Applications of the Advanced Radiative Transfer Modeling System (ARMS) to Characterize the Performance of Fengyun–4A/AGRI
Abstract
:1. Introduction
2. AGRI Observations
2.1. FY–4A/AGRI Characteristics
2.2. Anomalies of AGRI Brightness Temperature at Band 8
3. Simulation of AGRI IR Measurements
3.1. NWP Background Dataset
3.2. Infrared Surface Emissivity Dataset
3.3. Cloud Detection
4. Verification of the Performance of ARMS
5. Results
5.1. Spatical Distrubutions of AGRI Biases
5.2. Seasonal Variations of Biases at Surface-Sensitive Bands 11–13
5.3. Mean Biases over Ocean and Land
5.4. Bias Dependences on Satellite Zenith Angle
5.5. Bias Dependences on Scene Temperature
6. Difference of Mean Biases Based on FNL and ERA5
6.1. Skin Temperature Difference between FNL and ERA5 Datasets
6.2. Atmospheric Profiles Differences between FNL and ERA5 Datasets
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Schmit, T.J.; Lindstrom, S.S.; Gerth, J.J.; Gunshor, M.M. Applications of the 16 spectral bands on the Advanced Baseline Imager (ABI). J. Oper. Meteorol. 2018, 6, 33–46. [Google Scholar] [CrossRef]
- Zou, X.; Qin, Z.; Weng, F. Improved coastal precipitation forecast with direct assimilation of GOES 11/12 imager radiances. Mon. Weather Rev. 2011, 139, 3711–3729. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Qin, Z.; Zheng, Y. Improved Tropical Storm Forecasts with GOES-13/15 Imager Radiance Assimilation and Asymmetric Vortex Initialization in HWRF. Mon. Weather Rev. 2015, 143, 2485–2505. [Google Scholar] [CrossRef]
- Ma, Z.; Maddy, E.S.; Zhang, B.; Zhu, T.; Boukabara, S.A. Impact Assessment of Himawari-8 AHI Data Assimilation in NCEP GDAS/GFS with GSI. J. Atmos. Ocean. Technol. 2017, 34, 797–815. [Google Scholar] [CrossRef]
- Wang, P.; Li, J.; Lu, B.; Schmit, T.J.; Lu, J.; Lee, Y.-K.; Li, J.; Liu, Z. Impact of Moisture Information From Advanced Himawari Imager Measurements on Heavy Precipitation Forecasts in a Regional NWP Model. J. Geophys. Res. Atmos. 2018, 123, 6022–6038. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Yang, S.; Min, J.; Chen, L.; Chen, Y.; Zhang, T. Added Value of Assimilating Himawari-8 AHI Water Vapor Radiances on Analyses and Forecasts for “7.19” Severe Storm Over North China. J. Geophys. Res. Atmos. 2018, 123, 3374–3394. [Google Scholar] [CrossRef]
- Zhuge, X.; Zou, X. Summertime Convective Initiation Nowcasting over Southeastern China Based on Advanced Himawari Imager Observations. J. Meteorol. Soc. Jpn. Ser. II 2018, 96, 337–353. [Google Scholar] [CrossRef] [Green Version]
- Min, M.; Bai, C.; Guo, J.; Sun, F.; Liu, C.; Wang, F.; Xu, H.; Tang, S.; Li, B.; Di, D.; et al. Estimating Summertime Precipitation from Himawari-8 and Global Forecast System Based on Machine Learning. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2557–2570. [Google Scholar] [CrossRef]
- Zhuge, X.; Zou, X.; Wang, Y. Determining AHI Cloud-Top Phase and Intercomparisons With MODIS Products Over North Pacific. IEEE Trans. Geosci. Remote. Sens. 2021, 59, 1–13. [Google Scholar] [CrossRef]
- Min, M.; Li, J.; Wang, F.; Liu, Z.; Menzel, W.P. Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms. Remote Sens. Environ. 2020, 239, 111616. [Google Scholar] [CrossRef]
