Tracking a Low-Angle Isolated Target via an Elevation-Angle Estimation Algorithm Based on Extended Kalman Filter with an Array Antenna
Abstract
:1. Introduction
2. Propagation and Multipath Models
2.1. General Propagation Model
2.2. Evaluation of Geometric Parameters
2.3. Specular Component Modeling
2.4. Diffuse Component Modeling
3. Elevation Angle Estimation
3.1. EKF-Based Tracking
3.2. Proposed FD-Based Smoothing
3.2.1. Smoothing via Weighting-Based Frequency Diversity (WFD)
3.2.2. Smoothing via Matrix-Based Frequency Diversity (MFD)
4. Simulation Results
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AoA | Angle of Arrival |
DN | Double Null |
(E)KF | (Extended) Kalman Filter |
FB | Fixed Beam |
LS | Least Squares |
(G)MUSIC | (Generalized) Multiple Signal Classification |
DU-GMUSIC | Double Unitary transform based GMUSIC |
PS-GMUSIC | Polarization Smoothing GMUSIC |
(Q)(R)ML | (Quadrature) (Refined) Maximum Likelihood |
RMS(E) | Root Mean Square (Error) |
SNR | Signal-to-Noise Ratio |
ULA | Uniform Linear Array |
(W/M)FD | (Weighted/Matrix-based) Frequency Diversity |
References
- White, W.D. Low-angle radar tracking in the presence of multipath. IEEE Trans. Aerosp. Electron. Syst. 1974, AES-10, 835–852. [Google Scholar] [CrossRef]
- Sebt, M.A.; Sheikhi, A.; Nayebi, M.M. Robust low-angle estimation by an array radar. IET Radar Sonar Navig. 2010, 4, 780–790. [Google Scholar] [CrossRef]
- Xu, Z.; Xiong, Z.; Wu, J.; Xiao, S. Symmetrical difference pattern monopulse for low-angle tracking with array radar. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2676–2684. [Google Scholar] [CrossRef]
- Mangulis, V. Frequency diversity in low-angle radar tracking. IEEE Trans. Aerosp. Electron. Syst. 1981, AES-17, 149–153. [Google Scholar] [CrossRef]
- Goodarzi, M.; Sebt, M.A.; Darvishi, H. Target and Image Elevation Angles Separation Algorithm for Low-Angle Tracking with Monopulse Antenna. In Proceedings of the 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 4–6 August 2020; pp. 1–4. [Google Scholar]
- Park, D.; Yang, E.; Ahn, S.; Chun, J. Adaptive beamforming for low-angle target tracking under multipath interference. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 2564–2577. [Google Scholar] [CrossRef]
- Darvishi, H.; Sebt, M.A. Low Elevation Angle Estimation Using an Iterative Array Processing Method. J. Commun. Technol. Electron. 2019, 64, 1276–1282. [Google Scholar] [CrossRef]
- Sherman, S.M. Complex indicated angles applied to unresolved radar targets and multipath. IEEE Trans. Aerosp. Electron. Syst. 1971, AES-7, 160–170. [Google Scholar] [CrossRef]
- Darvishi, H.; Sebt, M.A. Adaptive hybrid method for low-angle target tracking in multipath. IET Radar Sonar Navig. 2018, 12, 931–937. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Tufts, D.W.; Kumaresan, R. Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood. Proc. IEEE 1982, 70, 975–989. [Google Scholar] [CrossRef]
- Kumaresan, R.; Tufts, R.W. Estimating the angles of arrival of multiple plane waves. IEEE Trans. Aerosp. Electron. Syst. 1983, AES-19, 134–139. [Google Scholar] [CrossRef]
- Qi, C.; Chen, Z.; Wang, Y.; Zhang, Y. DOA estimation for coherent sources in unknown nonuniform noise fields. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1195–1204. [Google Scholar]
- Xu, Z.H.; Wu, J.N.; Xiong, Z.; Xiao, S.P. Low-angle tracking algorithm using polarisation sensitive array for very-high frequency radar. IET Radar Sonar Navig. 2014, 8, 1035–1041. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Cao, Y. Real-domain GMUSIC algorithm based on unitary-transform for low-angle estimation. BIAI J. Syst. Eng. Electron. 2014, 25, 794–799. [Google Scholar] [CrossRef]
- Tan, J.; Nie, Z. Polarization Smoothing Generalized MUSIC Algorithm with Polarization Sensitive Array for Low Angle Estimation. Sensors 2018, 18, 1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziskind, I.; Wax, M. Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. Acoust. Speech Signal Process. 1988, 36, 1553–1560. [Google Scholar] [CrossRef]
- Zoltowski, M.D.; Lee, T.S. Maximum likelihood based sensor array signal processing in the beamspace domain for low angle radar tracking. IEEE Trans. Signal Process. 1991, 39, 656–671. [Google Scholar] [CrossRef]
- Bosse, E.; Turner, R.M.; Lecours, M. Tracking swerling fluctuating targets at low altitude over the sea. IEEE Trans. Aerosp. Electron. Syst. 1991, 27, 806–822. [Google Scholar] [CrossRef]
