Air Quality over China
Abstract
:1. Introduction
2. The Dragon 4 Sub-Project “Air Quality over China” (AQ-China)
2.1. List of Sub-Projects and Teaming
- -
- Air Quality Observations and Emission Estimates.
- -
- AEROSOL: Satellite-derived aerosol properties over Mainland China: application to air quality and trend analysis.
2.2. Description and Summary Table of EO and Other Data Utilized
3. AQ-China Aims and Approach
3.1. Air Quality Observations and Emission Estimates
3.1.1. Research Aims
Top down Emission Estimates of NOx and SO2
Emission of Volatile Organic Compounds (VOCs)
3.1.2. Research Approach
Space-Based Trace Gas Emissions in China
3.2. AEROSOL: Satellite-Derived Aerosol Properties over Mainland China: Application to Air Quality and Trend Analysis
3.2.1. Research Aims
3.2.2. Research Approach
Satellite Data
Ground-Based Data
Modeling
Atmospheric Corrosion Athens Station (ACAS)
4. Research Results and Conclusions
4.1. Air Quality Observations and Emission Estimates
4.1.1. Results
Status of NOx and SO2 emissions in China
Identification of Emission Source Sectors
BVOC Emissions from a Subtropical Forest
Long-Term Variations and Mechanisms of Air Pollutants in North China
4.1.2. Conclusions
4.2. AEROSOL: Satellite-Derived Aerosol Properties over Mainland China: Application to Air Quality and Trend Analysis
4.2.1. Results
Spatiotemporal Variation of Aerosols over China and Application in Air Quality Studies
Atmospheric Corrosion
4.2.2. Conclusions
5. Overall Discussion
6. Main Conclusions
- Satellite-derived data sets for SO2 and NO2 emissions were extended up to 2018; spatial distributions show the hotspots in industrialized and urban centers near large cities and rivers.
- Time series of annual mean emissions of SO2 and NOx per province show their decline during the last decade. However, the emissions of both SO2 and NOx in 2018 are close to those in 2017, suggesting that the decline comes to a halt. This is confirmed by studies over smaller regions across China [97].
- In 2017 and 2018 the SO2 emissions were reduced to about 40% of those in 2005; for NOx the emissions in these years have been reduced to a level similar to that in 2009.
- Existing AOD data sets were extended with three years and instead of the AATSR and MODIS C6.1 AOD data, the MAIAC MODIS/Terra and MODIS/Aqua merged AOD product MCD19A2 was used to reproduce a time series covering the period 2011–2020. The spatial distribution shows features similar to those in previous years with large spatiotemporal variations.
- The time series of the annual mean AOD over Zhengzhou and Shanghai show the decline of the AOD during the last decade. However, in each of the years 2018–2020 the AOD over Zhengzhou has a similar value, close to 0.5. Likewise, the AOD over the Shanghai region decreased to a minimum of 0.4 in 2018, whereas in 2019 and 2020 it was somewhat higher. These observations lead to the conclusion that for AOD the decrease seems to have halted in recent years.
- In both Shanghai and Zhengzhou, the AOD in the years 2018–2020 was on average reduced to about 65% of the value in 2011 when the AOD was at a maximum. In 2017, the annual mean AOD averaged over all SE China in 2017 was close to that in 1995, as shown by data in [39].
- AVHRR AOD over small areas in China and Europe were used to extend the AOD time series backward from 1995 (ATSR-2) to 1987 using the RADI/CAS aerosol optical depth over land (ADL) algorithm. This algorithm provides good results, except for the highest AOD where improvements are needed.
- The convolutional neural network NNAero for the joint retrieval of AOD and FMF from MODIS data is an improvement over the operational MODIS data sets, in particular as regards the retrieval of FMF.
- The ITS algorithm developed for the retrieval of AOD from AHI on the Geostationary satellite Himawari-8 can be used to study the diurnal variation of aerosols.
- An improved inversion scheme for the retrieval of aerosol components was developed and applied to all SONET sites across China, showing the spatial variation of the aerosol composition, as well as the seasonal variation.
- For the application of satellite observations in AQ studies, the AOD/PM2.5 relation has to be evaluated. The application of a two-step model over the Guanzhong Basin shows good results as concluded from the evaluation versus ground-based PM2.5 data.
- The PMRS model was improved by accounting for the variation of the hygroscopic growth factor across China and the inclusion of the FMF fraction based on a correction to MODIS data.
- The aerosol concentrations are strongly influenced by both anthropogenic and natural effects. The study by Kang et al. [1] shows the contributions of each of these factors to the concentrations of NO2, SO2, CO and to AOD.
- The different meteorological conditions during air pollution episodes in the summer and winter in Nanjing strongly influence the contributions of regional (summer) versus long-range transported (winter), adding to the locally produced pollutants.
- Synoptic situations in the wintertime determine the transport pathways resulting in the occurrence of either accumulation or dispersion of aerosol in the BTH and the YRD.
- A strong correlation has been observed between monthly mean BVOC emissions measured in a sub-tropical Pinus plantation and HCHO VCDs. The relationships are suggested to be used for the application of satellite data for emission estimates over other areas and over large spatial scales.
- The emissions of AVOC and human-induced BVOC (due to cutting plants in cities, biomass burning, etc.) need to be reduced, together with more strict NOx and SO2 emission control [68].
- The study of the atmospheric effects on the corrosion of materials shows that the method developed for the use of satellite data works well for Limestone. Other materials require further improvements, especially in terms of the effects of air pollutants.
- The application of the PMRS model and factorization of natural and anthropogenic factors to forecast their effects until 2025 shows that stricter regulation of the anthropogenic emissions is needed to reach the targeted PM2.5 concentration of 35 µg m−3 in 2025.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, H.; Zhu, B.; van der A, R.J.; Zhu, C.; de Leeuw, G.; Hou, X.; Gao, J. Natural and anthropogenic contributions to long-term variations of SO2, NO2, CO, and AOD over East China. Atmos. Res. 2019, 215, 284–293. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Chang, W.; Zhang, Y.; de Leeuw, G.; Schauer, J.J. Satellite Observations of PM2.5 Changes and Driving Factors Based Forecasting Over China 2000–2025. Remote Sens. 2020, 12, 2518. [Google Scholar] [CrossRef]
- Proestakis, E.; Amiridis, V.; Marinou, E.; Georgoulias, A.; Solomos, S.; Kazadzis, S.; Chimot, J.; Che, H.; Alexandri, G.; Binietoglou, I.; et al. Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP. Atmos. Chem. Phys. 2018, 18, 1337–1362. [Google Scholar] [CrossRef] [Green Version]
- De Leeuw, G.; Sogacheva, L.; Rodriguez, E.; Kourtidis, K.; Georgoulias, A.; Alexandri, G.; Amiridis, V.; Proestakis, E.; Marinou, E.; Xue, Y.; et al. Two decades of satellite observations of AOD over mainland China using ATSR-2, AATSR and MODIS/Terra: Data set evaluation and large-scale patterns. Atmos. Chem. Phys. 2018, 18, 1573–1592. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.J.; Liu, Y.Q.; Shu, L.F.; Zhang, Q. Wildfire Smoke Transport and Air Quality Impacts in Different Regions of China. Atmos. Basel 2020, 11, 941. [Google Scholar] [CrossRef]
- Lun, X.X.; Lin, Y.; Chai, F.H.; Fan, C.; Li, H.; Liu, J.F. Reviews of emission of biogenic volatile organic compounds (BVOCs) in Asia. J. Environ. Sci. 2020, 95, 266–277. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, X.M.; Zhao, T.L.; Gong, S.L.; Xu, X.D.; Li, Y.Q.; Luo, L.; Gui, K.; Wang, H.L.; Zheng, Y.; et al. A modelling study of the terrain effects on haze pollution in the Sichuan Basin. Atmos. Environ. 2019, 196, 77–85. [Google Scholar] [CrossRef]
- Watson, J.G.; Cao, J.; Wang, X.; Chow, J.C. PM2.5 pollution in China’s Guanzhong Basin and the USA’s San Joaquin Valley mega-regions. Faraday Discuss. 2021, 226, 255–289. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.N.; Tie, X.X.; Zhang, Q.; Liu, Q.; Li, X.; Gao, Y.; Zhao, D.L. Characteristics of heavy aerosol pollution during the 2012-2013 winter in Beijing, China. Atmos. Environ. 2014, 88, 83–89. [Google Scholar] [CrossRef]
- Cai, W.; Ke, L.; Liao, H.; Wang, H.; Wu, L. Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat. Clim. Chang. 2017, 7, 257–262. [Google Scholar] [CrossRef]
