Sentinel-2 and Landsat-8 Multi-Temporal Series to Estimate Topsoil Properties on Croplands
Abstract
:1. Introduction
2. Materials and Methods
2.1. LUCAS Topsoil Dataset
2.2. Satellite Multi-Temporal Series to Select Bare Soil
- From May 2018 to May 2021, both for S2 and L8: hereinafter referred to as S2_3Y and L8_3Y
- From May 2019 to May 2021, both for S2 and L8: hereinafter referred to as S2_2Y and L8_2Y
- From May 2020 to May 2021 both for S2 and L8: hereinafter referred to as S2_1Y and L8_1Y
- From May 2015 to May 2016 just for L8: hereinafter referred to as L8_1Y_L.
2.3. Soil Properties Estimation Models
3. Results
3.1. Bare Soil Selection
3.2. LUCAS Subset
3.3. SOC, Clay, and CaCO3 Estimation Accuracy
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Peng, G. Soil Erosion, Conservation, and Eco-Environment Changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J. Soil Loss Due to Crop Harvesting in the European Union: A First Estimation of an Underrated Geomorphic Process. Sci. Total Environ. 2019, 664, 487–498. [Google Scholar] [CrossRef]
- Voluntary Guidelines for Sustainable Soil Management. Available online: http://www.fao.org/documents/card/en/c/5544358d-f11f-4e9f-90ef-a37c3bf52db7/ (accessed on 23 July 2021).
- The Post-2020 Common Agricultural Policy: Environmental Benefits and Simplification|Knowledge for Policy. Available online: https://knowledge4policy.ec.europa.eu/publication/post-2020-common-agricultural-policy-environmental-benefits-simplification_en (accessed on 23 July 2021).
- Le Bissonnais, Y.L. Aggregate Stability and Assessment of Soil Crustability and Erodibility: I. Theory and Methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Lagacherie, P.; Baret, F.; Feret, J.-B.; Madeira Netto, J.; Robbez-Masson, J.M. Estimation of Soil Clay and Calcium Carbonate Using Laboratory, Field and Airborne Hyperspectral Measurements. Remote Sens. Environ. 2008, 112, 825–835. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil Carbon 4 per Mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Montanarella, L.; Panagos, P. The Relevance of Sustainable Soil Management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Inbar, Y.; Chen, Y. The Reflectance Spectra of Organic Matter in the Visible Near-Infrared and Short Wave Infrared Region (400–2500 Nm) during a Controlled Decomposition Process. Remote Sens. Environ. 1997, 61, 1–15. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Neumann, C.; Chabrillat, S.; van Wesemael, B.; Castaldi, F.; Borůvka, L.; Sanderman, J.; Klement, A.; Hohmann, C. Soil Organic Carbon Estimation Using VNIR–SWIR Spectroscopy: The Effect of Multiple Sensors and Scanning Conditions. Soil Tillage Res. 2021, 211, 105017. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using Imaging Spectroscopy to Study Soil Properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Clark, R.N. Spectroscopy of Rocks and Minerals and Principles of Spectroscopy. In Remote Sensing for the Eartb Sciences: Manual of Remote Sensing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999; pp. 3–58. [Google Scholar]
- Castaldi, F.; Palombo, A.; Pascucci, S.; Pignatti, S.; Santini, F.; Casa, R. Reducing the Influence of Soil Moisture on the Estimation of Clay from Hyperspectral Data: A Case Study Using Simulated PRISMA Data. Remote Sens. 2015, 7, 15561–15582. [Google Scholar] [CrossRef] [Green Version]
- Gaffey, S.J. Spectral Reflectance of Carbonate Minerals in the Visible and near Infrared (0.35–2.55 Microns)—Anhydrous Carbonate Minerals. J. Geophys. Res. 1987, 92, 1429–1440. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil Organic Carbon and Texture Retrieving and Mapping Using Proximal, Airborne and Sentinel-2 Spectral Imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; van Wesemael, B. Evaluating the Capability of the Sentinel 2 Data for Soil Organic Carbon Prediction in Croplands. ISPRS J. Photogramm. Remote Sens. 2019, 147, 267–282. [Google Scholar] [CrossRef]
- Castaldi, F.; Chabrillat, S.; Don, A.; van Wesemael, B. Soil Organic Carbon Mapping Using LUCAS Topsoil Database and Sentinel-2 Data: An Approach to Reduce Soil Moisture and Crop Residue Effects. Remote Sens. 2019, 11, 2121. [Google Scholar] [CrossRef] [Green Version]
- Vaudour, E.; Gomez, C.; Fouad, Y.; Lagacherie, P. Sentinel-2 Image Capacities to Predict Common Topsoil Properties of Temperate and Mediterranean Agroecosystems. Remote Sens. Environ. 2019, 223, 21–33. [Google Scholar] [CrossRef]
- Žížala, D.; Minařík, R.; Zádorová, T. Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions. Remote Sens. 2019, 11, 2947. [Google Scholar] [CrossRef]
- Dvorakova, K.; Heiden, U.; van Wesemael, B. Sentinel-2 Exposed Soil Composite for Soil Organic Carbon Prediction. Remote Sens. 2021, 13, 1791. [Google Scholar] [CrossRef]
- Wang, K.; Qi, Y.; Guo, W.; Zhang, J.; Chang, Q. Retrieval and Mapping of Soil Organic Carbon Using Sentinel-2A Spectral Images from Bare Cropland in Autumn. Remote Sens. 2021, 13, 1072. [Google Scholar] [CrossRef]
- Diek, S.; Fornallaz, F.; Schaepman, M.; de Jong, R. Barest Pixel Composite for Agricultural Areas Using Landsat Time Series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef] [Green Version]
- Demattê, J.A.M.; Fongaro, C.T.; Rizzo, R.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A Powerful Data Mining Procedure to Retrieve Soil Spectral Reflectance from Satellite Images. