Improving the Resolution of GRACE Data for Spatio-Temporal Groundwater Storage Assessment
Abstract
:1. Introduction
- We assessed the trend and estimated the loss of downscaled GWS based on RFM.
- We explored the correlation of input variables with the GRACE TWS data.
- Integrate the GRACE TWS data with other hydrological and geospatial variables into the RFM to downscale GRACE-derived TWS and GWS from 1° to 0.25° for the IBIS.
- Validate the downscaled GWS with observational wells GWS.
- Assess the trend variability and slope of downscaled GWS by utilizing the Mann–Kendall trend test and Theil–Sen’s estimator.
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. GRACE TWS
2.4. GLDAS Data
2.5. TRMM
2.6. Ground-Based Measurement
2.7. Data Masking for the Study Area
3. Methodology
3.1. Groundwater Storage Estimation Using the Water Balance Equation
3.2. Mann–Kendall Trend Test
3.3. Artificial Neural Network (ANN)
3.4. Random Forest Model
3.5. Downscaling Model Design
- (1)
- At first, the nine input variables from January 2003 to December 2016 are aggregated to 1° by pixel averaging. Afterward, developed the RFM between TWS and nine hydrological and geospatial variables at a spatial resolution of 1°.
- (2)
- Secondly, the GRACE-derived TWS data deducted the predicted TWS of the RFM simulation in step (1) to calculate the residuals at a spatial resolution of 1°.
- (3)
- Thirdly, the developed RFM is applied to the hydrological and geospatial variables at a spatial resolution of 0.25° to attain the estimated 0.25° TWS of the RFM. Subsequently, the residual correction was performed at 0.25° by adding residuals to the estimated TWS at 0.25° to attain the downscaled TWS data with a spatial resolution of 0.25°. This residual correction procedure consists of three steps: the re-aggregation of the fine scale predictors (0.25°) to the original TWS resolution (1°), the calculation of TWS residuals (1°) between this new coarse scale predictors dataset (1°) and the original TWS data (1°), and the resampling (cubic convolution) of residuals (0.25°) and addition of these residuals to the fine resolution predicted TWS (0.25°), which yields the final downscaled TWS values (0.25°). The residual correction ensures that the downscaled TWS match the original data and also corrects for a prediction bias that might result from omitted variables.
- (4)
- Finally, we obtained the downscaling GWS by subtracting SMS, CWS, and Qs from the GLDAS-1 NOAH model with a spatial resolution of 0.25° from downscaling TWS. Afterward, the results were validated with the in situ water level data and the downscaled GWS.
3.6. Evaluation Methods of Model Performance
4. Results
4.1. Correlation Test Statistics of Model Input Variables
4.2. Sensitivity Analysis of RFM
4.3. Accuracy Analysis of RFM
4.4. Performance Analysis of RFM
4.4.1. Spatio-Temporal Variation Characteristics Analysis of TWS
4.4.2. Spatio-Temporal Variation Characteristics Analysis of GWS
4.4.3. Temporal Validation of Groundwater Storage
5. Discussion
Comparison of Current and Previously Related Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GRACE | Gravity Recovery and Climate Experiment |
TWS | Terrestrial water storage |
GWS | Groundwater storage |
RFM | Random forest model |
IBIS | Indus basin irrigation system |
DEM | Digital elevation model |
RMSE | Root mean square error |
MAE | Mean square error |
NSE | Nash–Sutcliffe efficiency |
ET | Evapotranspiration |
RF | Rainfall |
SM | Soil moisture |
Qs | Surface runoff |
CW | Canopy water |
CSR | Center for Space Research |
JPL | Jet Propulsion Laboratory |
GFZ | GeoForschungsZentrum Potsdam |
GIA | Glacier isostatic adjustment |
GLDAS | Global Land Data Assimilation System |
CLM | Common land model |
VIC | Variable infiltration capacity |
GES DISC | Goddard Earth Sciences Data and Information Services Center |
TRMM | Tropical Rainfall Measuring Mission |