- Han, L.H.; Cheng, S.Y.; Zhuang, G.S.; Ning, H.B.; Wang, H.Y.; Wei, W.; Zhao, X.J. The changes and long-range transport of PM2.5 in Beijing in the past decade. Atmos. Environ. 2015, 110, 186–195. [Google Scholar] [CrossRef]
- Hou, X.; Zhu, B.; Kumar, K.R.; de Leeuw, G.; Lu, W.; Huang, Q.; Zhu, X. Establishment of Conceptual Schemas of Surface Synoptic Meteorological Situations Affecting Fine Particulate Pollution Across Eastern China in the Winter. J. Geophys. Res. Atmos. 2020, 125, e2020JD033153. [Google Scholar] [CrossRef]
- Zhu, J.L.; Liao, H.; Li, J.P. Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.Y.; Feng, T.; Tie, X.X.; Long, X.; Li, G.H.; Cao, J.J.; Zhou, W.J.; An, Z.S. Impact of Climate Change on Siberian High and Wintertime Air Pollution in China in Past Two Decades. Earths Future 2018, 6, 118–133. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Pozzer, A.; Poschl, U.; Fnais, M.; Haines, A.; Munzel, T. Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovasc. Res. 2020, 116, 1910–1917. [Google Scholar] [CrossRef]
- Sweerts, B.; Pfenninger, S.; Yang, S.; Folini, D.; van der Zwaan, B.; Wild, M. Estimation of losses in solar energy production from air pollution in China since 1960 using surface radiation data. Nat. Energy 2019, 4, 657–663. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, Y.H.; Shao, M.; Liu, X.L.; Zeng, L.M.; Cheng, C.L.; Xu, X.F. Quantitative relationship between visibility and mass concentration of PM2.5 in Beijing. J. Environ. Sci. 2006, 18, 475–481. [Google Scholar]
- Varotsos, C.; Tzanis, C.; Cracknell, A. The enhanced deterioration of the cultural heritage monuments due to air pollution. Environ. Sci. Pollut. Res. Int. 2009, 16, 590–592. [Google Scholar] [CrossRef]
- Christodoulakis, J.; Tzanis, C.; Varotsos, C.; Ferm, M.; Tidblad, J. Impacts of air pollution and climate on materials in Athens, Greece. Atmos. Chem. Phys. 2017, 17, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Krapivin, V.F.; Mkrtchan, F.A.; Varotsos, C.A.; Xue, Y. Operational Diagnosis of Arctic Waters with Instrumental Technology and Information Modeling. Water Air Soil Pollut. 2021, 232, 137. [Google Scholar] [CrossRef]
- Varotsos, C.; Krapivin, V. Microwave Remote Sensing Tools in Environmental Science; Springer International Publishing: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Van der A, R.; Mijling, B.; Ding, J.; Koukouli, M.; Liu, F.; Li, Q.; Mao, H.; Theys, N. Cleaning up the air: Effectiveness of air quality policy for SO2 and NOx emissions in China. Atmos. Chem. Phys. 2017, 17, 1775–1789. [Google Scholar] [CrossRef] [Green Version]
- Sogacheva, L.; de Leeuw, G.; Rodriguez, E.; Kolmonen, P.; Georgoulias, A.; Alexandri, G.; Kourtidis, K.; Proestakis, E.; Marinou, E.; Amiridis, V.; et al. Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations—Part 1: ATSR (1995–2011) and MODIS C6.1 (2000–2017). Atmos. Chem. Phys. 2018, 18, 11389–11407. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Zhao, C.; Yang, Y. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmos. Environ. 2020, 220, 117066. [Google Scholar] [CrossRef]
- Xue, Y.; Li, Y.; Guang, J.; Tugui, A.; She, L.; Qin, K.; Fan, C.; Che, Y.; Xie, Y.; Wen, Y.; et al. Hourly PM2.5 Estimation over Central and Eastern China Based on Himawari-8 Data. Remote Sens. 2020, 12, 855. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Li, Y.; Guang, J.; Li, Z.; Elnashar, A.; Allam, M.; de Leeuw, G. The Impact of the Control Measures during the COVID-19 Outbreak on Air Pollution in China. Remote Sens. 2020, 12, 1613. [Google Scholar] [CrossRef]
- Qiu, J. A Method to Determine Atmospheric Aerosol Optical Depth Using Total Direct Solar Radiation. J. Atmos. Sci. 1998, 55, 744–757. [Google Scholar] [CrossRef]
- Xu, X.; Qiu, J.; Xia, X.; Sun, L.; Min, M. Characteristics of atmospheric aerosol optical depth variation in China during 1993–2012. Atmos. Environ. 2015, 119, 82–94. [Google Scholar] [CrossRef]
