The Impacts of Farmland Loss on Regional Food Self-Sufficiency in Yangtze River Delta Urban Agglomeration over Last Two Decades
Abstract
:1. Introduction
2. Study Area and Hierarchical Structure of Urban Systems
2.1. Study Area
2.2. Hierarchical Structure of YRDUA
3. Materials and Methods
3.1. Data Sources
3.2. Land Use and Land Cover Classification and Accuracy Assessment
3.2.1. Classification and Regression Tree (CART)
3.2.2. Accuracy Assessment
3.3. Measurement of Farmland Surplus and Deficit
3.4. Urban Subgroup Extraction
4. Results
4.1. Land Cover Dynamics
4.2. Division of Urban Subgroups
4.3. Farmland Surplus and Deficit at Multiple Scales
4.3.1. Farmland Surplus and Deficit at Urban Agglomeration Scale
4.3.2. Farmland Surplus and Deficit at City Scale
4.3.3. Farmland Surplus and Deficit at the Urban Subgroup Scale
5. Discussion
5.1. Farmland Loss
5.2. Food Security
5.3. Scale Effects
5.4. Implications and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Hu, H.; Tan, Y.; Yang, G.; Zhu, P.; Jiang, B. Quantifying the impacts of climate variability and human interventions on crop production and food security in the Yangtze River Basin, China, 1990–2015. Sci. Total Environ. 2019, 665, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Rosegrant, M.W.; Cline, S.A. Global food security: Challenges and policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ki-Moon, B. The millennium development goals report 2013. United Nations Pubns 2013, 365, 366. [Google Scholar]
- Graziano da Silva, J. From Fome Zero to Zero Hunger: A Global Perspective; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Ferranti, P. The United Nations Sustainable Development Goals. Encycl. Food Secur. Sustain. 2019, 1, 6–8. [Google Scholar]
- FAO; IFAD; WFP; WHO; UNICEF. The State of Food Security and Nutrition in the World 2019: Safeguarding against Economic Slowdowns and Downturns; FAO: Rome, Italy, 2019. [Google Scholar]
- Hines, C.T.; Markowitz, A.J.; Johnson, A.D. Food Insecurity: What Are Its Effects, Why, and What Can Policy Do About It? Policy Insights Behav. Brain Sci. 2021, 1, 23727322211032250. [Google Scholar]
- Pérez-Escamilla, R. Food Security and the 2015-2030 Sustainable Development Goals: From Human to Planetary Health: Perspectives and Opinions. Curr. Dev. Nutr. 2017, 1, e000513. [Google Scholar] [CrossRef]
- Torero, M. Food Security Brings Economic Growth—Not the Other Way Around. Available online: https://www.devex.com/news/food-security-brings-economic-growth-not-the-other-way-around-84561 (accessed on 31 August 2020).
- Berry, E.M.; Dernini, S.; Burlingame, B.; Meybeck, A.; Conforti, P. Food security and sustainability: Can one exist without the other? Public Health Nutr. 2015, 18, 2293–2302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.H.; Shunfeng, S. Rural–urban migration and urbanization in China: Evidence from time-series and cross-section analyses. China Econ. Rev. 2003, 14, 386–400. [Google Scholar] [CrossRef]
- Seeborg, M.C.; Jin, Z.; Zhu, Y. The new rural-urban labor mobility in China: Causes and implications. J. Behav. Exp. Econ. 2000, 29, 39–56. [Google Scholar] [CrossRef] [Green Version]
- Mears, R. Rural-urban migration or urbanization in South Africa. S. Afr. J. Econ. 1997, 65, 595–614. [Google Scholar] [CrossRef]
- Singh, H. Increasing rural to urban migration in India: A challenge or an opportunity. Int. J. Appl. Res. 2016, 2, 447–450. [Google Scholar]
- Zhu, C.; Zhang, X.; Wang, K.; Yuan, S.; Yang, L.; Skitmore, M. Urban–rural construction land transition and its coupling relationship with population flow in China’s urban agglomeration region. Cities 2020, 101, 102701. [Google Scholar] [CrossRef]
- Yu, D.; Qiao, J.; Shi, P. Spatiotemporal patterns, relationships, and drivers of China’s agricultural ecosystem services from 1980 to 2010: A multiscale analysis. Landsc. Ecol. 2018, 33, 575–595. [Google Scholar] [CrossRef]
- UN. World Population Prospects 2019. Available online: https://population.un.org/wpp/ (accessed on 20 August 2020).
- Chai, J.; Wang, Z.; Yang, J.; Zhang, L. Analysis for spatial-temporal changes of grain production and farmland resource: Evidence from Hubei Province, central China. J. Clean. Prod. 2019, 207, 474–482. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Xu, M.; Ma, Q.; Dou, Y. Urban expansion brought stress to food security in China: Evidence from decreased cropland net primary productivity. Sci. Total Environ. 2017, 576, 660–670. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Yu, M.; Guo, S.; Guan, Y.; Cai, D.; Zhang, C.; Fraedrich, K.; Liao, Z.; Zhang, X.; Tian, Z. Spatiotemporal Heterogeneity Analysis of Yangtze River Delta Urban Agglomeration: Evidence from Nighttime Light Data (2001–2019). Remote Sens. 2021, 13, 1235. [Google Scholar] [CrossRef]
- Wu, J. Hierarchy Theory: An Overview. In Linking Ecology and Ethics for a Changing World. Ecology and Ethics; Rozzi, R., Palmer, C., Armesto, J., Callicott, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 281–301. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Wu, J. What drives urban growth in China? A multi-scale comparative analysis. Appl. Geogr. 2018, 98, 43–51. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, Y.; Gao, S. Modeling the Vagueness of Areal Geographic Objects: A Categorization System. ISPRS Int. J. Geo-Inf. 2019, 8, 306. [Google Scholar] [CrossRef] [Green Version]
- Goodchild, M.F. A Geographer Looks at Spatial Information Theory. In Proceedings of the Spatial Information Theory: Foundations of Geographic Information Science, International Conference, Cosit, Morro Bay, CA, USA, 19–23 September 2001; pp. 1–13. [Google Scholar]
- Wu, J. Hierarchy and scaling: Extrapolating information along a scaling ladder. Can. J. Remote Sens. 1999, 25, 367–380. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Chen, N.; Zhang, X.; Wang, C.; Du, W. Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: A case study in the middle Yangtze River basin. ISPRS J. Photogramm. Remote Sens. 2020, 159, 337–351. [Google Scholar] [CrossRef]
- Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Li, Y.; Chen, W.; Zhang, Y.; Tao, C.; Xiao, R.; Tan, Y. Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning. Remote Sens. Environ. 2020, 250, 112045. [Google Scholar] [CrossRef]
- Li, Y.; Shi, T.; Zhang, Y.; Chen, W.; Wang, Z.; Li, H. Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation. ISPRS J. Photogramm. Remote Sens. 2021, 175, 20–33. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Zhu, Z. Error-Tolerant Deep Learning for Remote Sensing Image Scene Classification. IEEE Trans. Cybern. 2021, 51, 1756–1768. [Google Scholar] [CrossRef]
- Tortora, R.D. A Note on Sample Size Estimation for Multinomial Populations. Am. Stat. 1978, 32, 100–102. [Google Scholar] [CrossRef]
- Chen, X.; Fang, K.; Wu, C. A study on spatio-temporal changes in patterns of China’s cultivated land use from 2009 to 2015. Bull. Soil Water Conserv. 2019, 39, 291–296. [Google Scholar]
- Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban. Plann. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, C. Social Network Analysis of Urban Agricultural Economic Links in Beijing-Tianjin-Hebei Region. J. Beijing Vocat. Coll. Agric. 2018, 32, 5–15. [Google Scholar] [CrossRef]
