Integrated Analysis of the Combined Risk of Ground Subsidence, Sea Level Rise, and Natural Hazards in Coastal and Delta River Regions
Abstract
:1. Introduction
2. Project, Subprojects, EO, and Other Data Utilization
2.1. List of SubProjects and Teams
2.2. Description and Summary Table of EO and Other Data Utilized
3. Subprojects’ Research and Approach
3.1. Detection and Interpretation of Time Evolution of Costal Environments through Integrated DInSAR, GPS and Geophysical Surveys
3.1.1. Research Aims
3.1.2. Research Approach
Multi-Temporal DInSAR Technologies and SBAS Method
Data Merging Techniques
Novel DInSAR Processing Scheme Based on Multi-Grid Phase Unwrapping Approaches
3.2. Derivation of Storm Surge-Induced Submerged Area and Ocean Wave Field Using Satellite Images and Data in Coastal Waters
3.2.1. Research Aims
3.2.2. Research Approach
3.3. Projection of Sea Level Rise and Potential Submerged Area in Coastal Regions
3.3.1. Research Aims
3.3.2. Research Approach
4. Research Results and Conclusions
4.1. Detection and Interpretation of Time Evolution of Costal Environments through Integrated DInSAR, GPS, and Geophysical Surveys
4.1.1. Results
The 2015–2016 Ground Displacements of the Shanghai Coastal Area Inferred from a Combined CSK/Sentinel-1 DInSAR Analysis
On the Effects of InSAR Temporal Decorrelation and Its Implications for Land Cover Classification: The Case of the Ocean-Reclaimed Lands of the Shanghai Megacity
Generation of Long-Term InSAR Ground Displacement Time-Series through a Novel Multi-Sensor Data Merging Technique
On the Characterization and Forecasting of Ground Displacements of Ocean-Reclaimed Lands
East-West and Up-Down Ground Displacement Time Series of the Saint Petersburg Coastal Region
Potential Inundation Areas of Shanghai
Flood Risks in Sinking Delta Cities
Multi-Grid Phase Unwrapping Methods
4.1.2. Subproject Conclusions
- (I)
- The 2015–2016 ground displacements of the Shanghai coastal area inferred from a combined COSMO-SkyMed/Sentinel-1 DInSAR analysis [26]
- (II)
- On the effects of InSAR temporal decorrelation and its implications for land cover classification: the case of the ocean-reclaimed lands of the Shanghai megacity [27]
- (III)
- Generation of long-term InSAR ground displacement time-series through a novel multi-sensor data merging technique [15]
- (IV)
- On the characterization and forecasting of ground displacements of ocean-reclaimed lands [16]
- (V)
- Investigation of ground displacement in Saint Petersburg, Russia, using multiple-track differential synthetic aperture radar interferometry [17]
- (VI)
- Long-term flood-hazard modeling for coastal areas using InSAR measurements and a hydrodynamic model: The case study of Lingang New City, Shanghai [18]
- (VII)
- Flood risks in sinking delta cities [19]
4.2. Derivation of Storm Surge-Induced Submerged Area and Ocean Wave Fields Using Satellite Images and In Situ Coastal Data
4.2.1. Results
4.2.2. Subproject Conclusions
4.3. Projection of Sea Level Rise and Potential Submerged Area in Coastal Regions
4.3.1. Results
4.3.2. Subproject Conclusions
5. Main Conclusions and Projections of Project
- (i)
- New methods are being developed for the efficient processing of large-swath InSAR data and the combination of ground-based and satellite-based InSAR measurements, especially in disaster-prone coastal areas. In this framework, the joint utilization of SAR data acquired at different polarizations, wavelengths and illumination angles will become more and more prevailing with the advent of new global-scale SAR missions, for instance, the U.S.-India NiSAR [72,73] and the Argentinian SAOCOM [74] sensors constellations operating at L-band, which will indeed trigger further improvements of the InSAR/SAR technology.
- (ii)
- Using SAR satellite swarms mounted on drones [75,76] and managed by regional authorities to help image a relatively small area on the ground, especially in coastal regions, through different viewing illumination angles. These configurations will help in better reconstructing the 3D profiles of the terrain displacement. In addition, geosynchronous SAR satellites [77] offer the possibility to observe in extensive continuity regions on Earth (at the continental scale) and collected tons of data to be processed and interpreted at suitable times.