- Norris, J.R.; Wild, M. Trends in aerosol radiative effects over China and Japan inferred from observed cloud cover, solar “dimming,” and solar “brightening”. J. Geophys. Res. Atmos. 2009, 114, 1–11. [Google Scholar] [CrossRef]
- Yang, S.; Wang, X.; Wild, M. Causes of “dimming” and “brightening” in China inferred from homogenized daily clear-sky and all sky in situ surface solar radiation records (1958–2016). J. Clim. 2019, 32, 5901–5913. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Xia, X.; Che, H.; Shi, H.; Chen, H.; Zhang, X.; Wang, P.; Goloub, P.; Holben, B. Advances in sunphotometer-measured aerosol optical properties and related topics in China: Impetus and perspectives. Atmos. Res. 2021, 249, 105286. [Google Scholar] [CrossRef]
- Che, H.; Zhang, X.; Chen, H.; Damiri, B.; Goloub, P.; Li, Z.; Zhang, X.; Wei, Y.; Zhou, H.; Dong, F.; et al. Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Che, H.; Zhang, X.Y.; Xia, X.; Goloub, P.; Holben, B.; Zhao, H.; Wang, Y.; Wang, H.; Blarel, L.; Damiri, B.; et al. Ground-based aerosol climatology of China: Aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmos. Chem. Phys. 2015, 15, 7619–7652. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Q.; Xu, H.; Li, K.T.; Li, D.H.; Xie, Y.S.; Li, L.; Zhang, Y.; Gu, X.F.; Zhao, W.; Tian, Q.J.; et al. Comprehensive Study of Optical, Physical, Chemical, and Radiative Properties of Total Columnar Atmospheric Aerosols over China: An Overview of Sun–Sky Radiometer Observation Network (SONET) Measurements. Bull. Am. Meteorol. Soc. 2018, 99, 739–755. [Google Scholar] [CrossRef]
- Xin, J.; Wang, Y.; Pan, Y.; Ji, D.; Liu, Z.; Wen, T.; Wang, Y.; Li, X.; Sun, Y.; Sun, J.; et al. The Campaign on Atmospheric Aerosol Research Network of China: CARE-China. Bull. Am. Meteorol. Soc. 2015, 96, 1137–1155. [Google Scholar] [CrossRef]
- Kokhanovsky, A.; de Leeuw, G. Satellite Aerosol Remote Sensing Over Land; Springer: Berlin/Heidelberg, Germany, 2009; pp. 388. ISBN 978-3-540-69397-0. [Google Scholar] [CrossRef]
- Ding, J.; van der A, R.J.; Mijling, B.; Jalkanen, J.-P.; Johansson, L.; Levelt, P.F. Maritime NOx Emissions Over Chinese Seas Derived from Satellite Observations. Geophys. Res. Lett. 2018, 45, 2031–2037. [Google Scholar] [CrossRef] [Green Version]
- Sogacheva, L.; Rodriguez, E.; Kolmonen, P.; Virtanen, T.; Saponaro, G.; de Leeuw, G.; Georgoulias, A.; Alexandri, G.; Kourtidis, K.; van der A, R. Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations—Part 2: AOD time series for 1995–2017 combined from ATSR ADV and MODIS C6.1 and AOD tendency estimations. Atmos. Chem. Phys. 2018, 18, 16631–16652. [Google Scholar] [CrossRef] [Green Version]
- Che, Y.; Guang, J.; de Leeuw, G.; Xue, Y.; Sun, L.; Che, H. Investigations into the development of a satellite-based aerosol climate data record using ATSR-2, AATSR and AVHRR data over north-eastern China from 1987 to 2012. Atmos. Meas. Tech. 2019, 12, 4091–4112. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lin, T.; Hong, J.; Wang, Y.; Shi, L.; Huang, Y.; Wu, X.; Zhou, H.; Zhang, J.; de Leeuw, G. Multi-dimensional satellite observations of aerosol properties and aerosol types over three major urban clusters in eastern China. Atmos. Chem. Phys. Discuss. 2021, 2021, 1–36. [Google Scholar] [CrossRef]
- Zhang, K.N.; de Leeuw, G.; Yang, Z.Q.; Chen, X.F.; Su, X.L.; Jiao, J.S. Estimating Spatio-Temporal Variations of PM2.5 Concentrations Using VIIRS-Derived AOD in the Guanzhong Basin, China. Remote Sens. 2019, 11, 2679. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; de Leeuw, G.; Arola, A.; Liu, S.; Liu, Y.; Li, Z.; Zhang, K. Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: Artificial neural network method. Remote Sens. Environ. 2020, 249, 112006. [Google Scholar] [CrossRef]
- Wang, J.; de Leeuw, G.; Niu, S.; Kang, H. Contrasting Aerosol Optical Characteristics and Source Regions During Summer and Winter Pollution Episodes in Nanjing, China. Remote Sens. 2019, 11, 1696. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; de Leeuw, G.; Yang, Z.; Chen, X.; Jiao, J. The Impacts of the COVID-19 Lockdown on Air Quality in the Guanzhong Basin, China. Remote Sens. 2020, 12, 3042. [Google Scholar] [CrossRef]
