Inter-Zone Differences of Convective Development in a Convection Outbreak Event over Southeastern Coast of China: An Observational Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multiple Radar Data and Their Processing Procedures
2.2. Himawari-8 Interest Fields
2.3. Other Datasets
Interest Field | Definition | Physical Description |
---|---|---|
ρ0.47 | 0.47 μm (band 1) reflectance | Cloud optical thickness |
ρ3.9 | 3.9 μm (band 7) reflectance | Cloud-top glaciation, particle size |
BTD6.2−7.3 | Brightness temperature difference between 6.2 (band 8) and 7.3 (band 10) μm | Cloud-top height relative to upper troposphere |
BT10.4 | 10.4 μm (band 13) brightness temperature | Cloud-top height |
BTD12.4−10.4 | Brightness temperature difference between 12.4 (band 15) and 10.4 (band 13) μm | Cloud optical thickness |
Trispectral difference | Brightness temperature difference between 8.6 (band 11) and 11.2 (band 14) μm minus brightness temperature difference between 11.2 (band 14) and 12.4 (band 15) μm | Cloud-top glaciation |
3. Overview of Convection Outbreak Event
4. Inter-Zone Comparison Results of Convective Development
4.1. Features of Convection and Precipitation: Three-Dimensional Radar Analyses
4.1.1. Initial Convection
4.1.2. Subsequent Convective Development
4.1.3. Vertical Structure Evolution
4.1.4. Supercell-Related Signature Evolution
4.2. Convective Cloud Properties: Interpretations of Himawari-8 Interest Fields
4.2.1. Cloud-Top Height
4.2.2. Cloud Optical Thickness
4.2.3. Cloud-Top Glaciation
4.2.4. Particle Size
5. Discussion
5.1. Potential Usage of Radar- and Satellite-Derived Signatures to Indicate Hail Occurrence
5.2. Possible Inter-Zone Differences Mechanisms
6. Conclusions
- (1)
- Convection appeared in succession from the north to south zones from a more clear-sky condition. The lower relative humidity, higher LFC, and larger CIN of the south might have made convective initiation harder. A southwestward-moving shear line could also have facilitated the convective initiation in the north and middle zones by interacting with high terrains. The initial convection was dominated by warm-rain processes in the north and middle zones, whereas it had a greater ice-phase component in the south zone.
- (2)
- The subsequent convection after onset underwent more vigorous vertical growth and horizontal expansion from the north to south zones with larger CAPE and vertical wind shear. It took a longer time to prepare the transition from shallow to deep convection in the north and middle zones. By contrast, the convective development in the south zone was explosive, which rapidly led to extremely deep convective storms with an echo top up to 18 km and evident horizontal anvil expansion.
- (3)
- The typical signatures in severe convection, including the weak-echo region (identified via a new-defined quantity in this study) and mesocyclone, were more pronounced from the north to south zones. This implies a higher risk of severe convective weather in the south zone where the maximum mesocyclone strength was larger than that in most giant hail cases across the contiguous U.S. Intensive hail reports were reported in the south zone.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doswell, C.A. The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Weather. Forecast. 1987, 2, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Brooks, H.E.; Doswell III, C.A.; Zhang, X.; Chernokulsky, A.M.A.; Tochimoto, E.; Hanstrum, B.; de Lima Nascimento, E.; Sills, D.M.L.; Antonescu, B.; Barrett, B. A century of progress in severe convective storm research and forecasting. Meteorol. Monogr. 2019, 59, 18.11–18.41. [Google Scholar] [CrossRef]
- Markowski, P.; Richardson, Y. Convection initiation. In Mesoscale Meteorology in Midlatitudes; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 183–199. [Google Scholar]
- Weckwerth, T.M.; Parsons, D.B. A review of convection initiation and motivation for IHOP_2002. Mon. Weather. Rev. 2006, 134, 5–22. [Google Scholar] [CrossRef]
- Cintineo, J.L.; Pavolonis, M.J.; Sieglaff, J.M.; Heidinger, A.K. Evolution of severe and nonsevere convection inferred from GOES-derived cloud properties. J. Appl. Meteorol. Climatol. 2013, 52, 2009–2023. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Bedka, K.M. Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Weather. Rev. 2006, 134, 49–78. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Meng, Z.; Li, W.; Bai, L.; Meng, X. General features of radar-observed boundary layer convergence lines and their associated convection over a sharp vegetation-contrast area. Geophys. Res. Lett. 2019, 46, 2865–2873. [Google Scholar] [CrossRef]
