Artificial Intelligence Based Structural Assessment for Regional Short- and Medium-Span Concrete Beam Bridges with Inspection Information
Abstract
:1. Introduction
2. Bridge Inspections and Condition Ratings
3. Condition Assessment and Maintenance Optimization Methodology
4. Data Integration Techniques
4.1. Data in Inspection Reports
4.2. Data Integration Technique
5. Condition Assessment Techniques
5.1. Feature Selection
5.2. Deterioration Model Establishment
6. Maintenance Scheme Optimization Techniques
6.1. Objective Functions
6.2. Genetic Algorithms for Optimization Problems
7. Applications on Existing Transportation Networks
7.1. Database Overview
7.2. Condition Assessment Performance
7.3. Regional Maintenance Scheme Optimizations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rashidi, M.; Samali, B.; Sharafi, P. A new model for bridge management: Part A: Condition assessment and priority ranking of bridges. Aust. J. Civ. Eng. 2016, 14, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, M.; Samali, B.; Sharafi, P. A new model for bridge management: Part B: Decision support system for remediation planning. Aust. J. Civ. Eng. 2016, 14, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Fang, W.S.; Wang, Y.J.; Zhao, Y. Measurements and analysis of track irregularities on high speed maglev lines. J. Zhejiang Univ.-Sci. A 2014, 15, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Pourzeynali, S.; Zhu, X.; Zadeh, A.G.; Rashidi, M.; Samali, B. Comprehensive Study of Moving Load Identification on Bridge Structures Using the Explicit Form of Newmark-β Method: Numerical and Experimental Studies. Remote Sens. 2021, 13, 2291. [Google Scholar] [CrossRef]
- Lei, J.; Lozano-Galant, J.A.; Xu, D.; Turmo, J. Structural system identification by measurement error-minimizing observability method. Struct. Control Health Monit. 2019, 26, e2425. [Google Scholar] [CrossRef]
- Emadi, S.; Lozano-Galant, J.A.; Xia, Y.; Ramos, G.; Turmo, J. Structural system identification including shear deformation of composite bridges from vertical deflections. Steel Compos. Struct. 2019, 32, 731–741. [Google Scholar] [CrossRef]
- Lei, X.M.; Sun, L.M.; Xia, Y. Lost data reconstruction for structural health monitoring using deep convolutional generative adversarial networks. Struct. Health Monit.-Int. J. 2021, 20, 2069–2087. [Google Scholar] [CrossRef]
- Li, Y.X.; Sun, L.M.; Zhang, W.; Nagarajaiah, S. Bridge damage detection from the equivalent damage load by multitype measurements. Struct. Control Health Monit. 2021, 28, e2709. [Google Scholar] [CrossRef]
- Chen, L.; Nagarajaiah, S.; Sun, L.M. A unified analysis of negative stiffness dampers and inerter-based absorbers for multimode cable vibration control. J. Sound Vib. 2021, 494, 115814. [Google Scholar] [CrossRef]
- Remondino, F. Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning. Remote Sens. 2011, 3, 1104–1138. [Google Scholar] [CrossRef] [Green Version]
- Peng, T.; Nogal, M.; Casas, J.R.; Turmo, J. Role of Sensors in Error Propagation with the Dynamic Constrained Observability Method. Sensors 2021, 21, 2918. [Google Scholar] [CrossRef]
- Rashidi, M.; Mohammadi, M.; Kivi, S.S.; Abdolvand, M.M.; Linh, T.H.; Samali, B. A Decade of Modern Bridge Monitoring Using Terrestrial Laser Scanning: Review and Future Directions. Remote Sens. 2020, 12, 3796. [Google Scholar] [CrossRef]