- Bauwens, M.; Compernolle, S.; Stavrakou, T.; Müller, J.-F.; van Gent, J.; Eskes, H.; Levelt, P.F.; van der A, R.; Veefkind, J.P.; Vlietinck, J.; et al. Impact of Coronavirus Outbreak on NO2 Pollution Assessed Using TROPOMI and OMI Observations. Geophys. Res. Lett. 2020, 47, e2020GL087978. [Google Scholar] [CrossRef]
- Ding, J.; van der A, R.J.; Eskes, H.J.; Mijling, B.; Stavrakou, T.; Geffen, J.H.G.M.; Veefkind, J.P. NOx emissions reduction and rebound in China due to the COVID-19 crisis. Geophys. Res. Lett. 2020, 47, e2020GL089912. [Google Scholar] [CrossRef]
- Christodoulakis, J.; Varotsos, C.A.; Cracknell, A.P.; Kouremadas, G.A. The deterioration of materials as a result of air pollution as derived from satellite and ground based observations. Atmos. Environ. 2018, 185, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Butler, T.; Crowley, J.; Dillon, T.; Fischer, H.; Ganzeveld, L.; Harder, H.; Lawrence, M.; Martinez, M.; Taraborrelli, D.; et al. Atmospheric oxidation capacity sustained by a tropical forest. Nature 2008, 452, 737–740. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; van der A, R.; Ding, J.; Weele, M.; Cheng, T. Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmos. Chem. Phys. 2020. [Google Scholar] [CrossRef]
- Laaksonen, A.; Kulmala, M.; Dowd, C.; Joutsensaari, J.; Vaattovaara, P.; Mikkonen, S.; Lehtinen, K.; Sogacheva, L.; Dal Maso, M.; Aalto, P.; et al. The role of VOC oxidation products in continental new particle formation. Atmos. Chem. Phys. 2008, 8, 2657–2665. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; de Leeuw, G.; van der A, R.; De Smedt, I.; Theys, N.; Van Roozendael, M.; Sogacheva, L.; Chai, W. Variations and photochemical transformations of atmospheric constituents in North China. Atmos. Environ. 2018, 189, 213–226. [Google Scholar] [CrossRef]
- Kulmala, M.; Dal Maso, M.; Mäkelä, J.; Pirjola, L.; Väkevä, M.; Aalto, P.; Miikkulainen, P.; HÄMeri, K.; O’Dowd, C. On the formation, growth and composition of nucleation mode particles. Tellus B 2003, 53, 479–490. [Google Scholar] [CrossRef]
- Kulmala, M.; Arola, A.; Nieminen, T.; Riuttanen, L.; Sogacheva, L.; de Leeuw, G.; Kerminen, V.-M.; Lehtinen, K. The first estimates of global nucleation mode aerosol concentrations based on satellite measurements. Atmos. Chem. Phys. 2011, 11, 10791–10801. [Google Scholar] [CrossRef] [Green Version]
- Sundström, A.-M.; Nikandrova, A.; Tabakova, K.; Nieminen, T.; Vakkari, V.; Laakso, L.; Beukes, J.; Arola, A.; Zyl, P.G.; Josipovic, M.; et al. Characterization of satellite-based proxies for estimating nucleation mode particles over South Africa. Atmos. Chem. Phys. 2015, 15, 4983–4996. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xue, Y.; Guang, J.; de Leeuw, G.; Self, R.; She, L.; Fan, C.; Xie, Y.; Chen, G. Spatial and temporal distribution characteristics of haze days and associated factors in China from 1973 to 2017. Atmos. Environ. 2019, 214, 116862. [Google Scholar] [CrossRef]
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W.A.; et al. A global model of natural volatile organic compound emissions. J. Geophys. Res. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Mijling, B.; van der A, R. Using daily satellite observations to estimate emissions of short-lived air pollutants on a mesoscopic scale. J. Geophys. Res. 2012, 117, D17302. [Google Scholar] [CrossRef]
- Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Nadège, B.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; et al. CHIMERE 2013: A model for regional atmospheric composition modelling. Geosci. Model Dev. 2013, 6, 981–1028. [Google Scholar] [CrossRef] [Green Version]