- Takahashi, R.; Hirata, K.; Maniwa, H. Altitude estimation of low elevation target over the sea for surface based phased array radar. In Proceedings of the IEEE Radar Conference (RadarConf), Arlington, VA, USA, 10–14 May 2010; pp. 123–128. [Google Scholar]
- Wang, S.; Cao, Y.; Su, H.; Wang, Y. Target and reflecting surface height joint estimation in low-angle radar. IET Radar Sonar Navig. 2016, 10, 617–623. [Google Scholar] [CrossRef]
- Bosse, E.; Turner, R.M.; Riseborough, E.S. Model-based multifrequency array signal processing for low-angle tracking. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 194–210. [Google Scholar] [CrossRef]
- Akhavan, S.; Bahabadi, M.A.; Norouzi, Y.; Lolaee, H. Direction of arrival estimation using array of antennas for low-altitude targets in multi-path environment. IET Radar Sonar Navig. 2016, 10, 1439–1445. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, Y.; Shui, P. Low-angle target tracking using frequency-agile refined maximum likelihood algorithm. IET Radar Sonar Navig. 2016, 11, 491–497. [Google Scholar] [CrossRef]
- Zarchan, P.; Musoff, H. Fundamentals of Kalman Filtering: A Practical Approach, 4th ed.; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2015. [Google Scholar]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhao, P.; Wang, Z. EKF-Based Beam Tracking for mmWave MIMO Systems. IEEE Commun. Lett. 2019, 23, 2390–2393. [Google Scholar] [CrossRef]
- Jawahar, A.; Rao, S.K. Modified polar extended Kalman filter (MP-EKF) for bearings-only target tracking. Indian J. Sci. Technol. 2016, 9, 1–5. [Google Scholar] [CrossRef]
- Hehn, M.; Sippel, E.; Vossiek, M. An Iterative Extended Kalman Filter for Coherent Measurements of Incoherent Network Nodes in Positioning Systems. IEEE Access 2020, 8, 36714–36727. [Google Scholar] [CrossRef]
- Kerr, D.E.; Goudsmit, S.A.; Linford, L.B. Propagation of Short Radio Waves; IET: London, UK, 1987; Volume 24. [Google Scholar]
- Northam, D.Y. A Stochastic Simulation of Low Grazing Angle, Forward Scatter, Over-Water Multipath Effects; Technical Report; Naval Resaerch Lab: Washington, DC, USA, 1983. [Google Scholar]
- Beard, C. Coherent and incoherent scattering of microwaves from the ocean. IRE Trans. Antennas Propag. 1961, 9, 470–483. [Google Scholar] [CrossRef]
- Blair, W.D.; Brandt-Pearce, M. Statistics of monopulse measurements of Rayleigh targets in the presence of specular and diffuse multipath. In Proceedings of the IEEE Radar Conference (RadarConf), Atanta, GA, USA, 3 May 2001; pp. 369–375. [Google Scholar]
- Kay, S.M. Volume I: Estimation Theory. In Fundamentals of Statistical Signal Processing; Prentice Hall: Hoboken, NJ, USA, 1993. [Google Scholar]
- Ciuonzo, D.; Willett, P.K.; Bar-Shalom, Y. Tracking the tracker from its passive sonar ML-PDA estimates. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 573–590. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Number of antenna elements (N) | 10 |
Antenna height () | |
Target height () | |
Operating frequencies | |
Number of snapshots (S) | 10 |
Beamwidth () | 11.45° |
Polarization | Horizontal |
SNR | |
RMS of surface roughness () | (smooth surface) |
(rough surface) | |
Dielectric constant () | |
Surface conductivity () | 4.8 mho/m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darvishi, H.; Sebt, M.A.; Ciuonzo, D.; Salvo Rossi, P. Tracking a Low-Angle Isolated Target via an Elevation-Angle Estimation Algorithm Based on Extended Kalman Filter with an Array Antenna. Remote Sens. 2021, 13, 3938. https://doi.org/10.3390/rs13193938
Darvishi H, Sebt MA, Ciuonzo D, Salvo Rossi P. Tracking a Low-Angle Isolated Target via an Elevation-Angle Estimation Algorithm Based on Extended Kalman Filter with an Array Antenna. Remote Sensing. 2021; 13(19):3938. https://doi.org/10.3390/rs13193938
Chicago/Turabian StyleDarvishi, Hossein, Mohammad Ali Sebt, Domenico Ciuonzo, and Pierluigi Salvo Rossi. 2021. "Tracking a Low-Angle Isolated Target via an Elevation-Angle Estimation Algorithm Based on Extended Kalman Filter with an Array Antenna" Remote Sensing 13, no. 19: 3938. https://doi.org/10.3390/rs13193938
APA StyleDarvishi, H., Sebt, M. A., Ciuonzo, D., & Salvo Rossi, P. (2021). Tracking a Low-Angle Isolated Target via an Elevation-Angle Estimation Algorithm Based on Extended Kalman Filter with an Array Antenna. Remote Sensing, 13(19), 3938. https://doi.org/10.3390/rs13193938