- Li, R.; Li, H.; Sun, L.; Yang, Y.; Hu, T.; Bian, Z.; Cao, B.; Du, Y.; Liu, Q. An Operational Split-Window Algorithm for Retrieving Land Surface Temperature from Geostationary Satellite Data: A Case Study on Himawari-8 AHI Data. Remote Sens. 2020, 12, 2613. [Google Scholar] [CrossRef]
- Gültepe, I.; Pagowski, M.; Reid, J. A Satellite-Based Fog Detection Scheme Using Screen Air Temperature. Weather Forecast 2007, 22, 444–456. [Google Scholar] [CrossRef]
- Gunshor, M.M.; Schmit, T.J.; Menzel, W.P. Intercalibration of the infrared window and water vapor bands on operational geostationary environmental satellites using a single polar-orbiting satellite. J. Atmos. Oceanic Technol. 2004, 21, 61–68. [Google Scholar] [CrossRef]
- Yu, F.; Wu, X. Radiometric Inter-Calibration between Himawari-8 AHI and S-NPP VIIRS for the Solar Reflective Bands. Remote Sens. 2016, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zou, X. Bias characterization of CrIS radiances at 399 selected channels with respect to NWP model simulations. Atmos. Res. 2017, 196, 164–181. [Google Scholar] [CrossRef]
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Weng, F.; Zou, X.; Wang, X.; Yang, S.; Goldberg, M.D. Introduction to Suomi national polar-orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropical cyclone applications. J. Geophys. Res. Space Phys. 2012, 117, 117. [Google Scholar] [CrossRef]
- Saunders, R.; Matricardi, M.; Brunel, P. An improved fast radiative transfer model for assimilation of satellite radiance observations. Q. J. R. Meteorol. Soc. 1999, 125, 1407–1425. [Google Scholar] [CrossRef]
- Matricardi, M.; Chevallier, F.; Kelly, G.; Thépaut, J.-N. An improved general fast radiative transfer model for the assimilation of radiance observations. Q. J. R. Meteorol. Soc. 2004, 130, 153–173. [Google Scholar] [CrossRef]
- Weng, F. Advances in Radiative Transfer Modeling in Support of Satellite Data Assimilation. J. Atmos. Sci. 2007, 64, 3799–3807. [Google Scholar] [CrossRef]
- Han, Y.; Weng, F.; Liu, Q.; Van Delst, P. A fast radiative transfer model for SSMIS upper atmosphere sounding channels. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Zou, X.; Zhuge, X.; Weng, F. Characterization of bias of Advanced Himawari Imager infrared observations from NWP back-ground simulations using CRTM and RTTOV. J. Atmos. Oceanic Technol. 2016, 33, 2553–2567. [Google Scholar] [CrossRef]
- Li, X.; Zou, X.; Zhuge, X.; Zeng, M.; Wang, N.; Tang, F. Improved Himawari-8/AHI Radiance Data Assimilation With a Double Cloud Detection Scheme. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Honda, T.; Miyoshi, T.; Lien, G.-Y.; Nishizawa, S.; Yoshida, R.; Adachi, S.; Terasaki, K.; Okamoto, K.; Tomita, H.; Bessho, K. Assimilating All-Sky Himawari-8 Satellite Infrared Radiances: A Case of Typhoon Soudelor (2015). Mon. Weather Rev. 2018, 146, 213–229. [Google Scholar] [CrossRef]
- Qin, Z.; Zou, X.; Weng, F. Impacts of assimilating all or GOES-like AHI infrared channels radiances on QPFs over Eastern China. Tellus A Dyn. Meteorol. Oceanogr. 2017, 69, 1345265. [Google Scholar] [CrossRef]
- Qu, J.H.; Zhang, L.; Lu, Q.F.; Zhang, N.Q.; Wang, D. Characterization of bias in FY-4A advanced geostationary radiation imager observations from ERA5 background simulations using RTTOV. Acta. Meteorol. Sinica. 2019, 77, 911–922. Available online: http://html.rhhz.net/qxxb_cn/html/2019049.htm (accessed on 14 May 2017).