- Levelt, P.F.; Joiner, J.; Tamminen, J.; Veefkind, J.P.; Bhartia, P.K.; Stein Zweers, D.C.; Duncan, B.N.; Streets, D.G.; Eskes, H.; van der A, R.; et al. The Ozone Monitoring Instrument: Overview of 14 years in space. Atmos. Chem. Phys. 2018, 18, 5699–5745. [Google Scholar] [CrossRef] [Green Version]
- Boersma, K.; Eskes, H.; Richter, A.; De Smedt, I.; Lorente, A.; Beirle, S.; van Geffen, J.; Zara, M.; Peters, E.; Van Roozendael, M.; et al. Improving algorithms and uncertainty estimates for satellite NO2 retrievals: Results from the Quality Assurance for Essential Climate Variables (QA4ECV) project. Atmos. Meas. Tech. Discuss. 2018, 11, 6651–6678. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; van der A, R.; Mijling, B.; Levelt, P. Space-based NOx emission estimates over remote regions improved in DECSO. Atmos. Meas. Tech. 2017, 10, 925–938. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Miyazaki, K.; van der A, R.; Mijling, B.; Kurokawa, J.-I.; Cho, S.; Janssens-Maenhout, G.; Zhang, Q.; Liu, F.; Levelt, P. Intercomparison of NOx emission inventories over East Asia. Atmos. Chem. Phys. 2017, 17, 10125–10141. [Google Scholar] [CrossRef] [Green Version]
- Theys, N.; De Smedt, I.; van Gent, J.; Danckaert, T.; Wang, T.; Hendrick, F.; Stavrakou, T.; Bauduin, S.; Clarisse, L.; Li, C.; et al. Sulfur dioxide vertical column DOAS retrievals from the Ozone Monitoring Instrument: Global observations and comparison to ground-based and satellite data. J. Geophys. Res. Atmos. 2015, 120, 2470–2491. [Google Scholar] [CrossRef]
- Bai, J.; Guenther, A.; Turnipseed, A.; Duhl, T.; Greenberg, J. Seasonal and interannual variations in whole-ecosystem BVOC emissions from a subtropical plantation in China. Atmos. Environ. 2017, 161, 176–190. [Google Scholar] [CrossRef]
- Kolmonen, P.; Sogacheva, L.; Virtanen, T.H.; de Leeuw, G.; Kulmala, M. The ADV/ASV AATSR aerosol retrieval algorithm: Current status and presentation of a full-mission AOD dataset. Int. J. Digit. Earth 2016, 9, 545–561. [Google Scholar] [CrossRef]
- Sogacheva, L.; Kolmonen, P.; Virtanen, T.; Rodriguez, E.; Saponaro, G.; de Leeuw, G. Post-processing to remove residual clouds from aerosol optical depth retrieved using the Advanced Along Track Scanning Radiometer. Atmos. Meas. Tech. 2017, 10, 491–505. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.H.; Hao, N. The relationships between biogenic volatile organic compound (BVOC) emissions and atmospheric formaldehyde in a subtropical Pinus plantation in China. Ecol. Environ. Sci. 2018, 27, 991–999. [Google Scholar]
- De Leeuw, G.; Holzer-Popp, T.; Bevan, S.; Davies, W.H.; Descloitres, J.; Grainger, R.G.; Griesfeller, J.; Heckel, A.; Kinne, S.; Kluser, L.; et al. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sens. Environ. 2015, 162, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Holzer-Popp, T.; de Leeuw, G.; Griesfeller, J.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J.; Graigner, R.; et al. Aerosol retrieval experiments in the ESA Aerosol_cci project. Atmos. Meas. Tech. 2013, 6, 1919–1957. [Google Scholar] [CrossRef] [Green Version]
- Popp, T.; de Leeuw, G.; Bingen, C.; Bruhl, C.; Capelle, V.; Chedin, A.; Clarisse, L.; Dubovik, O.; Grainger, R.; Griesfeller, J.; et al. Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci). Remote Sens. 2016, 8, 421. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; He, X.; de Leeuw, G.; Mei, L.; Che, Y.; Rippin, W.; Guang, J.; Hu, Y. Long-time series aerosol optical depth retrieval from AVHRR data over land in North China and Central Europe. Remote Sens. Environ. 2017, 198, 471–489. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J.S. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J. Geophys Res.-Atmos 2011, 116. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.J.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef] [Green Version]
- Bilal, M.; Qiu, Z.; Nichol, J.E.; Mhawish, A.; Ali, M.A.; Khedher, K.M.; Leeuw, G.d.; Yu, W.; Tiwari, P.; Nazeer, M.; et al. Uncertainty in Aqua-MODIS Aerosol Retrieval Algorithms During COVID-19 Lockdown. IEEE Geosci. Remote Sens. Lett. 2021, 1–5. [Google Scholar] [CrossRef]