- Fabry, F.; Meunier, V.; Treserras, B.P.; Cournoyer, A.; Nelson, B. On the climatological use of radar data mosaics: Possibilities and challenges. Bull. Am. Meteorol. Soc. 2017, 98, 2135–2148. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Liu, L.; Liu, X.; Li, G.; Chen, C. Advances in Chinese dual-polarization and phased-array weather radars: Observational analysis of a supercell in Southern China. J. Atmos. Ocean. Technol. 2018, 35, 1785–1806. [Google Scholar] [CrossRef]
- Meng, Z.; Yao, D.; Bai, L.; Zheng, Y.; Xue, M.; Zhang, X.; Zhao, K.; Tian, F.; Wang, M. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations. Sci. Bull. 2016, 61, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Melnikov, V.M.; Doviak, R.J. Turbulence and wind shear in layers of large doppler spectrum width in stratiform precipitation. J. Atmos. Ocean. Technol. 2009, 26, 430–443. [Google Scholar] [CrossRef]
- Amburn, S.A.; Wolf, P.L. VIL density as a hail indicator. Weather. Forecast. 1997, 12, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Lemon, L.R. The radar “three-body scatter spike”: An operational large-hail signature. Weather. Forecast. 1998, 13, 327–340. [Google Scholar] [CrossRef]
- Meng, Z.; Bai, L.; Zhang, M.; Wu, Z.; Li, Z.; Pu, M.; Zheng, Y.; Wang, X.; Yao, D.; Xue, M.; et al. The deadliest tornado (EF4) in the past 40 years in China. Weather. Forecast. 2018, 33, 693–713. [Google Scholar] [CrossRef]
- Roberts, R.D.; Rutledge, S. Nowcasting storm initiation and growth using GOES-8 and WSR-88D Data. Weather. Forecast. 2003, 18, 562–584. [Google Scholar] [CrossRef] [Green Version]
- Mecikalski, J.R.; MacKenzie, W.M.; Koenig, M.; Muller, S. Cloud-top properties of growing cumulus prior to convective initiation as measured by meteosat second generation. Part I: Infrared fields. J. Appl. Meteorol. Climatol. 2010, 49, 521–534. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; MacKenzie, W.M.; König, M.; Muller, S. Cloud-top properties of growing cumulus prior to convective initiation as measured by meteosat second generation. Part II: Use of visible reflectance. J. Appl. Meteorol. Climatol. 2010, 49, 2544–2558. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.R.; MacKenzie, W.M.; Mecikalski, J.R.; Jewett, C.P. An enhanced geostationary satellite–based convective initiation algorithm for 0–2-h nowcasting with object tracking. J. Appl. Meteorol. Climatol. 2012, 51, 1931–1949. [Google Scholar] [CrossRef]
- Zhuge, X.; Zou, X. Summertime convective initiation nowcasting over southeastern china based on advanced himawari imager observations. J. Meteorol. Soc. Jpn. Ser. II 2018, 96, 337–353. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Qin, D.; Min, M.; Li, B.; Wang, F. Convective initiation nowcasting over china from fengyun-4A measurements based on TV-L1 optical flow and BP_Adaboost neural network algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4284–4296. [Google Scholar] [CrossRef]
- Senf, F.; Dietzsch, F.; Hünerbein, A.; Deneke, H. Characterization of initiation and growth of selected severe convective storms over central europe with MSG-SEVIRI. J. Appl. Meteorol. Climatol. 2015, 54, 207–224. [Google Scholar] [CrossRef]
- Senf, F.; Deneke, H. Satellite-based characterization of convective growth and glaciation and its relationship to precipitation formation over Central Europe. J. Appl. Meteorol. Climatol. 2017, 56, 1827–1845. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Rosenfeld, D.; Manzato, A. Evaluation of geostationary satellite observations and the development of a 1–2 h prediction model for future storm intensity. J. Geophys. Res. Atmos. 2016, 121, 6374–6392. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Li, X.; Carey, L.D.; McCaul, E.W.; Coleman, T.A. Regional comparison of GOES cloud-top properties and radar characteristics in advance of first-flash lightning initiation. Mon. Weather. Rev. 2013, 141, 55–74. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Wang, Y.; Gao, F.; Xiao, X. Diurnal evolution and distribution of warm-season convective storms in different prevailing wind regimes over contiguous North China. J. Geophys. Res. Atmos. 2014, 119, 2742–2763. [Google Scholar] [CrossRef]