- Geng, X.; Min, J.Z.; Yang, C.; Wang, B.; Xu, D. Analysis of FY-4A AGRI radiance data bias characteristics and a correction experiment. Chin. J. Atmos. Sci. 2020, 44, 679–694. [Google Scholar] [CrossRef]
- Zhu, J.; Shu, J.; Guo, W. Biases Characteristics Assessment of the Advanced Geosynchronous Radiation Imager (AGRI) Measurement on Board Fengyun–4A Geostationary Satellite. Remote Sens. 2020, 12, 2871. [Google Scholar] [CrossRef]
- Weng, F.; Yu, X.; Duan, Y.; Yang, J.; Wang, J. Advanced Radiative Transfer Modeling System (ARMS): A New-Generation Satellite Observation Operator Developed for Numerical Weather Prediction and Remote Sensing Applications. Adv. Atmos. Sci. 2020, 37, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Ding, S.; Dong, P.; Bi, L.; Yi, B. Advanced radiative transfer modeling system developed for satellite data assimilation and remote sensing applications. J. Quant. Spectrosc. Radiat. Transf. 2020, 251, 107043. [Google Scholar] [CrossRef]
- Liu, Q.; Weng, F. A Microwave Polarimetric Two-Stream Radiative Transfer Model. J. Atmos. Sci. 2002, 59, 2396–2402. [Google Scholar] [CrossRef]
- Shi, Y.-N.; Yang, J.; Weng, F. Discrete Ordinate Adding Method (DOAM), a new solver for Advanced Radiative transfer Modeling System (ARMS). Opt. Express 2021, 29, 4700–4720. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Weng, F. Advanced Doubling–Adding Method for Radiative Transfer in Planetary Atmospheres. J. Atmos. Sci. 2006, 63, 3459–3465. [Google Scholar] [CrossRef]
- Evans, K.; Stephens, G. A new polarized atmospheric radiative transfer model. J. Quant. Spectrosc. Radiat. Transf. 1991, 46, 413–423. [Google Scholar] [CrossRef]
- Weng, F. A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere—I. Theory. J. Quant. Spectrosc. Radiat. Transf. 1992, 47, 19–33. [Google Scholar] [CrossRef]
- Weng, F. Passive Microwave Remote Sensing of the Earth: For Meteorological Applications; Wiley: Hoboken, NJ, USA, 2017; p. 384. [Google Scholar]
- Schulz, F.; Stamnes, K.; Weng, F. Vdisort: An improved and generalized discrete ordinate method for polarized (vector) radiative transfer. J. Quant. Spectrosc. Radiat. Transf. 1999, 61, 105–122. [Google Scholar] [CrossRef]
- Kummerow, C. On the accuracy of the Eddington approximation for radiative transfer in the microwave frequencies. J. Geophys. Res. Space Phys. 1993, 98, 2757–2765. [Google Scholar] [CrossRef]
- McMillin, L.M.; Crone, L.J.; Kleespies, T.J. Atmospheric transmittance of an absorbing gas 5 Improvements to the optran approach. Appl. Opt. 1995, 34, 8396–8399. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Clough, S.A.; Iacono, M.; Moncet, J.-L. Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res. Space Phys. 1992, 97, 15761–15785. [Google Scholar] [CrossRef]
- Clough, S.; Shephard, M.; Mlawer, E.; Delamere, J.; Iacono, M.; Cady-Pereira, K.; Boukabara, S.A.; Brown, P. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Guo, Q.; Xu, J.; Zhang, W. Stray light modelling and analysis for the FY-2 meteorological satellite. Int. J. Remote Sens. 2005, 26, 2817–2830. [Google Scholar] [CrossRef]
- Wu, X.; Smith, W.L. Emissivity of rough sea surface for 8–13 µm: Modeling and verification. Appl. Opt. 1997, 36, 2609–2619. [Google Scholar] [CrossRef] [PubMed]
- Zhuge, X.; Zou, X.; Weng, F.; Sun, M. Dependence of Simulation Biases at AHI Surface-Sensitive Channels on Land Surface Emissivity over China. J. Atmos. Ocean. Technol. 2018, 35, 1283–1298. [Google Scholar] [CrossRef]
- Borbas, E.; Hulley, G.; Knuteson, R.; Feltz, M. MEaSUREs Unified and Coherent Land Surface Temperature and Emissivity (LST&E) Earth System Data Record (ESDR): The Combined ASTER and MODIS Emissivity Database Over Land (CAMEL). 2017. Available online: ftp://ftp.ssec.wisc.edu/pub/ICI/MEASURES_doc/V001/MEaSUREs_CAMEL_Users_Guid323e_02172017.pdf (accessed on 17 February 2017).