- (iii)
- Development and application of artificial intelligence (AI) methodologies [78] to extract useful information from tons of processed InSAR data related to some specific regions of Earth’s surface. In particular, there is a growing interest in the SAR community in the application of AI methods for a variety of tasks, such as (1) object detection, (2) terrain surface classification, (3) surface displacement classification, (4) parameter inversion, and (5) de-speckling. All of these approaches will benefit from the availability of SAR data acquired with enhanced time repetition frequencies in the areas of interest.
- (iv)
- Enhancing the knowledge of physical mechanisms responsible for land changes utilizing coherent SAR change detection methods relying on microwave and optical EO data. The study of the effects on the small and global scale of the present-day global climate changes will likely be further enriched by the improved performance of new radar satellite. Moreover, studies on overpopulation, human mass movements, the effects of epidemics on the Earth environment, and the interrelations between the different sources of environmental changes are expected to increase in number and relevance in the following years. In this context, the SAR technology and the differential SAR interferometry methods, which have been developed over almost the last 25 years, are expected to evolve in new directions to extract new pieces of information that are still hidden both in single radar microwave image and large sequences of data (the big data paradigm) (see for instance [78,79]).
- (v)
- Enhancing the knowledge of tidal evolution and sea level rise patterns and mechanisms in coastal zones, especially in delta regions of interest, through the utilization of next-generation satellite altimeters such as the recently launched Sentinel-6 platform and the Chinese Haiyang (HY) instrument series.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gornitz, V. Global coastal hazards from future sea level rise. Glob. Planet. Chang. 1991, 3, 379–398. [Google Scholar] [CrossRef]
- Wdowinski, S.; Bray, R.; Kirtman, B.P.; Wu, Z. Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida. Ocean Coast. Manag. 2016, 126, 1–8. [Google Scholar] [CrossRef]
- Pethick, J.; Orford, J.D. Rapid rise in effective sea-level in southwest Bangladesh: Its causes and contemporary rates. Glob. Planet. Chang. 2013, 111, 237–245. [Google Scholar] [CrossRef]
- Rani, N.N.V.S.; Satyanarayana, A.N.V.; Bhaskaran, P.K. Coastal vulnerability assessment studies over India: A review. Nat. Hazards 2015, 77, 405–428. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Feyen, L. Extreme sea levels on the rise along Europe’s coasts. Earth Futur. 2017, 5, 304–323. [Google Scholar] [CrossRef]
- Janekovic, I.; Mihanović, H.; Vilibić, I.; Tudor, M. Extreme cooling and dense water formation estimates in open and coastal regions of the Adriatic Sea during the winter of 2012. J. Geophys. Res. Oceans 2014, 119, 3200–3218. [Google Scholar] [CrossRef]
- Lambeck, K.; Antonioli, F.; Purcell, A.; Silenzi, S. Sea-level change along the Italian coast for the past 10,000 yr. Quat. Sci. Rev. 2004, 23, 1567–1598. [Google Scholar] [CrossRef]
- Hu, J.; Shi, B.; Inyang, H.I.; Chen, J.; Sui, Z. Patterns of subsidence in the lower Yangtze Delta of China: The case of the Suzhou-Wuxi-Changzhou Region. Environ. Monit. Assess. 2008, 153, 61–72. [Google Scholar] [CrossRef]
- Zhao, Q.; Lin, H.; Gao, W.; Zebker, H.A.; Chen, A.; Yeung, K. InSAR detection of residual settlement of an ocean reclamation engineering project: A case study of Hong Kong International Airport. J. Oceanogr. 2011, 67, 415–426. [Google Scholar] [CrossRef]
- Tang, Y.-Q.; Yang, P.; Zhao, S.-K.; Zhang, X.; Wang, J.-X. Characteristics of deformation of saturated soft clay under the load of Shanghai subway line No. 2. Environ. Earth Sci. 2007, 54, 1197–1203. [Google Scholar] [CrossRef]