- Mei, L.; Xue, Y.; de Leeuw, G.; Holzer-Popp, T.; Guang, J.; Li, Y.; Yang, L.; Xu, H.; Xu, X.; Li, C.; et al. Retrieval of aerosol optical depth over land based on a time series technique using MSG/SEVIRI data. Atmos. Chem. Phys. 2012, 12, 9167–9185. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Z.; Chen, Y.; de Leeuw, G.; Zhang, C.; Xie, Y.; Li, K. Improved inversion of aerosol components in the atmospheric column from remote sensing data. Atmos. Chem. Phys. 2020, 20, 12795–12811. [Google Scholar] [CrossRef]
- Ferm, M.; De Santis, F.; Varotsos, C. Nitric acid measurements in connection with corrosion studies. Atmos. Environ. 2005, 39, 6664–6672. [Google Scholar] [CrossRef]
- Ferm, M.; Watt, J.; O’Hanlon, S.; De Santis, F.; Varotsos, C. Deposition measurement of particulate matter in connection with corrosion studies. Anal. Bioanal. Chem. 2006, 384, 1320–1330. [Google Scholar] [CrossRef] [PubMed]
- Tzanis, C.; Varotsos, C.; Ferm, M.; Christodoulakis, J.; Assimakopoulos, M.N.; Efthymiou, C. Nitric acid and particulate matter measurements at Athens, Greece, in connection with corrosion studies. Atmos. Chem. Phys. 2009, 9, 8309–8316. [Google Scholar] [CrossRef] [Green Version]
- Tzanis, C.; Varotsos, C.; Christodoulakis, J.; Tidblad, J.; Ferm, M.; Ionescu, A.; Lefèvre, R.-A.; Theodorakopoulou, K.; Kreislova, K. On the corrosion and soiling effects on materials by air pollution in Athens, Greece. Atmos. Chem. Phys. 2011, 11, 12039–12048. [Google Scholar] [CrossRef] [Green Version]
- Kucera, V.; Tidblad, J.; Kreislova, K.; Knotkova, D.; Faller, M.; Reiss, D.; Snethlage, R.; Yates, T.; Henriksen, J.; Schreiner, M.; et al. UN/ECE ICP Materials Dose-response Functions for the Multi-pollutant Situation. Water Air Soil Pollut. Focus 2007, 7, 249–258. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Q.; van der A, R.; Zheng, B.; Tong, D.; Yan, L.; Zheng, Y.; He, K. Recent reduction in NO x emissions over China: Synthesis of satellite observations and emission inventories. Environ. Res. Lett. 2016, 11, 114002. [Google Scholar] [CrossRef] [Green Version]
- Orlando, J.J.; Noziere, B.; Tyndall, G.S.; Orzechowska, G.E.; Paulson, S.E.; Rudich, Y. Product studies of the OH- and ozone-initiated oxidation of some monoterpenes. J. Geophys. Res. Atmos. 2000, 105, 11561–11572. [Google Scholar] [CrossRef]
- Stavrakou, T.; Müller, J.F.; Bauwens, M.; De Smedt, I.; Lerot, C.; Van Roozendael, M.; Coheur, P.F.; Clerbaux, C.; Boersma, K.; van der A, R.; et al. Substantial Underestimation of Post-Harvest Burning Emissions in the North China Plain Revealed by Multi-Species Space Observations. Sci. Rep. 2016, 6, 32307. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Gong, Y.; Li, Y.; Lu, D.; Zhang, H. Population distribution and urbanization on both sides of the Hu Huanyong Line: Answering the Premier’s question. J. Geogr. Sci. 2016, 26, 1593–1610. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Wang, J.; Ren, C.; Nie, W. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl. Sci. Rev. 2020, 8, nwaa137. [Google Scholar] [CrossRef]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.; Li, G.; Seinfeld, J. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, eabb7431. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.; Wood, R. Limited Regional Aerosol and Cloud Microphysical Changes Despite Unprecedented Decline in Nitrogen Oxide Pollution During the February 2020 COVID-19 Shutdown in China. Geophys. Res. Lett. 2020, 47, e2020GL088913. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sens. Environ. 2015, 160, 252–262. [Google Scholar] [CrossRef]
- Ding, L.; Kai, Q.; Wu, L.; Mei, L.; de Leeuw, G.; Xue, Y.; Shi, Y.; Li, Y. Himawari-8-Derived Aerosol Optical Depth Using an Improved Time Series Algorithm Over Eastern China. Remote Sens. 2020, 12, 978. [Google Scholar] [CrossRef]