- Ye, L.; Duan, X.; Ou, X. Functional polycentricity in Yangtze River delta based on social network analysis. J. Univ. Chin. Acad. Sci. 2016, 33, 75–81. [Google Scholar] [CrossRef]
- Jiang, G.; Jiao, J.; Li, J.; Sun, C. Network analysis of R&D technology spillovers effect in the Yangtze River Delta Region. IOP Conf. Ser. Earth Environ. Sci 2020, 615, 012026. [Google Scholar] [CrossRef]
- Wasserman, S.; Faust, K. Social network analysis: Methods and applications; Cambridge University: Cambridge, UK, 1994. [Google Scholar]
- Huang, Z.; Du, X.; Castillo, C.S.Z. How does urbanization affect farmland protection? Evidence from China. Resour. Conserv. Recycl. 2019, 145, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Shen, J. Comparative Analysis of Urban Competitiveness in the Yangtze River Delta and Pearl River Delta Regions of China, 2000–2010. Appl. Spat. Anal. Policy 2017, 10, 401–419. [Google Scholar] [CrossRef]
- Huang, J.; Li, K. Has Administrative Zoning Adjustment Strengthened Land Property Operation? Policy Effects from Yangtze River Delta. Trop. Geogr. 2020, 41, 1–8. [Google Scholar]
- Han, J.; Meng, X.; Zhou, X.; Yi, B.; Liu, M.; Xiang, W.-N. A long-term analysis of urbanization process, landscape change, and carbon sources and sinks: A case study in China’s Yangtze River Delta region. J. Clean. Prod. 2017, 141, 1040–1050. [Google Scholar] [CrossRef]
- Cheng, C.; Yang, X.; Cai, H. Analysis of Spatial and Temporal Changes and Expansion Patterns in Mainland Chinese Urban Land between 1995 and 2015. Remote Sens. 2021, 13, 2090. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Long, H. Analysis of arable land loss and its impact on rural sustainability in Southern Jiangsu Province of China. J. Environ. Manag. 2010, 91, 646–653. [Google Scholar] [CrossRef]
- Liang, C.; Penghui, J.; Wei, C.; Manchun, L.; Liyan, W.; Yuan, G.; Yuzhe, P.; Nan, X.; Yuewei, D.; Qiuhao, H. Farmland protection policies and rapid urbanization in China: A case study for Changzhou City. Land Use Policy 2015, 48, 552–566. [Google Scholar] [CrossRef]
- Radwan, T.M.; Blackburn, G.A.; Whyatt, J.D.; Atkinson, P.M. Dramatic loss of agricultural land due to urban expansion threatens food security in the Nile Delta, Egypt. Remote Sens. 2019, 11, 332. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, A.; Freedgood, J.; Dempsey, J.; Theobald, D. Farms Under Threat: The State of America’s Farmland; American Farmland Trust: Washington, DC, USA, 2018. [Google Scholar]
- Wang, Y.-S. The challenges and strategies of food security under rapid urbanization in China. Sustainability 2019, 11, 542. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Zhang, X.; Zhang, X.; Li, H. The incremental construction land differentiated management framework: The perspective of land quota trading in China. Land Use Policy 2020, 96, 104675. [Google Scholar] [CrossRef]
- Cao, B.; Xia, B. Report on Food Development in the Yangtze River Delta—Food Security in the Yangtze River Delta; Economic Management Press: Beijing, China, 2015; Volume 978. [Google Scholar]
- Wang, M.; Ma, L.; Strokal, M.; Chu, Y.; Kroeze, C. Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China. Agric. Syst. 2018, 163, 58–72. [Google Scholar] [CrossRef]