- Grez, P.W.; Aguirre, C.; Farías, L.; Contreras-López, M.; Masotti, Í. Evidence of climate-driven changes on atmospheric, hydrological, and oceanographic variables along the Chilean coastal zone. Clim. Chang. 2020, 163, 633–652. [Google Scholar] [CrossRef]
- Devlin, A.T.; Jay, D.A.; Talke, S.A.; Zaron, E.D.; Pan, J.; Lin, H. Coupling of sea level and tidal range changes, with implications for future water levels. Sci. Rep. 2017, 7, 17021. [Google Scholar] [CrossRef]
- Feng, X.; Tsimplis, M.; Woodworth, P.L. Nodal variations and long-term changes in the main tides on the coasts of China. J. Geophys. Res. Oceans 2015, 120, 1215–1232. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Lai, W.; Devlin, A.T. Channel-Trapped Convergence and Divergence of Lateral Velocity in the Pearl River Estuary: Influence of Along-Estuary Variations of Channel Depth and Width. J. Geophys. Res. Oceans 2020, 125, e2019JC015369. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, G.; Wang, Q.; Yang, T.; Liu, M.; Gao, W.; Falabella, F.; Mastro, P.; Pepe, A. Generation of long-term InSAR ground displacement time-series through a novel multi-sensor data merging technique: The case study of the Shanghai coastal area. ISPRS J. Photogramm. Remote Sens. 2019, 154, 10–27. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, Q.; Tang, M.; Calò, F.; Zamparelli, V.; Falabella, F.; Liu, M.; Pepe, A. On the Characterization and Forecasting of Ground Displacements of Ocean-Reclaimed Lands. Remote Sens. 2020, 12, 2971. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Q.; Ding, J.; Fedotov, A.A.; Badenko, V.; Liu, M.; Pepe, A. Investigation of the ground displacement in Saint Petersburg, Russia, using multiple-track differential synthetic aperture radar interferometry. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102050. [Google Scholar] [CrossRef]
- Yin, J.; Zhao, Q.; Yu, D.; Lin, N.; Kubanek, J.; Ma, G.; Liu, M.; Pepe, A. Long-term flood-hazard modeling for coastal areas using InSAR measurements and a hydrodynamic model: The case study of Lingang New City, Shanghai. J. Hydrol. 2019, 571, 593–604. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Jonkman, S.; Lin, N.; Yu, D.; Aerts, J.; Wilby, R.; Pan, M.; Wood, E.; Bricker, J.; Ke, Q.; et al. Flood Risks in Sinking Delta Cities: Time for a Reevaluation? Earth Futur. 2020, 8, e2020EF001614. [Google Scholar] [CrossRef]
- Mastro, P.; Falabella, F.; Pepe, A. An Adaptive Statistical Multi-grid DInSAR Technique for Studying Multi-scale Earth Surface Deformation Phenomena. In Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 32–35. [Google Scholar] [CrossRef]
- Pramudya, F.S.; Pan, J.; Devlin, A. Estimation of Significant Wave Height of Near-Range Traveling Ocean Waves Using Sentinel-1 SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1067–1075. [Google Scholar] [CrossRef]
- Lei, X.; Pan, J.; Devlin, A. An ultraviolet to visible scheme to estimate chromophoric dissolved organic matter absorption in a Case-2 water from remote sensing reflectance. Front. Earth Sci. 2020, 14, 384–400. [Google Scholar] [CrossRef]
- Pepe, A. Multi-Temporal Small Baseline Interferometric SAR Algorithms: Error Budget and Theoretical Performance. Remote Sens. 2021, 13, 557. [Google Scholar] [CrossRef]
- Pepe, A.; Bonano, M.; Zhao, Q.; Yang, T.; Wang, H. The Use of C-/X-Band Time-Gapped SAR Data and Geotechnical Models for the Study of Shanghai’s Ocean-Reclaimed Lands through the SBAS-DInSAR Technique. Remote Sens. 2016, 8, 911. [Google Scholar] [CrossRef] [Green Version]
- Pepe, A.; Solaro, G.; Calo, F.; Dema, C. A Minimum Acceleration Approach for the Retrieval of Multiplatform InSAR Deformation Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3883–3898. [Google Scholar] [CrossRef]
