković, M. Procedures and Software for High Quality TIN Based Surface Reconstruction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 629–634. [Google Scholar]
- Zeng, Z.; Lei, L.; Hou, S.; Ru, F.; Guan, X.; Zhang, B. A Regional Gap-Filling Method Based on Spatiotemporal Variogram Model of CO2 Columns. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3594–3603. [Google Scholar] [CrossRef]
- Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 3662052946. [Google Scholar]
- Yan, N.; Baas, A.C.W. Parabolic dunes and their transformations under environmental and climatic changes: Towards a conceptual framework for understanding and prediction. Glob. Planet. Chang. 2015, 124, 123–148. [Google Scholar] [CrossRef] [Green Version]
- Hesp, P. Foredunes and blowouts: Initiation, geomorphology and dynamics. Geomorphology 2002, 48, 245–268. [Google Scholar] [CrossRef]
- Molewski, P. Anthropogenic degradation of dunes within a city: A disappearing feature of the cultural landscape of Toruń (Poland). J. Maps 2020, 5647, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Abella, S.R. Disturbance and Plant Succession in the Mojave and Sonoran Deserts of the American Southwest. Int. J. Environ. Res. Public Health 2010, 7, 1248–1284. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Tan, H.; Gao, Y.; Liu, L.; Wang, X. Ecological restoration and recovery in the wind-blown sand hazard areas of northern China: Relationship between soil water and carrying capacity for vegetation in the Tengger Desert. Sci. China Life Sci. 2014, 57, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Zhang, P.; Hu, Y.; Zhao, Y. Vegetation succession and soil infiltration characteristics under different aged refuse dumps at the Heidaigou opencast coal mine. Glob. Ecol. Conserv. 2015, 4, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Řehounková, K.; Prach, K. Spontaneous Vegetation Succession in Gravel–Sand Pits: A Potential for Restoration. Restor. Ecol. 2008, 16, 305–312. [Google Scholar] [CrossRef]
- Rahmonov, O.; Kin, N. Role of allochthonous substance in initial stage succession. Acta Geogr. Silesiana 2007, 1, 53–60. [Google Scholar]
- Cabrera-Vega, L.L.; Cruz-Avero, N.; Hernández-Calvento, L.; Hernández-Cordero, A.I.; Fernández-Cabrera, E. Morphological changes in dunes as an indicator of anthropogenic interferences in arid dune fields. J. Coast. Res. 2013, 165, 1271–1276. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Liou, J.-Y. A Field Experiment for Coastal Dune Reconstruction. 2008, pp. 27–34. Available online: https://www.researchgate.net/profile/Tsung-Yi-Lin/publication/239528296_A_Field_Experiment_for_Coastal_Dune_Reconstruction/links/5c823ffa92851c695060ce04/A-Field-Experiment-for-Coastal-Dune-Reconstruction.pdf (accessed on 15 July 2021).
Parameter Name | Parameter Specification |
---|---|
Drone | Mavic 2 Pro |
Date | 21 June 2020 |
Time | 11:54:29 AM |
Type | Polygon |
Location | 50.994875°, 19.648821° |
Dimensions | 466 m × 305 m |
GSD | 2.34 cm/px |
Overlap | 75% |
Camera Angle | 90° |
Altitude | 100 m |
Images | 160 |
Path | 3915 m |
Semivariogram Parameters | Present Relief | Primary Relief | |
---|---|---|---|
Semivariogram | Model | Gaussian | Gaussian |
Nugget effect | 0.3 | 0.07 | |
Major Range | 61 | 69.202 | |
Partial Sill | 7.998 | 9.525 | |
Anisotropy | not available | not available | |
Anisotropy factor | 1 | 1 | |
Search ellipse | Maximum neighbors | 10 | 5 |
Minimum neighbors | 2 | 2 | |
Sector type | 4 sectors with 45° offset | 4 sectors with 45° offset | |
Angle | 0 | 0 | |
Major semiaxis | 61 | 69.202 | |
Minor semiaxis | 61 | 69.202 |
Type of Errors | Code | Present Relief | Primary Relief |
---|---|---|---|
Mean Error | ME | −0.009 | −0.014 |
Root Mean Square Error | RMSE | 0.564 | 0.304 |
Root Mean Square Standardised Error | RMSSE | 0.999 | 1.077 |
Parameter | Unit | Present Relief | Primary Relief |
---|---|---|---|
Area | [ha] | 2.5 | 3.1 |
Perimeter | [m] | 1044.5 | 869.3 |
Volume | [m3] | 125,145.5 | 139,758.1 |
Altitude maximum | [m] | 251.1 | 251.2 |
Altitude minimum | [m] | 240.4 | 240.6 |
Parameter | Mean | Standard Deviation |
---|---|---|
PANUAV | 162.573 | 26.785 |
PANUAV 1 | 0.080 | 0.013 |
PANUAV 2 | 0.065 | 0.022 |
PANSEN | 0.067 | 0.023 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarychta, R.; Zarychta, A.; Bzdęga, K. Ecogeomorphological Transformations of Aeolian Form—The Case of a Parabolic Dune, Poland. Remote Sens. 2021, 13, 3937. https://doi.org/10.3390/rs13193937
Zarychta R, Zarychta A, Bzdęga K. Ecogeomorphological Transformations of Aeolian Form—The Case of a Parabolic Dune, Poland. Remote Sensing. 2021; 13(19):3937. https://doi.org/10.3390/rs13193937
Chicago/Turabian StyleZarychta, Roksana, Adrian Zarychta, and Katarzyna Bzdęga. 2021. "Ecogeomorphological Transformations of Aeolian Form—The Case of a Parabolic Dune, Poland" Remote Sensing 13, no. 19: 3937. https://doi.org/10.3390/rs13193937
APA StyleZarychta, R., Zarychta, A., & Bzdęga, K. (2021). Ecogeomorphological Transformations of Aeolian Form—The Case of a Parabolic Dune, Poland. Remote Sensing, 13(19), 3937. https://doi.org/10.3390/rs13193937