- Jung, S.; Choi, D.; Song, S.; Myung, H. Bridge Inspection Using Unmanned Aerial Vehicle Based on HG-SLAM: Hierarchical Graph-Based SLAM. Remote Sens. 2020, 12, 3022. [Google Scholar] [CrossRef]
- Kim, H.; Kim, C. Deep-Learning-Based Classification of Point Clouds for Bridge Inspection. Remote Sens. 2020, 12, 3757. [Google Scholar] [CrossRef]
- Kumar, V.; Morris, I.M.; Lopez, S.A.; Glisic, B. Identifying Spatial and Temporal Variations in Concrete Bridges with Ground Penetrating Radar Attributes. Remote Sens. 2021, 13, 1846. [Google Scholar] [CrossRef]
- Ortiz-Sanz, J.; Gil-Docampo, M.; Arza-Garcia, M.; Canas-Guerrero, I. IR Thermography from UAVs to Monitor Thermal Anomalies in the Envelopes of Traditional Wine Cellars: Field Test. Remote Sens. 2019, 11, 1424. [Google Scholar] [CrossRef]
- Zollini, S.; Alicandro, M.; Dominici, D.; Quaresima, R.; Giallonardo, M. UAV Photogrammetry for Concrete Bridge Inspection Using Object-Based Image Analysis (OBIA). Remote Sens. 2020, 12, 3180. [Google Scholar] [CrossRef]
- Jung, J.; Kim, D.J.; Vadivel, S.K.P.; Yun, S.H. Long-Term Deflection Monitoring for Bridges Using X and C-Band Time-Series SAR Interferometry. Remote Sens. 2019, 11, 1258. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, F.; Gagliardi, V.; Ciampoli, L.B.; Tosti, F. Integration of InSAR and GPR techniques for monitoring transition areas in railway bridges. NDT E Int. 2020, 115, 102291. [Google Scholar] [CrossRef]
- Gagliardi, V.; Benedetto, A.; Ciampoli, L.B.; D’Amico, F.; Alani, A.; Tosti, F. Health monitoring approach for transport infrastructure and bridges by satellite remote sensing Persistent Scatterer Interferometry (PSI). In Earth Resources and Environmental Remote Sensing/Gis Applications Xi, Proceedings of SPIE, Online, 21–24 September 2020; Schultz, K., Michel, U., Nikolakopoulos, K.G., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2020; Volume 11534. [Google Scholar]
- Tosti, F.; Gagliardi, V.; D’Amico, F.; Alani, A.M. Transport infrastructure monitoring by data fusion of GPR and SAR imagery information. Transp. Res. Procedia 2020, 45, 771–778. [Google Scholar] [CrossRef]
- Xiong, S.T.; Wang, C.S.; Qin, X.Q.; Zhang, B.C.; Li, Q.Q. Time-Series Analysis on Persistent Scatter-Interferometric Synthetic Aperture Radar (PS-InSAR) Derived Displacements of the Hong Kong-Zhuhai-Macao Bridge (HZMB) from Sentinel-1A Observations. Remote Sens. 2021, 13, 546. [Google Scholar] [CrossRef]
- Ciampoli, L.B.; Gagliardi, V.; Clementini, C.; Latini, D.; Del Frate, F.; Benedetto, A. Transport Infrastructure Monitoring by InSAR and GPR Data Fusion. Surv. Geophys. 2020, 41, 371–394. [Google Scholar] [CrossRef]
- Solla, M.; Laguela, S.; Fernandez, N.; Garrido, I. Assessing Rebar Corrosion through the Combination of Nondestructive GPR and IRT Methodologies. Remote Sens. 2019, 11, 1705. [Google Scholar] [CrossRef] [Green Version]
- Alani, A.M.; Tosti, F.; Ciampoli, L.B.; Gagliardi, V.; Benedetto, A. An integrated investigative approach in health monitoring of masonry arch bridges using GPR and InSAR technologies. NDT E Int. 2020, 115, 102288. [Google Scholar] [CrossRef]
- Lei, X.M.; Sun, L.M.; Xia, Y.; He, T.T. Vibration-Based Seismic Damage States Evaluation for Regional Concrete Beam Bridges Using Random Forest Method. Sustainability 2020, 12, 5106. [Google Scholar] [CrossRef]