- Yu, L.; Yang, T.; Zhao, Q.; Liu, M.; Pepe, A. The 2015–2016 Ground Displacements of the Shanghai Coastal Area Inferred from a Combined COSMO-SkyMed/Sentinel-1 DInSAR Analysis. Remote Sens. 2017, 9, 1194. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.; Zhao, Q.; Wang, Q.; Liu, M. On the Effects of InSAR Temporal Decorrelation and Its Implications for Land Cover Classification: The Case of the Ocean-Reclaimed Lands of the Shanghai Megacity. Sensors 2018, 18, 2939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Gerhard, K.; Alberto, M.; Hauke, F.; Irena, H.; Marian, W.; Marwan, Y.; Manfred, Z. TanDEM-X: A satellite formation for high-resolution radar interferometry. Proc. Int. Radar Symp. 2007, 45, 3317–3341. [Google Scholar]
- Kubanek, J.; Westerhaus, M.; Schenk, A.; Aisyah, N.; Brotopuspito, K.S.; Heck, B. Volumetric change quantification of the 2010 Merapi eruption using TanDEM-X InSAR. Remote Sens. Environ. 2015, 164, 16–25. [Google Scholar] [CrossRef]
- Kubanek, J.; Richardson, J.; Charbonnier, S.J.; Connor, L.J. Lava flow mapping and volume calculations for the 2012–2013 Tolbachik, Kamchatka, fissure eruption using bistatic TanDEM-X InSAR. Bull. Volcanol. 2015, 77, 106. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, L16302. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Falabella, F.; Serio, C.; Masiello, G.; Zhao, Q.; Pepe, A. A Multigrid InSAR Technique for Joint Analyses at Single-Look and Multi-Look Scales. IEEE Geosci. Remote Sens. Lett. 2021, 1–5. [Google Scholar] [CrossRef]
- Xiong, T.; Zhang, W.; Boerner, W. Phase unwrapping method based on image segmentation. Int. J. Remote Sens. 2008, 29, 4871–4877. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Mora, O.; Mallorqui, J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric sar images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- Tebaldini, S.; Monti-Guarnieri, A.V. On the Role of Phase Stability in SAR Multibaseline Applications. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2953–2966. [Google Scholar] [CrossRef]
- Jiang, M.; Ding, X.; Hanssen, R.; Malhotra, R.; Chang, L. Fast Statistically Homogeneous Pixel Selection for Covariance Matrix Estimation for Multitemporal InSAR. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1213–1224. [Google Scholar] [CrossRef]
- Parizzi, A.; Brcic, R. Adaptive InSAR Stack Multilooking Exploiting Amplitude Statistics: A Comparison Between Different Techniques and Practical Results. IEEE Geosci. Remote Sens. Lett. 2010, 8, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Monti-Guarnieri, A.V.; Tebaldini, S. On the Exploitation of Target Statistics for SAR Interferometry Applications. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3436–3443. [Google Scholar] [CrossRef]
- Zhao, Q.; Pepe, A.; Gao, W.; Lu, Z.; Bonano, M.; He, M.L.; Wang, J.; Tang, X. A DInSAR Investigation of the Ground Settlement Time Evolution of Ocean-Reclaimed Lands in Shanghai. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1763–1781. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Devlin, A.T.; Jay, D.A.; Zaron, E.D.; Talke, S.A.; Pan, J.; Lin, H. Tidal Variability Related to Sea Level Variability in the Pacific Ocean. J. Geophys. Res. Oceans 2017, 122, 8445–8463. [Google Scholar] [CrossRef]
- Devlin, A.T.; Pan, J.; Lin, H. Tidal variability in the Hong Kong region. Ocean Sci. 2019, 15, 853–864. [Google Scholar] [CrossRef] [Green Version]
- Devlin, A.T.; Pan, J.; Lin, H. Multi-Timescale Analysis of Tidal Variability in the Indian Ocean Using Ensemble Empirical Mode Decomposition. J. Geophys. Res. Oceans 2020, 125, e2020JC016604. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. Sea-Level Rise from the Late 19th to the Early 21st Century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef] [Green Version]
- Hamlington, B.D.; Frederikse, T.; Nerem, R.S.; Fasullo, J.T.; Adhikari, S. Investigating the Acceleration of Regional Sea Level Rise During the Satellite Altimeter Era. Geophys. Res. Lett. 2020, 47, e2019GL086528. [Google Scholar] [CrossRef]
- Domingues, C.M.; Church, J.A.; White, N.J.; Gleckler, P.J.; Wijffels, S.; Barker, P.M.; Dunn, J.R. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 2008, 453, 1090–1093. [Google Scholar] [CrossRef]