PIDA | Punjab Irrigation and Drainage Authority |
DTW | Depth to the water table |
DTB | Depth to bedrock |
Groundwater level anomalies | |
Long-term mean of groundwater level | |
Groundwater storage anomalies | |
Specific yield | |
WBE | Water balance equation |
CART | Classification and regression decision trees |
OOB | Out of bag |
VIMP | Variable importance measure predictive |
ANN | Artificial neural network |
NDVI | Normalized difference vegetation index |
MLP | Multi-layer perceptron |
References
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. The Evaluation of Environmental Quality of Groundwater in Inland Plains—A Study on Yanqi County in Xinjiang. Master’s Thesis, Xinjiang Agricultural University, Urumqi, China, 2010. [Google Scholar]
- Famiglietti, J.S.; Lo, M.; Ho, S.L.; Bethune, J.; Anderson, K.J.; Syed, T.H.; Swenson, S.C.; de Linage, C.R.; Rodell, M. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 2011, 38, L03403. [Google Scholar] [CrossRef] [Green Version]
- Long, D.; Chen, X.; Scanlon, B.R.; Wada, Y.; Hong, Y.; Singh, V.P.; Chen, Y.; Wang, C.; Han, Z.; Yang, W. Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer? Sci. Rep. 2016, 6, 24398. [Google Scholar] [CrossRef]
- Ye, S.H.; Huang, C. Space technique monitoring and prediction of groundwater changes. Prog. Geophys. 2007, 4, 1030–1034. (In Chinese) [Google Scholar]
- Ramilliena, G.; Frapparta, F.; Cazenavea, A.; Güntnerb, A. Time variations of land water storage from an inversion of 2 years of GRACE Geoids. Erath Planet. Sci. Lett. 2005, 235, 283–301. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.L.; Elosegui, P.; Mitrovica, J.X. Climate-driven deformation of the solid Earth from GRACE and GPS. Geophys. Res. Lett. 2004, 31, 357–370. [Google Scholar] [CrossRef] [Green Version]
- Yeh, P.J.F.; Swenson, S.C.; Famiglietti, J.S.; Rodell, M. Remote Sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 2006, 42, W05417. [Google Scholar] [CrossRef]
- Rodell, M.; Chen, J.; Kato, H.; Famiglietti, J.S.; Nigro, J.; Wilson, C.R. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J. 2007, 15, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Zhong, M.; Lemoine, J.; Biancale, R.; Hsu, H.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Castellazzi, P.; Longuevergne, L.; Martel, R.; Rivera, A.; Brouard, C.; Chaussard, E. Quantitative mapping of groundwater depletion at the water management scale using a combined GRACE/InSAR approach. Remote Sens. Environ. 2018, 205, 408–418. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J.; Milly, P.C.D. Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 2003, 39, 1121–1134. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Longuevergne, L.; Long, D. Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour. Res. 2012, 48, W04520. [Google Scholar] [CrossRef] [Green Version]
- Richey, A.S.; Thomas, B.F.; Lo, M.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 2015, 52, 4184–4187. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Hooshyar, M.; Zhu, T.; Ringler, C.; Sun, A.Y.; Long, D.; Wang, D. Reconstructing annual groundwater storage changes in a large-scale irrigation region using GRACE data and Budyko model. J. Hydrol. 2017, 551, 397–406. [Google Scholar] [CrossRef]
- Iqbal, N.; Hossain, F.; Lee, H.; Akhter, G. Satellite Gravimetric Estimation of Groundwater Storage Variations Over Indus Basin in Pakistan. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3524–3534. [Google Scholar] [CrossRef]
- Liu, C.M.; Liu, W.B.; Fu, G.B.; OuYang, R.L. A discussion of some aspects of statistical downscaling in climate impacts assessment. Adv. Water Sci. 2012, 23, 427–437. (In Chinese) [Google Scholar]
- Alley, W.M.; Konikow, L.F. Bringing GRACE Down to Earth. Ground Water 2015, 53, 826–829. [Google Scholar] [CrossRef]