- Jiangu, L.Z.; He, W.K.; Wei, B.; Wang, Z.W.; Li, S.S. The shear pin strength of friction pendulum bearings (FPB) in simply supported railway bridges. Bull. Earthq. Eng. 2019, 17, 6109–6139. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, Z.; Lei, X.; Xia, Y.; Sun, L. All-Weather Thermal Simulation Methods for Concrete Maglev Bridge Based on Structural and Meteorological Monitoring Data. Sensors 2021, 21, 5789. [Google Scholar] [CrossRef]
- Xia, Y.; Lei, X.M.; Wang, P.; Liu, G.M.; Sun, L.M. Long-term performance monitoring and assessment of concrete beam bridges using neutral axis indicator. Struct. Control Health Monit. 2020, 27, e2637. [Google Scholar] [CrossRef]
- Lei, X.M.; Sun, L.M.; Xia, Y. Seismic fragility assessment and maintenance management on regional bridges using bayesian multi-parameter estimation. Bull. Earthq. Eng. 2021, 18, 1–25. [Google Scholar] [CrossRef]
- Bektas, B.A.; Carriquiry, A.; Smadi, O. Using Classification Trees for Predicting National Bridge Inventory Condition Ratings. J. Infrastruct. Syst. 2013, 19, 425–433. [Google Scholar] [CrossRef]
- Nasrollahi, M.; Washer, G. Estimating inspection intervals for bridges based on statistical analysis of national bridge inventory data. J. Bridge Eng. 2015, 20, 04014104. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.F. Bridge condition rating data modeling using deep learning algorithm. Struct. Infrastruct. Eng. 2020, 16, 1447–1460. [Google Scholar] [CrossRef]
- Kiani, J.; Camp, C.; Pezeshk, S. On the application of machine learning techniques to derive seismic fragility curves. Comput. Struct. 2019, 218, 108–122. [Google Scholar] [CrossRef]
- Zhao, H.W.; Ding, Y.L.; Li, A.Q.; Sheng, W.; Geng, F.F. Digital modeling on the nonlinear mapping between multi-source monitoring data of in-service bridges. Struct. Control Health Monit. 2020, 27, e2618. [Google Scholar] [CrossRef]
- Huang, Y.H. Artificial Neural Network Model of Bridge Deterioration. J. Perform. Constr. Facil. 2010, 24, 597–602. [Google Scholar] [CrossRef]
- Li, Z.; Burgueno, R. Using Soft Computing to Analyze Inspection Results for Bridge Evaluation and Management. J. Bridge Eng. 2010, 15, 430–438. [Google Scholar] [CrossRef]
- Sabatino, S.; Frangopol, D.M.; Dong, Y. Life cycle utility-informed maintenance planning based on lifetime functions: Optimum balancing of cost, failure consequences and performance benefit. Struct. Infrastruct. Eng. 2016, 12, 830–847. [Google Scholar] [CrossRef]
- Frangopol, D.M.; Dong, Y.; Sabatino, S. Bridge life-cycle performance and cost: Analysis, prediction, optimisation and decision-making. Struct. Infrastruct. Eng. 2017, 13, 1239–1257. [Google Scholar] [CrossRef]
- Ghasemi, S.H.; Nowak, A.S. Target reliability for bridges with consideration of ultimate limit state. Eng. Struct. 2017, 152, 226–237. [Google Scholar] [CrossRef]
- Gidaris, I.; Padgett, J.E.; Barbosa, A.R.; Chen, S.R.; Cox, D.; Webb, B.; Cerato, A. Multiple-Hazard Fragility and Restoration Models of Highway Bridges for Regional Risk and Resilience Assessment in the United States: State-of-the-Art Review. J. Struct. Eng. 2017, 143, 04016188. [Google Scholar] [CrossRef]
- Mackie, K.R.; Wong, J.M.; Stojadinovic, B. Post-earthquake bridge repair cost and repair time estimation methodology. Earthq. Eng. Struct. Dyn. 2010, 39, 281–301. [Google Scholar] [CrossRef]
- Liu, M.; Frangopol, D.M. Probability-based bridge network performance evaluation. J. Bridge Eng. 2006, 11, 633–641. [Google Scholar] [CrossRef]