- Assefa, Y.; Vara Prasad, P.V.; Carter, P.; Hinds, M.; Bhalla, G.; Schon, R.; Jeschke, M.; Paszkiewicz, S.; Ciampitti, I.A. Yield Responses to Planting Density for US Modern Corn Hybrids: A Synthesis-Analysis. Crop. Sci. 2016, 56, 2802–2817. [Google Scholar] [CrossRef]
- Cao, X.; Wang, Y.; Wu, P.; Zhao, X.; Wang, J. An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China. Sci. Total Environ. 2015, 529, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Gianessi, L.P. The increasing importance of herbicides in worldwide crop production. Pest Manag. Sci. 2013, 69, 1099–1105. [Google Scholar] [CrossRef]
- Headey, D. Rethinking the global food crisis: The role of trade shocks. Food Policy 2011, 36, 136–146. [Google Scholar] [CrossRef]
- Long, H.; Ge, D.; Zhang, Y.; Tu, S.; Qu, Y.; Ma, L. Changing man-land interrelations in China’s farming area under urbanization and its implications for food security. J. Environ. Manag. 2018, 209, 440–451. [Google Scholar] [CrossRef]
- Chien, S.-S. Local farmland loss and preservation in China—A perspective of quota territorialization. Land Use Policy 2015, 49, 65–74. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Mao, Y.; Zhao, N.; Yang, X. Food Security and Farm Land Protection in China, 1st ed.; World Scientific: Singapore, 2013. [Google Scholar]
- Jin, X.; Zhang, Z.; Wu, X.; Xiang, X.; Sun, W.; Bai, Q.; Zhou, Y. Co-ordination of land exploitation, exploitable farmland reserves and national planning in China. Land Use Policy 2016, 57, 682–693. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, R.; Wang, Y.; Shi, K. Does Fallowing Cultivated Land Threaten Food Security? Empirical Evidence from Chinese Pilot Provinces. Sustainability 2019, 11, 2836. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Nawaz, A.; Nadeem, F. Crop Rotations, Fallowing, and Associated Environmental Benefits. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Zhou, B.-B.; Lv, L. Understanding the dynamics of farmland loss in a rapidly urbanizing region: A problem-driven, diagnostic approach to landscape sustainability. Landsc. Ecol. 2020. [Google Scholar] [CrossRef]
2000 | 2010 | 2020 | |
---|---|---|---|
Overall accuracy | 0.93 | 0.94 | 0.94 |
Kappa coefficient | 0.91 | 0.92 | 0.92 |
Year | Surplus and Deficit of Farmland | Area (10 k ha) | |
---|---|---|---|
Amount (10 k ha) | Coefficient (%) | ||
2000 | −43.61 | −5.20 | 838.17 |
2010 | −279.96 | −37.52 | 746.08 |
2020 | −513.66 | −80.36 | 639.17 |
City | Surplus and Deficit (10 k ha) | Coefficient (%) | Area (10 k ha) | ||||||
---|---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
Anqing | 9.57 | 4.72 | 3.07 | 23.75 | 12.90 | 8.92 | 40.31 | 36.57 | 34.39 |
Chizhou | 1.52 | 2.67 | 1.46 | 12.02 | 23.81 | 14.02 | 12.62 | 11.21 | 10.44 |
Xuancheng | 2.08 | 6.20 | 3.51 | 10.22 | 30.37 | 22.66 | 20.33 | 20.40 | 15.49 |
Chuzhou | 37.63 | 46.20 | 44.51 | 54.61 | 66.19 | 66.50 | 68.91 | 69.80 | 66.93 |
Hefei | −2.60 | 7.18 | −1.09 | −3.89 | 12.25 | −2.02 | 66.91 | 58.58 | 54.04 |
Maanshan | 1.93 | 5.00 | 2.69 | 8.79 | 26.40 | 18.50 | 21.95 | 18.93 | 14.55 |
Wuhu | −3.74 | 0.87 | −0.44 | −12.70 | 3.18 | −1.85 | 29.47 | 27.25 | 23.77 |
Tongling | 2.16 | 0.45 | −0.66 | 21.24 | 3.71 | −6.18 | 10.15 | 12.15 | 10.68 |