- Merrifield, M.A.; Merrifield, S.T.; Mitchum, G.T. An Anomalous Recent Acceleration of Global Sea Level Rise. J. Clim. 2009, 22, 5772–5781. [Google Scholar] [CrossRef] [Green Version]
- Jay, D.A. Evolution of tidal amplitudes in the eastern Pacific Ocean. Geophys. Res. Lett. 2009, 36, L04603. [Google Scholar] [CrossRef] [Green Version]
- Ray, R.D. Secular changes in the solar semidiurnal tide of the western North Atlantic Ocean. Geophys. Res. Lett. 2009, 36, L19601. [Google Scholar] [CrossRef] [Green Version]
- Haigh, I.D.; Pickering, M.D.; Green, J.A.M.; Arbic, B.K.; Arns, A.; Dangendorf, S.; Hill, D.F.; Horsburgh, K.; Howard, T.; Idier, D.; et al. The Tides They Are A-Changing: A Comprehensive Review of Past and Future Nonastronomical Changes in Tides, Their Driving Mechanisms, and Future Implications. Rev. Geophys. 2020, 58, e2018RG000636. [Google Scholar] [CrossRef] [Green Version]
- Holleman, R.; Stacey, M.T. Coupling of Sea Level Rise, Tidal Amplification, and Inundation. J. Phys. Oceanogr. 2014, 44, 1439–1455. [Google Scholar] [CrossRef]
- Familkhalili, R.; Talke, S.A. The effect of channel deepening on tides and storm surge: A case study of Wilmington, NC. Geophys. Res. Lett. 2016, 43, 9138–9147. [Google Scholar] [CrossRef] [Green Version]
- Colosi, J.A.; Munk, W. Tales of the Venerable Honolulu Tide Gauge. J. Phys. Oceanogr. 2006, 36, 967–996. [Google Scholar] [CrossRef]
- Arns, A.; Dangendorf, S.; Jensen, J.; Talke, S.; Bender, J.; Pattiaratchi, C. Sea-level rise induced amplification of coastal protection design heights. Sci. Rep. 2017, 7, 40171. [Google Scholar] [CrossRef] [PubMed]
- Sweet, W.V.; Park, J. From the extreme to the mean: Acceleration and tipping points of coastal inundation from sea level rise. Earth Futur. 2014, 2, 579–600. [Google Scholar] [CrossRef]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Leffler, K.E.; Jay, D.A. Enhancing tidal harmonic analysis: Robust (hybrid L1/L2) solutions. Cont. Shelf Res. 2009, 29, 78–88. [Google Scholar] [CrossRef]
- Cartwright, D.E.; Tayler, R.J. New Computations of the Tide-generating Potential. Geophys. J. R. Astron. Soc. 1971, 23, 45–73. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Sweet, W.; Zervas, C.; Gill, S.; Park, J. Hurricane sandy inundation probabilities today and tomorrow. Bull. Am. Meteorol. Soc. 2013, 94, S17–S20. [Google Scholar]
- Church, J.; Clark, P.; Cazenave, A.; Gregory, J.; Jevrejeva, S.; Levermann, A.; Merrifield, M.; Milne, G.; Nerem, R.S.; Nunn, P.; et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Church, J. Sea Level Change. Available online:http://drs.nio.org/drs/handle/2264/4605 (accessed on 23 August 2021).
- Smith, I. Smith’s Elements of Soil Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Plant, G.W. Geology, surveying, reclamation settlement. Site Prep. New Hong Kong Int. Airpt. 1998, 1, 515–517. [Google Scholar]
- Yu, D.; Lane, S.N. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1: Mesh resolution effects. Hydrol. Process. 2005, 20, 1541–1565. [Google Scholar] [CrossRef]
- Yu, D.; Lane, S.N. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 2: Development of a sub-grid-scale treatment. Hydrol. Process. 2005, 20, 1567–1583. [Google Scholar] [CrossRef]
- Fan, D.; Wu, Y.; Zhang, Y.; Burr, G.; Huo, M.; Li, J. South Flank of the Yangtze Delta: Past, present, and future. Mar. Geol. 2017, 392, 78–93. [Google Scholar] [CrossRef]
- Rosen, P.; Hensley, S.; Shaffer, S.; Edelstein, W.; Kim, Y.; Centre, S.A. The NASA-ISRO SAR (NISAR) Mission dual-band Radar instrument preliminary design. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3832–3835. [Google Scholar]
- Rosen, P.A.; Kim, Y.; Kumar, R.; Misra, T.; Bhan, R.; Sagi, V.R. Global persistent SAR sampling with the NASA-ISRO SAR (NISAR) mission. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017. [Google Scholar] [CrossRef]