- Miro, M.E.; Famiglietti, J.S. Downscaling GRACE Remote Sensing Datasets to High-Resolution Groundwater Storage Change Maps of California’s Central Valley. Remote Sens. 2018, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.Y.; Peng, D.Z.; Hu, L.J. Research Progress on Statistical Downscaling Methods. South-to-North South-to-North Water Transf. Water Sci. Technol. 2013, 11, 118–122. (In Chinese) [Google Scholar]
- Liu, Y.H.; Guo, W.D.; Feng, J.M.; Zhang, K.X. A Summary of Methods for Statistical Downscaling of Meteorological Data. Adv. Earth Sci. 2011, 26, 837–847. (In Chinese) [Google Scholar]
- Ning, S.W.; Ishidaira, H.; Wang, J. Statistical downscaling of GRACE-derived terrestrial water storage using satellite and GLDAS products. J. Jpn. Soc. Civ. Eng. 2014, 70, 133–138. [Google Scholar] [CrossRef]
- Yin, W.; Hu, L.; Zhang, M.; Wang, J.; Han, S.C. Statistical Downscaling of GRACE-Derived Groundwater Storage Using ET Data in the North China Plain. J. Geophys. Res. Atmos. 2018, 123, 5973–5987. [Google Scholar] [CrossRef]
- Chen, S.; She, D.; Zhang, L.; Guo, M.; Liu, X. Spatial Downscaling Methods of Soil Moisture Based on Multisource Remote Sensing Data and Its Application. Water 2019, 11, 1401. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Ni, L.; Li, Z.; Duan, S.; Wu, H. Evaluation of Machine Learning Algorithms in Spatial Downscaling of MODIS Land Surface Temperature. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 2019, 12, 2299–2307. [Google Scholar] [CrossRef]
- Shi, Y.; Song, L.; Xia, Z.; Lin, Y.; Myneni, R.B.; Choi, S.; Wang, L.; Ni, X.; Lao, C.; Yang, F. Mapping Annual Precipitation across Mainland China in the Period 2001–2010 from TRMM3B43 Product Using Spatial Downscaling Approach. Remote Sens. 2015, 7, 5849–5878. [Google Scholar] [CrossRef] [Green Version]
- Seyoum, W.M.; Kwon, D.; Milewski, A.M. Downscaling GRACE TWSA data into High-Resolution Groundwater Level Anomaly Using Machine Learning-Based Models in a Glacial Aquifer System. Remote Sens. 2019, 11, 824. [Google Scholar] [CrossRef] [Green Version]
- Rahaman, M.M.; Thakur, B.; Kalra, A.; Ahmad, S. Modeling of GRACE-Derived Groundwater Information in the Colorado River Basin. Hydrology 2019, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Sun, A.Y. Predicting groundwater level changes using GRACE data. Water Resour. Res. 2013, 49, 5900–5912. [Google Scholar] [CrossRef]
- Yang, P.; Xia, J.; Zhan, C.; Wang, T. Reconstruction of terrestrial water storage anomalies in Northwest China during 1948–2002 using GRACE and GLDAS products. Hydrol. Res. 2018, 49, 1594–1607. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Rodell, M.; Zaitchik, B.F.; Reichle, R.H.; Koster, R.D.; van Dam, T.M. Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe. J. Hydrol. 2012, 446, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.; Schwintzer, P.; Flechtner, F.; Reigber, C.; Guntner, A.; Doll, P.; Ramillien, G.; Cazenave, A.; Petrovic, S.; Jochmann, H.; et al. GRACE observations of changes in continental water storage. Glob. Planet. Chang. 2006, 50, 112–126. [Google Scholar] [CrossRef]
- Chen, L.; He, Q.; Liu, K.; Li, J.; Jing, C. Downscaling of GRACE-Derived Groundwater Storage Based on the Random Forest Model. Remote Sens. 2019, 11, 2979. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, K.; Wang, M. Downscaling Groundwater Storage Data in China to a 1-km Resolution Using Machine Learning Methods. Remote Sens. 2021, 13, 523. [Google Scholar] [CrossRef]
- Reager, J.T.; Famiglietti, J.S. Characteristic mega-basin water storage behaviour using GRACE. Water Resour. Res. 2013, 49, 3314–3329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Commission on Dams (WCD). Tarbela Dam and Related Aspects of the Indus River Basin in Pakistan; WCD: New Delhi, India, 2000. [Google Scholar]
- Ojeh, E. Hydrology of the Indus Basin (Pakistan). 2006. Available online: https://cupdf.com/document/hydrology-of-the-indus-basin-pakistan-gis-term-project-by-elizabeth-ojeh-30.html (accessed on 31 August 2021).
- Habib, Z. Scope for Reallocation of Rivers Waters for Agriculture in the Indus Basin. Ph.D. Thesis, Environmental Sciences, Spécialité Sciences de l‘Eau, ENGREF, Paris, France, 2004. [Google Scholar]
- Ullah, M.K.; Habib, Z.; Muhammad, S. Spatial Distribution of Reference and Potential Evapotranspiration across the Indus Basin Irrigation Systems; IWMI working paper; IWMI: Lahore, Pakistan, 2001; Volume 24. [Google Scholar]
- PBS. Pakistan Statistical Yearbook; PBS: Boston, MA, USA, 2014. [Google Scholar]
- Watto, M.A.; Mugera, A.W. Groundwater depletion in the Indus Plains of Pakistan: Imperatives, repercussions and management issues. Int. J. River Basin Manag. 2016, 14, 447–458. [Google Scholar] [CrossRef]
- Mekonnen, D.; Siddiqi, A.; Ringler, C. Drivers of groundwater use and technical efficiency of groundwater, canal water, and conjunctive use in Pakistan’s Indus irrigation system. Int. J. Water Resour. Dev. 2015, 627, 459–476. [Google Scholar]
- Cheema, M.J.M.; Immerzeel, W.W.; Bastiaanssen, W.G.M. Spatial quantification of groundwater abstraction in the irrigated Indus basin. Groundwater 2014, 52, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, N.; Hossain, F.; Lee, H.; Akhter, G. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools. Environ. Monit. Assess. 2017, 189, 128. [Google Scholar] [CrossRef]
- Ahmad, S. Keynote Address, paper presented to national conference on “Water shortage and future agriculture in Pakistan—Challenges and opportunities”. In Proceedings of the National Conference Organized by the Agriculture Foundation of Pakistan, Islamabad, Pakistan, 26–27 August 2008. [Google Scholar]
- Ahmad, S. Scenarios of surface and groundwater availability in the Indus Basin Irrigation System (IBIS) and planning for future agriculture. In Paper Contributed to the Report of the Sub-Committee on Water and Climate Change Task Force on Food Security; Planning Commission of Pakistan: Karachi, Pakistan, 2008. [Google Scholar]
- Qureshi, A.S.; McCornick, P.G.; Qadir, M.; Aslam, Z. Managing salinity and waterlogging in the Indus Basin of Pakistan. Agric. Water Manag. 2008, 95, 1–10. [Google Scholar] [CrossRef]
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48, W04531. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Seyoum, W.M.; Milewski, A.M. Improved methods for estimating local terrestrial water dynamics from grace in the northern high plains. Adv. Water Resour. Res. 2017, 110, 279–290. [Google Scholar] [CrossRef]
- Long, D.; Yang, Y.; Wada, Y.; Hong, Y.; Liang, W.; Chen, Y. Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China’s Yangtze River Basin. Remote Sens. Environ. 2015, 168, 177–193. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Cui, W.; Wang, X.; Chen, X. Evaluation of GLDAS-1 and GLDAS-2 forcing data and Noah model simulations over China at monthly scale. J. Hydrol. 2016, 17, 2815–2833. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.J.; Ropelewski, C.F. Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens. 2007, 28, 1503–1526. [Google Scholar] [CrossRef]
- Karaseva, M.O.; Prakash, S.; Gairola, R.M. Validation of high-resolution TRMM- B43 precipitation product using rain gauge measurements over Kyrgyzstan. Theor. Appl. Climatol. 2011, 108, 147–157. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W.G.M.; Liu, J. Monthly and annual validation of TRMM Multisatellite Precipitation Analysis (TMPA) products in the Caspian Sea Region for the period 1999–2003. In Geoscience and Remote Sensing Symposium (IGARSS); IEEE International: Piscatway, NJ, USA, 2012; pp. 3696–3699. [Google Scholar]
- Ji, X.; Chen, Y. Characterizing spatial patterns of precipitation based on corrected TRMM 3B43 data over the mid Tianshan Mountains of China. J. Mt. Sci. 2012, 9, 628–645. [Google Scholar] [CrossRef]
- Cheema, M.J.M.; Bastiaanssen, W.G.M. Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin. Int. J. Remote Sens. 2012, 33, 2603–2627. [Google Scholar] [CrossRef]
- Sun, A.Y.; Green, R.; Rodell, M.; Swenson, S. Inferring aquifer storage parameters using satellite and in situ measurements: Estimation under uncertainty. Geophys. Res. Lett. 2010, 37, L10603. [Google Scholar] [CrossRef] [Green Version]
- Strassberg, G.; Scanlon, B.R.; Rodell, M. Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains Aquifer (USA). Geophys. Res. Lett. 2007, 34, L14402. [Google Scholar] [CrossRef] [Green Version]
- Greenman, D.W.; Swarzenski, W.V.; Bennett, G.D. Ground-Water Hydrology of the Punjab, West Pakistan, with Emphasis on Problems Caused by Canal Irrigation; US Government Printing Office: Washington, DC, USA, 1967.