- Huang, Y.; Meng, Z.; Li, J.; Li, W.; Bai, L.; Zhang, M.; Wang, X. Distribution and variability of satellite-derived signals of isolated convection initiation events over Central Eastern China. J. Geophys. Res. Atmos. 2017, 122, 11–357. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, H.; Zhang, R.; Qian, W.; Luo, Z. Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai river basin. J. Clim. 2013, 26, 110–132. [Google Scholar] [CrossRef] [Green Version]
- Xu, W. Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Weather. Rev. 2013, 141, 1577–1592. [Google Scholar] [CrossRef]
- Houze, R.A., Jr.; Rasmussen, K.L.; Zuluaga, M.D.; Brodzik, S.R. The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the tropical rainfall measuring mission satellite. Rev. Geophys. 2015, 53, 994–1021. [Google Scholar] [CrossRef] [PubMed]
- Zuluaga, M.D.; Houze, R.A. Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Mon. Weather. Rev. 2015, 143, 298–316. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Huang, G.; Baetz, B.W.; Wang, X.; Cheng, G. PRECIS—projected increases in temperature and precipitation over Canada. Q. J. R. Meteorol. Soc. 2018, 144, 588–603. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, G.; Li, Y.; Lin, Q.; Yan, D.; He, X. Dynamical downscaling of temperature variations over the canadian prairie provinces under climate change. Remote Sens. 2021, 13, 4350. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, G.; Piwowar, J.; Fan, Y.; Wang, X.; Li, Z.; Cheng, G. Hydrologic impacts of ensemble-RCM-projected climate changes in the Athabasca River basin, Canada. J. Hydrometeorol. 2018, 19, 1953–1971. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Huang, G.; Wang, X.; Cheng, G. Future changes in precipitation extremes over Canada: Driving factors and inherent mechanism. J. Geophys. Res. Atmos. 2018, 123, 5783–5803. [Google Scholar] [CrossRef]
- Xia, R.; Zhang, D.-L.; Wang, B. A 6-yr cloud-to-ground lightning climatology and its relationship to rainfall over central and Eastern China. J. Appl. Meteorol. Climatol. 2015, 54, 2443–2460. [Google Scholar] [CrossRef]
- Yang, X.; Li, Z. Increases in thunderstorm activity and relationships with air pollution in southeast China. J. Geophys. Res. Atmos. 2014, 119, 1835–1844. [Google Scholar] [CrossRef]
- Wang, H.; Luo, Y.; Jou, B.J.-D. Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J. Geophys. Res. Atmos. 2014, 119, 13206–13232. [Google Scholar] [CrossRef]
- Li, M.; Luo, Y.; Zhang, D.L.; Chen, M.; Wu, C.; Yin, J.; Ma, R. Analysis of a record-breaking rainfall event associated with a monsoon coastal megacity of south china using multisource data. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6404–6414. [Google Scholar] [CrossRef]
- Ribeiro, B.Z.; Machado, L.A.T.; Huamán Ch., J. H.; Biscaro, T.S.; Freitas, E.D.; Mozer, K.W.; Goodman, S.J. An evaluation of the GOES-16 rapid scan for nowcasting in Southeastern Brazil: Analysis of a severe hailstorm case. Weather. Forecast. 2019, 34, 1829–1848. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9—Japan’s New-generation geostationary meteorological satellites. J. Meteorol. Soc. Japan. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Matthee, R.; Mecikalski, J.R.; Carey, L.D.; Bitzer, P.M. Quantitative differences between lightning and nonlightning convective rainfall events as observed with polarimetric radar and MSG satellite data. Mon. Weather. Rev. 2014, 142, 3651–3665. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, M.; Xue, M.; Fu, P.; Yang, Z.; Chen, X.; Zhang, Y.; Lee, W.-C.; Zhang, F.; Lin, Q.; et al. Doppler radar analysis of a tornadic miniature supercell during the landfall of typhoon mujigae (2015) in South China. Bull. Am. Meteorol. Soc. 2017, 98, 1821–1831. [Google Scholar] [CrossRef] [Green Version]
- Lensky, I.M.; Rosenfeld, D. Clouds-aerosols-precipitation satellite analysis tool (CAPSAT). Atmos. Chem. Phys. 2008, 8, 6739–6753. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24 2009, 10, V5C8276M. [Google Scholar] [CrossRef]
- Cressman, G.P. An operational objective analysis system. Mon. Weather. Rev. 1959, 87, 367–374. [Google Scholar] [CrossRef]
- Zipser, E.J.; Lutz, K.R. The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Weather. Rev. 1994, 122, 1751–1759. [Google Scholar] [CrossRef] [Green Version]