- Soliman, M.; Frangopol, D.M.; Mondoro, A. A probabilistic approach for optimizing inspection, monitoring, and maintenance actions against fatigue of critical ship details. Struct. Saf. 2016, 60, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, E.; Remondino, F.; Golkar, A. An Efficient and General Framework for Aerial Point Cloud Classification in Urban Scenarios. Remote Sens. 2021, 13, 1985. [Google Scholar] [CrossRef]
- Bocchini, P.; Frangopol, D.M. A probabilistic computational framework for bridge network optimal maintenance scheduling. Reliab. Eng. Syst. Saf. 2011, 96, 332–349. [Google Scholar] [CrossRef]
- Ouyang, M.; Duenas-Osorio, L.; Min, X. A three-stage resilience analysis framework for urban infrastructure systems. Struct. Saf. 2012, 36–37, 23–31. [Google Scholar] [CrossRef]
- Ouyang, M.; Duenas-Osorio, L. An approach to design interface topologies across interdependent urban infrastructure systems. Reliab. Eng. Syst. Saf. 2011, 96, 1462–1473. [Google Scholar] [CrossRef]
Groups | Attributes | Formats |
---|---|---|
1 | Kilometerpoint, Age, Width, Structure length, Year built, Last maintenance, ADT, ADTT, and Inspection date | Numerical |
2 | Route code, Route name, Bridge code, Bridge name, Structural type, Climate, and Owner | Nominal |
3 | Bridge rating, Superstructure rating, Substructure rating, Deck rating, and Maintenance action | Ordinal |
No. | Feature | Original Value | Converted Value |
---|---|---|---|
1 | Region | 1, 2, 3 | (1,0,0), (0,1,0), (0,0,1) |
2 | ADT | min = 4912, max = 23,731 | min = 0, max = 1 |
3 | ADTT | min = 625, max = 13,798 | min = 0, max = 1 |
4 | Age * | min = 1, max = 21 | min = 0, max = 1 |
5 | Length | min = 5, max = 2000 | min = 0, max = 1 |
6 | Structural Type | Slab, T-shape, Box, Other | (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) |
7 | Max Span | min = 5, max = 146 | min = 0, max = 1 |
8 | Bridge Rating | 1, 2, 3, 4, 5 | 0.2, 0.4, 0.6, 0.8, 1 |
9 | Superstructure Rating | 1, 2, 3, 4, 5 | 0.2, 0.4, 0.6, 0.8, 1 |
10 | Substructure Rating | 1, 2, 3, 4, 5 | 0.2, 0.4, 0.6, 0.8, 1 |
11 | Deck Rating | 1, 2, 3, 4, 5 | 0.2, 0.4, 0.6, 0.8, 1 |
12 | Superstructure Maintenance | 0, 1 | 0, 1 |
13 | Substructure Maintenance | 0, 1 | 0, 1 |
14 | Deck Maintenance | 0, 1 | 0, 1 |
Models | Bridge System | Superstructure | Substructure | Deck |
---|---|---|---|---|
Model 1 | 75.68% | 76.80% | 83.64% | 77.12% |
Model 2 | 85.76% | 77.04% | 84.64% | 78.64% |
Model 3 | 82.56% | 76.32% | 82.24% | 77.44% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Lei, X.; Wang, P.; Sun, L. Artificial Intelligence Based Structural Assessment for Regional Short- and Medium-Span Concrete Beam Bridges with Inspection Information. Remote Sens. 2021, 13, 3687. https://doi.org/10.3390/rs13183687
Xia Y, Lei X, Wang P, Sun L. Artificial Intelligence Based Structural Assessment for Regional Short- and Medium-Span Concrete Beam Bridges with Inspection Information. Remote Sensing. 2021; 13(18):3687. https://doi.org/10.3390/rs13183687
Chicago/Turabian StyleXia, Ye, Xiaoming Lei, Peng Wang, and Limin Sun. 2021. "Artificial Intelligence Based Structural Assessment for Regional Short- and Medium-Span Concrete Beam Bridges with Inspection Information" Remote Sensing 13, no. 18: 3687. https://doi.org/10.3390/rs13183687
APA StyleXia, Y., Lei, X., Wang, P., & Sun, L. (2021). Artificial Intelligence Based Structural Assessment for Regional Short- and Medium-Span Concrete Beam Bridges with Inspection Information. Remote Sensing, 13(18), 3687. https://doi.org/10.3390/rs13183687