- Sridhar, V.; Wedin, D.A. Hydrological behavior of Grasslands of the Sandhills: Water and Energy Balance Assessment from Measurements, Treatments and Modeling. Ecohydrology 2009, 2, 195–212. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Zolfaghari, A.; Izadi, M. Burst Pressure Prediction of Cylindrical Vessels Using Artificial Neural Network. J. Press. Vessel Technol. 2020, 142, 031303. [Google Scholar] [CrossRef]
- Gholami, V.; Booij, M.J.; Nikzad Tehrani, E.; Hadian, M.A. Spatial Soil Erosion Estimation Using an Artificial Neural Network (ANN) and Field Plot Data. Catena 2018, 163, 210–218. [Google Scholar] [CrossRef]
- Mohaghegi, S.; Del Valle, Y.; Venayagamoorthy, G.K.; Harley, R.G. A Comparison of PSO and Backpropagation for Training RBF Neural Networks for Identification of a Power System with Statcom. In Proceedings of the 2005 IEEE Swarm Intelligence Symposium, Pasadena, CA, USA, 8–10 June 2005; pp. 391–394. [Google Scholar]
- Turban, E.; Sharda, R.; Aronson, J.E.; King, D.N. Business Intelligence: A Managerial Approach; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Howitt, R.; MacEwan, D.; Medellín-Azuara, J.; Lund, J.; Sumner, D. Economic Analysis of the 2015 Drought for California Agriculture; UC Davis Center for Watershed Science: Davis, CA, USA, 2015. [Google Scholar]
- Lo, M.; Famiglietti, J.S. Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett. 2013, 40, 301–306. [Google Scholar] [CrossRef] [Green Version]
- MacKay, D. Bayesian Interpolation. Neural. Comput. 1992, 4, 415–447. [Google Scholar] [CrossRef]
- Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Fukda, S.; Yasunaga, E.; Nagle, M.; Yuge, K.; Sardsud, V.; Spreer, W.; Muller, J. Modelling the relationship between peel colour and the quality of fresh mango fruit using Random Forests. J. Food Eng. 2014, 131, 7–17. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of biomass in wheat using random forest regression algorithm and Remote Sensing data. Crop J. 2016, 4, 212–219. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 25 December 2020).
- Milewski, A.M.; Thomas, M.B.; Seyoum, W.M.; Rasmussen, T.C. Spatial Downscaling of GRACE TWSA Data to Identify Spatiotemporal Groundwater Level Trends in the Upper Floridan Aquifer, Georgia, USA. Remote Sens. 2019, 11, 2756. [Google Scholar] [CrossRef] [Green Version]
- Sahour, H.; Sultan, M.; Vazifedan, M.; Abdelmohsen, K.; Karki, S.; Yellich, J.A.; Gebremichael, E.; Alshehri, F.; Elbayoumi, T.M. Statistical applications to downscale GRACE-derived terrestrial water storage data and to fill temporal gaps. Remote Sens. 2020, 12, 533. [Google Scholar] [CrossRef] [Green Version]
- Gemitzi, A.; Lakshmi, V. Downscaling GRACE data to estimate groundwater use at the aquifer scale. In Proceedings of the 15th International Conference on Environmental Science and Technology (CEST), Rhodes, Greece, 31 August–2 September 2017. [Google Scholar]
- Rehman, A.; Jingdong, L.; Du, Y.; Khatoon, R.; Wagan, A.S.; Nisar, S.K. Flood Disaster in Pakistan and its Impact on Agriculture Growth (A Review). Glob. Adv. Res. J. Agric. Sci. 2015, 4, 827–830. [Google Scholar]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging Trends in Global Freshwater Availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Sun, A.Y.; Schmied, H.M.; Van Beek, L.P.H.; Wiese, D.N.; Wada, Y.; Long, D.; Reedy, R.C.; et al. Global Models Underestimate Large Decadal Declining and Rising Water Storage Trends Relative to GRACE Satellite Data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siebert, S.; Doll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 2010, 384, 198–217. [Google Scholar] [CrossRef]