- Witt, A.; Eilts, M.D.; Stumpf, G.J.; Johnson, J.T.; Mitchell, E.D.W.; Thomas, K.W. An enhanced hail detection algorithm for the WSR-88D. Weather. Forecast. 1998, 13, 286–303. [Google Scholar] [CrossRef] [Green Version]
- Brimelow, J.C.; Reuter, G.W.; Bellon, A.; Hudak, D. A radar-based methodology for preparing a severe thunderstorm climatology in central Alberta. Atmos.-Ocean. 2004, 42, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.R.; White, A. Improvement of the WSR-88D mesocyclone algorithm. Weather. Forecast. 1998, 13, 341–351. [Google Scholar] [CrossRef]
- Andra, D.L. The origin and evolution of the WSR-88D mesocyclone recognition nomogram. In Proceedings of the 28th Conference Radar Meteorology, Austin, TX, USA, 7–12 September 1997; pp. 364–365. [Google Scholar]
- Blair, S.F.; Deroche, D.R.; Boustead, J.M.; Leighton, J.W.; Barjenbruch, B.L.; Gargan, W.P. A radar-based assessment of the detectability of giant hail. E-J. Sev. Storms Meteorol. 2011, 6, 1–30. [Google Scholar]
- Smith, B.T.; Thompson, R.L.; Dean, A.R.; Marsh, P.T. Diagnosing the conditional probability of tornado damage rating using environmental and radar attributes. Weather. Forecast. 2015, 30, 914–932. [Google Scholar] [CrossRef]
- Hartung, D.C.; Sieglaff, J.M.; Cronce, L.M.; Feltz, W.F. An intercomparison of UW cloud-top cooling rates with WSR-88D radar data. Weather. Forecast. 2013, 28, 463–480. [Google Scholar] [CrossRef]
- Matthee, R.; Mecikalski, J.R. Geostationary infrared methods for detecting lightning-producing cumulonimbus clouds. J. Geophys. Res. Atmos. 2013, 118, 6580–6592. [Google Scholar] [CrossRef]
- Hong, G.; Yang, P.; Heidinger, A.K.; Pavolonis, M.J.; Baum, B.A.; Platnick, S.E. Detecting opaque and nonopaque tropical upper tropospheric ice clouds: A trispectral technique based on the MODIS 8–12 μm window bands. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Yuan, J.; Houze, R.A. Global variability of mesoscale convective system anvil structure from A-train satellite data. J. Clim. 2010, 23, 5864–5888. [Google Scholar] [CrossRef]
- Pilewskie, P.; Twomey, S. Cloud phase discrimination by reflectance measurements near 1.6 and 2.2 μm. J. Atmos. Sci. 1987, 44, 3419–3420. [Google Scholar] [CrossRef] [Green Version]
- Baum, B.A.; Soulen, P.F.; Strabala, K.I.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Yang, P. Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase. J. Geophys. Res. Atmos. 2000, 105, 11781–11792. [Google Scholar] [CrossRef]
- Lindsey, D.T.; Hillger, D.W.; Grasso, L.; Knaff, J.A.; Dostalek, J.F. GOES climatology and analysis of thunderstorms with enhanced 3.9-μm reflectivity. Mon. Weather. Rev. 2006, 134, 2342–2353. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Chen, G.; Han, B.; Bai, L.; Li, M. Convection initiation and growth at the coast of South China. Part II: Effects of the terrain, coastline, and cold pools. Mon. Weather. Rev. 2020, 148, 3871–3892. [Google Scholar] [CrossRef]
- Williams, E.R.; Weber, M.E.; Orville, R.E. The relationship between lightning type and convective state of thunderclouds. J. Geophys. Res. Atmos. 1989, 94, 13213–13220. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Zhang, M.; Zhao, Y.; Jou, B.J.-D.; Zheng, H.; Luo, C.; Chen, D. Inter-Zone Differences of Convective Development in a Convection Outbreak Event over Southeastern Coast of China: An Observational Analysis. Remote Sens. 2022, 14, 131. https://doi.org/10.3390/rs14010131
Huang Y, Zhang M, Zhao Y, Jou BJ-D, Zheng H, Luo C, Chen D. Inter-Zone Differences of Convective Development in a Convection Outbreak Event over Southeastern Coast of China: An Observational Analysis. Remote Sensing. 2022; 14(1):131. https://doi.org/10.3390/rs14010131
Chicago/Turabian StyleHuang, Yipeng, Murong Zhang, Yuchun Zhao, Ben Jong-Dao Jou, Hui Zheng, Changrong Luo, and Dehua Chen. 2022. "Inter-Zone Differences of Convective Development in a Convection Outbreak Event over Southeastern Coast of China: An Observational Analysis" Remote Sensing 14, no. 1: 131. https://doi.org/10.3390/rs14010131
APA StyleHuang, Y., Zhang, M., Zhao, Y., Jou, B. J. -D., Zheng, H., Luo, C., & Chen, D. (2022). Inter-Zone Differences of Convective Development in a Convection Outbreak Event over Southeastern Coast of China: An Observational Analysis. Remote Sensing, 14(1), 131. https://doi.org/10.3390/rs14010131