- Euillades, P.A.; Euillades, L.D.; Azcueta, M.; Sosa, G.J. SAOCOM 1A Interferometric Error Model and Analysis. Proceedings of Fringe 2015: Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR Workshop, Edinburgh, UK, 7–31 August 2015. [Google Scholar] [CrossRef] [Green Version]
- Li, C.J.; Ling, H. Synthetic aperture radar imaging using a small consumer drone. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 685–686. [Google Scholar] [CrossRef]
- Oré, G.; Alcântara, M.S.; Góes, J.A.; Oliveira, L.P.; Yepes, J.; Teruel, B.; de Castro, V.L.B.; Bins, L.S.; Castro, F.; Luebeck, D.; et al. Crop Growth Monitoring with Drone-Borne DInSAR. Remote Sens. 2020, 12, 615. [Google Scholar] [CrossRef] [Green Version]
- Monti-Guarnieri, A.V.; Broquetas, A.; Recchia, A.; Rocca, F.; Ruiz-Rodon, J. Advanced Radar Geosynchronous Observation System: ARGOS. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1406–1410. [Google Scholar] [CrossRef] [Green Version]
- Cigna, F.; Tapete, D. Sentinel-1 Big Data Processing with P-SBAS InSAR in the Geohazards Exploitation Platform: An Experiment on Coastal Land Subsidence and Landslides in Italy. Remote Sens. 2021, 13, 885. [Google Scholar] [CrossRef]
- Papoutsis, I.; Kontoes, C.; Alatza, S.; Apostolakis, A.; Loupasakis, C. InSAR Greece with Parallelized Persistent Scatterer Interferometry: A National Ground Motion Service for Big Copernicus Sentinel-1 Data. Remote Sens. 2020, 12, 3207. [Google Scholar] [CrossRef]
Subproject Title | Team Composition |
---|---|
Detection and interpretation of the time evolution of coastal environments | East China Normal University (ECNU), IREA-CNR, Karlsruhe Institute of Technology (KIT), and Shanghai Surveying and Mapping Institute |
Derivation of storm surge-induced submerged area and ocean wave field | Nanjing University of Information Science and Technology (NUIST) and The Chinese University of Hong Kong |
Projection of sea level rise and potential submerged area in coastal delta regions | Hohai University and Technical University of Denmark |
SAR Datasets | Mode | Polarization | Orbit Direction | Acquisition Period |
---|---|---|---|---|
ENVISAT-ASAR | IM 1, APM 2 | VV | Ascending | 2002–2010 |
COSMO-SkyMed | SM 3 | HH | Descending | 2013–2020 |
Sentinel-1A | IW 4 | VV | Ascending | 2016–2020 |
Sentinel-1B | IW | VV | Descending | 2016–2018 |
Radarsat-2 | W 5 | VV | Descending | 2012–2016 |
Data | Satellites | Source | Period | Temporal Resolution | Spatial Resolution |
---|---|---|---|---|---|
Sea Level Anomaly (SLA) | TOPEX/Poseidon, Jason-1 and 2, ERS-1 and 2, ENVISAT, GFO, Cryosat-2, Saral, HY-2A, Sentinel-3A | AVISO 1-CNES 2 | 1993–2016 | Monthly | 1/4° × 1/4° |
Digital Elevation Model (DEM) | Space Shuttle Endeavour | SRTM 3-USGS 4 | 2000 | - | 90 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Pan, J.; Devlin, A.; Xu, Q.; Tang, M.; Li, Z.; Zamparelli, V.; Falabella, F.; Mastro, P.; Pepe, A. Integrated Analysis of the Combined Risk of Ground Subsidence, Sea Level Rise, and Natural Hazards in Coastal and Delta River Regions. Remote Sens. 2021, 13, 3431. https://doi.org/10.3390/rs13173431
Zhao Q, Pan J, Devlin A, Xu Q, Tang M, Li Z, Zamparelli V, Falabella F, Mastro P, Pepe A. Integrated Analysis of the Combined Risk of Ground Subsidence, Sea Level Rise, and Natural Hazards in Coastal and Delta River Regions. Remote Sensing. 2021; 13(17):3431. https://doi.org/10.3390/rs13173431
Chicago/Turabian StyleZhao, Qing, Jiayi Pan, Adam Devlin, Qing Xu, Maochuan Tang, Zhengjie Li, Virginia Zamparelli, Francesco Falabella, Pietro Mastro, and Antonio Pepe. 2021. "Integrated Analysis of the Combined Risk of Ground Subsidence, Sea Level Rise, and Natural Hazards in Coastal and Delta River Regions" Remote Sensing 13, no. 17: 3431. https://doi.org/10.3390/rs13173431
APA StyleZhao, Q., Pan, J., Devlin, A., Xu, Q., Tang, M., Li, Z., Zamparelli, V., Falabella, F., Mastro, P., & Pepe, A. (2021). Integrated Analysis of the Combined Risk of Ground Subsidence, Sea Level Rise, and Natural Hazards in Coastal and Delta River Regions. Remote Sensing, 13(17), 3431. https://doi.org/10.3390/rs13173431