- Arshad, M.; Cheema, M.J.M.; Ahmed, S. Determination of lithology and groundwater quality using electrical resistivity survey. Int. J. Agric. Biol. 2007, 9, 143–146. [Google Scholar]
- Tiwari, V.M.; Wahr, J.; Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 2009, 36, L18401. [Google Scholar] [CrossRef] [Green Version]
- IUCN. Beyond Indus Water Treaty: Ground Water and Environmental Management Policy Issues and Options; IUCN: Karachi, Pakistan, 2010. [Google Scholar]
- Syed, T.H.; Famiglietti, J.S.; Rodell, M.; Chen, J.; Wilson, C.R. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res. 2008, 44, W02433. [Google Scholar] [CrossRef]
- Seo, J.Y.; Lee, S. Spatio-Temporal Groundwater Drought Monitoring Using Multi-Satellite Data Based on an Artificial Neural Network. Water 2019, 11, 1953. [Google Scholar] [CrossRef] [Green Version]
Variables | Sources and Processing | Units |
---|---|---|
GRACE TWS | Average (CSR, JPL GFZ) (1° × 1°) | (mm) |
TRMM | Precipitation (0.25° × 0.25°) Resample to (1° × 1°) | (mm) |
GLDAS Soil moisture storage (SMS) | NOAH model SMS (0.25° × 0.25°) Resample to (1° × 1°) | (mm) |
GLDAS Canopy water storage (CWS) | NOAH model CWS (0.25° × 0.25°) Resample to (1° × 1°) | (mm) |
GLDAS Surface runoff (Qs) | NOAH model Qs (0.25° × 0.25°) Resample to (1° × 1°) | (mm) |
GLDAS Temperature (T) | NOAH model T (0.25° × 0.25°) Resample to (1° × 1°) | (°C) |
GLDAS Evapotranspiration (ET) | NOAH model ET (0.25° × 0.25°) Resample to (1° × 1°) | (mm) |
Slope, Aspect, Elevation | Digital Elevation Model (DEM) (90 m), resample to (0.25° × 0.25°) and (1° × 1°) | (m) |
Depth to groundwater | From depth (feet) to GWLA (mm) | (mm) |
Satellite/Model | Year | Mean Depletion Rate (mm/y) | IBIS/Selected Pixels Area (km2) | GWS Depletion Rate (km3/y) | Total Loss of GWS (km3) (Depletion Rate × No. of Years) |
---|---|---|---|---|---|
Downscaled GWS GRACE-derived GWS | 2003–2016 2003–2016 | −3.39 −3.39 | 201,072 201,072 | −0.68 −0.68 | −9.54 −9.54 |
Observation wells GWS Selected pixels GWS | June 2003–June 2014 June 2003–June 2014 | −3.22 −3.36 | 50,666 50,666 | −0.16 −0.17 | −2.28 −2.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Liu, D.; Fu, Q.; Cheema, M.J.M.; Pham, Q.B.; Rahaman, M.M.; Dang, T.D.; Anh, D.T. Improving the Resolution of GRACE Data for Spatio-Temporal Groundwater Storage Assessment. Remote Sens. 2021, 13, 3513. https://doi.org/10.3390/rs13173513
Ali S, Liu D, Fu Q, Cheema MJM, Pham QB, Rahaman MM, Dang TD, Anh DT. Improving the Resolution of GRACE Data for Spatio-Temporal Groundwater Storage Assessment. Remote Sensing. 2021; 13(17):3513. https://doi.org/10.3390/rs13173513
Chicago/Turabian StyleAli, Shoaib, Dong Liu, Qiang Fu, Muhammad Jehanzeb Masud Cheema, Quoc Bao Pham, Md. Mafuzur Rahaman, Thanh Duc Dang, and Duong Tran Anh. 2021. "Improving the Resolution of GRACE Data for Spatio-Temporal Groundwater Storage Assessment" Remote Sensing 13, no. 17: 3513. https://doi.org/10.3390/rs13173513
APA StyleAli, S., Liu, D., Fu, Q., Cheema, M. J. M., Pham, Q. B., Rahaman, M. M., Dang, T. D., & Anh, D. T. (2021). Improving the Resolution of GRACE Data for Spatio-Temporal Groundwater Storage Assessment. Remote Sensing, 13(17), 3513. https://doi.org/10.3390/rs13173513