- Wang, X.; Min, M.; Wang, F.; Guo, J.; Li, B.; Tang, S. Intercomparisons of Cloud Mask Products Among Fengyun-4A, Himawari-8, and MODIS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8827–8839. [Google Scholar] [CrossRef]
- Ackerman, S.; Strabala, K.; Menzel, P.; Frey, R.; Moeller, C.; Gumley, L. Discriminating Clear-Sky from Cloud with MODIS; Algorithm Theoretical Basis Document (MOD35) Version 6.1; Wisconsin-Madison University: Madison, WI, USA, 2010. [Google Scholar]
- Liu, Y.; Wang, H.; Li, Z.; Wang, Z. A verification of the lightning detection data from FY-4A LMI as compared with ADTD-2. Atmos. Res. 2021, 248, 105163. [Google Scholar] [CrossRef]
- Trigo, I.F.; Boussetta, S.; Viterbo, P.; Balsamo, G.; Beljaars, A.; Sandu, I. Comparison of model land skin temperature with remotely sensed estimates and assessment of surface-atmosphere coupling. J. Geophys. Res. Atmos. 2015, 120, 12096–12111. [Google Scholar] [CrossRef] [Green Version]
Channel (Band) No. | Central Wavelength (μm) | Spectral Interval (μm) | SNR or NEdT Specified (km) | Spatial Resolution at SSP (km) |
---|---|---|---|---|
7 | 3.75 | 3.5–4.0 | 0.7 K @ 300 K | 2 |
8 | 3.75 | 3.5–4.0 | 0.2 K @ 300 K | 4 |
9 | 6.25 | 5.8–6.7 | 0.3 K @ 260 K | 4 |
10 | 7.1 | 6.9–7.3 | 0.3 K @ 260 K | 4 |
11 | 8.5 | 8.0–9.0 | 0.2 K @ 300 K | 4 |
12 | 10.8 | 10.3–11.3 | 0.2 K @ 300 K | 4 |
13 | 12.0 | 11.5–12.5 | 0.2 K @ 300 K | 4 |
14 | 13.5 | 13.2–13.8 | 0.5 K @ 300 K | 4 |
Category | Variable Name | Unit | Data Resource |
---|---|---|---|
Atmosphere variable | Level and Layer Pressure | hPa | ERA5/ FNL |
Temperature | K | ||
Water Vapor Mixing Ration | g/kg (kg/kg) | ||
O3 Mixing Ration | ppmv | ||
CO2 Mixing Ration | Constant (376) | ||
Surface variables | Skin Temperature | K | ERA5/ FNL |
Land Surface Emissivity | -- | CAMEL_HSRemis | |
Ocean Surface Emissivity | -- | Calculated based on Wu and Smith (1997) [46] | |
Wind Speed | m/s | ERA5/FNL | |
Wind Direction | degree | ||
Satellite Geometry | Satellite Zenith Angle | degree | Derived from FY–4A/AGRI L1 data with HDF format |
Satellite Zenith Angle | |||
Solar Zenith Angle | |||
Solar Azimuth Angle | |||
Parameters | Climatology | -- | US 1976 standard profile |
Land Coverage | -- | 1 for land and 0 for ocean | |
Water Coverage | 0 for land and 1 for ocean | ||
Snow Coverage | Always 0 | ||
Ice Coverage | Always 0 |
Channel No. | Ocean | Land | ||
---|---|---|---|---|
μ (K) | σ (K) | μ (K) | σ (K) | |
8 | 0.22 | 1.00 | 0.12 | 4.99 |
9 | 1.06 | 1.20 | 0.70 | 1.44 |
10 | 0.69 | 1.04 | 0.65 | 1.52 |
11 | −0.69 | 1.25 | 0.19 | 4.55 |
12 | −0.61 | 1.16 | 0.32 | 5.18 |
13 | −0.41 | 1.24 | 0.32 | 4.98 |
14 | 0.41 | 1.32 | 0.75 | 2.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, F.; Zhuge, X.; Zeng, M.; Li, X.; Dong, P.; Han, Y. Applications of the Advanced Radiative Transfer Modeling System (ARMS) to Characterize the Performance of Fengyun–4A/AGRI. Remote Sens. 2021, 13, 3120. https://doi.org/10.3390/rs13163120
Tang F, Zhuge X, Zeng M, Li X, Dong P, Han Y. Applications of the Advanced Radiative Transfer Modeling System (ARMS) to Characterize the Performance of Fengyun–4A/AGRI. Remote Sensing. 2021; 13(16):3120. https://doi.org/10.3390/rs13163120
Chicago/Turabian StyleTang, Fei, Xiaoyong Zhuge, Mingjian Zeng, Xin Li, Peiming Dong, and Yang Han. 2021. "Applications of the Advanced Radiative Transfer Modeling System (ARMS) to Characterize the Performance of Fengyun–4A/AGRI" Remote Sensing 13, no. 16: 3120. https://doi.org/10.3390/rs13163120
APA StyleTang, F., Zhuge, X., Zeng, M., Li, X., Dong, P., & Han, Y. (2021). Applications of the Advanced Radiative Transfer Modeling System (ARMS) to Characterize the Performance of Fengyun–4A/AGRI. Remote Sensing, 13(16), 3120. https://doi.org/10.3390/rs13163120