Changzhou | −0.20 | −10.46 | −17.40 | −0.87 | −47.40 | −155.42 | 22.59 | 22.06 | 11.19 |
Wuxi | −8.56 | −35.36 | −34.79 | −45.69 | −192.90 | −351.77 | 18.73 | 18.33 | 9.89 |
Suzhou | −8.46 | −60.92 | −57.10 | −27.42 | −238.08 | −362.71 | 30.87 | 25.59 | 15.74 |
Nanjing | −16.50 | −44.16 | −60.61 | −55.47 | −167.37 | −230.33 | 29.75 | 26.39 | 26.31 |
Zhenjiang | 2.50 | 0.68 | −4.38 | 12.29 | 3.73 | −25.97 | 20.36 | 18.27 | 16.87 |
Yangzhou | 10.41 | 15.69 | 13.87 | 25.85 | 42.59 | 40.23 | 40.27 | 36.84 | 34.47 |
Taizhou_JS | 13.56 | 14.37 | 10.11 | 35.63 | 45.68 | 37.98 | 38.07 | 31.47 | 26.62 |
Yancheng | 44.65 | 67.90 | 65.27 | 39.64 | 58.81 | 62.02 | 112.64 | 115.45 | 105.24 |
Nantong | 14.16 | 10.00 | 10.05 | 19.74 | 17.19 | 18.94 | 71.70 | 58.22 | 53.05 |
Hangzhou | −11.96 | −25.48 | −57.01 | −63.50 | −220.89 | −683.16 | 18.84 | 11.53 | 8.35 |
Huzhou | −0.04 | −2.63 | −8.90 | −0.24 | −18.57 | −121.25 | 17.29 | 14.19 | 7.34 |
Shaoxing | −1.10 | −6.71 | −9.92 | −8.44 | −56.09 | −142.42 | 13.01 | 11.97 | 6.97 |
Jiaxing | 4.22 | −4.72 | −11.95 | 14.83 | −23.83 | −88.25 | 28.49 | 19.80 | 13.54 |
Ningbo | −11.86 | −38.20 | −48.05 | −63.73 | −222.81 | −383.25 | 18.61 | 17.15 | 12.54 |
Jinhua | −4.36 | −15.98 | −50.74 | −23.31 | −121.76 | −385.15 | 18.71 | 13.12 | 13.17 |
Zhoushan | −7.00 | −15.39 | −25.79 | −312.42 | −690.58 | −1565.26 | 2.24 | 2.23 | 1.65 |
Taizhou_ZJ | −3.65 | −18.46 | −40.19 | −32.62 | −166.56 | −359.26 | 11.19 | 11.08 | 11.19 |
Wenzhou | −20.46 | −41.67 | −62.74 | −119.18 | −285.55 | −448.03 | 17.17 | 14.59 | 14.00 |
Shanghai | −87.50 | −141.74 | −176.43 | −236.37 | −618.71 | −850.11 | 37.02 | 22.91 | 20.75 |
Subgroup | Surplus and Deficit (10 k ha) | Coefficient (%) | Area (10 k ha) | ||||||
---|---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
I | 10.91 | 27.07 | 8.54 | 5.41 | 14.63 | 5.23 | 201.74 | 185.08 | 163.35 |
II | 92.25 | 100.69 | 68.77 | 29.76 | 33.76 | 24.88 | 309.99 | 298.23 | 276.45 |
III | −86.38 | −245.83 | −296.52 | −38.11 | −135.75 | −225.47 | 226.68 | 181.09 | 131.51 |
IV | −60.40 | −161.89 | −294.45 | −60.54 | −198.21 | −433.89 | 99.77 | 81.67 | 67.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, X.; Meng, Q.; Fei, X.; Lin, M.; Xiao, R. The Impacts of Farmland Loss on Regional Food Self-Sufficiency in Yangtze River Delta Urban Agglomeration over Last Two Decades. Remote Sens. 2021, 13, 3514. https://doi.org/10.3390/rs13173514
Duan X, Meng Q, Fei X, Lin M, Xiao R. The Impacts of Farmland Loss on Regional Food Self-Sufficiency in Yangtze River Delta Urban Agglomeration over Last Two Decades. Remote Sensing. 2021; 13(17):3514. https://doi.org/10.3390/rs13173514
Chicago/Turabian StyleDuan, Xuelin, Qingxiang Meng, Xufeng Fei, Meng Lin, and Rui Xiao. 2021. "The Impacts of Farmland Loss on Regional Food Self-Sufficiency in Yangtze River Delta Urban Agglomeration over Last Two Decades" Remote Sensing 13, no. 17: 3514. https://doi.org/10.3390/rs13173514
APA StyleDuan, X., Meng, Q., Fei, X., Lin, M., & Xiao, R. (2021). The Impacts of Farmland Loss on Regional Food Self-Sufficiency in Yangtze River Delta Urban Agglomeration over Last Two Decades. Remote Sensing, 13(17), 3514. https://doi.org/10.3390/rs13173514