- JAXA. JAXA Himawari Monitor Aerosol Products; Earth Observation Research Center (EORC): Tsukuba, Japan, 2019. [Google Scholar]
- Wang, H.; Li, J.; Peng, Y.; Zhang, M.; Che, H.; Zhang, X. The impacts of the meteorology features on PM2.5 levels during a severe haze episode in central-east China. Atmos. Environ. 2019, 197, 177–189. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Qie, L.; Xie, Y.; Hou, W.; Leng, L. Retrieval of aerosol fine-mode fraction over China from satellite multiangle polarized observations: Validation and comparison. Atmos. Meas. Tech. 2021, 14, 1655–1672. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley and Sons, Inc.: New York, NY, USA, 1998; ISBN 0-471-17815-2. [Google Scholar]
- Fried, A.; McKeen, S.; Sewell, S.; Harder, J.; Henry, B.; Goldan, P.; Kuster, W.; Williams, E.; Baumann, K.; Shetter, R.; et al. Photochemistry of formaldehyde during the 1993 Tropospheric OH Photochemistry Experiment. J. Geophys. Res. 1997, 102, 6283–6296. [Google Scholar] [CrossRef]
- Fan, C.; Li, Z.; Li, Y.; Dong, J.; van der A, R.; de Leeuw, G. Variability of NO2 concentrations over China and effect on air quality derived from satellite and ground-based observations. Atmos. Chem. Phys. 2021, 21, 7723–7748. [Google Scholar] [CrossRef]
Satellite Data | ||||
Type of Data | Species | Instrument | Satellite | Period Available |
Aerosol | AOD | ATSR-2 | ERS-2 | 1995–2003 |
AATSR | ENVISAT | 2002–2012 | ||
AVHRR | Several platforms | 1983–present | ||
MODIS | Terra | 2000–present | ||
Aqua | 2002–present | |||
VIIRS | S-NPP | 2011–present | ||
AOD Aerosol type Vertical profile | CALIOP | CALIPSO | 2006–present | |
Trace gas | NO2, SO2 | OMI | Aura | 2004–present |
TROPOMI | Sentinel-5 | 2017–present | ||
Temperature | MODIS | Terra/Aqua | 1999/2002–present | |
Humidity | AIRS | Aqua | 2002–present | |
Ground-Based Data | ||||
Type of data | Species | Data source | Period available | |
Aerosol | PM2.5 | MEE AQ monitoring network | 2013–present | |
Rp1400a | Xinglong | 2008–present | ||
AOD, AE *, and other retrieved aerosol properties | Sun Photometer networks: AERONET (public) CARSNET SONET CARE-China | Dates vary by site | ||
Trace gases | NO, NO2, SO2, O3 | Gas analyzer | Xinglong | 2005–present |
BVOCs | REA, GC-FID/MS | Typical forests | Dates vary by site | |
Meteorological Data | ||||
Solar radiation | Global, direct, diffuse, UV, etc. | Solar radiation sensors | Xinglong | 2005–present |
Temperature, humidity, wind speed | Weather station | Xinglong | 2006–present |
Site Name | Atmospheric Corrosion Athens Station (ACAS) |
---|---|
Country, region | Greece, Athens |
Atmosphere | Urban traffic |
Location (GPS) | 37°59′16″N, 23°43′39″E |
Altitude | 90 m |
Address | Aristotelous 17, 104 33, Athens, Greece |
Description | Roof of a 7-floor building located near the centre of Athens, capital of Greece, with about 5 million inhabitants. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Leeuw, G.; van der A, R.; Bai, J.; Xue, Y.; Varotsos, C.; Li, Z.; Fan, C.; Chen, X.; Christodoulakis, I.; Ding, J.; et al. Air Quality over China. Remote Sens. 2021, 13, 3542. https://doi.org/10.3390/rs13173542
de Leeuw G, van der A R, Bai J, Xue Y, Varotsos C, Li Z, Fan C, Chen X, Christodoulakis I, Ding J, et al. Air Quality over China. Remote Sensing. 2021; 13(17):3542. https://doi.org/10.3390/rs13173542
Chicago/Turabian Stylede Leeuw, Gerrit, Ronald van der A, Jianhui Bai, Yong Xue, Costas Varotsos, Zhengqiang Li, Cheng Fan, Xingfeng Chen, Ioannis Christodoulakis, Jieying Ding, and et al. 2021. "Air Quality over China" Remote Sensing 13, no. 17: 3542. https://doi.org/10.3390/rs13173542
APA Stylede Leeuw, G., van der A, R., Bai, J., Xue, Y., Varotsos, C., Li, Z., Fan, C., Chen, X., Christodoulakis, I., Ding, J., Hou, X., Kouremadas, G., Li, D., Wang, J., Zara, M., Zhang, K., & Zhang, Y. (2021). Air Quality over China. Remote Sensing, 13(17), 3542. https://doi.org/10.3390/rs13173542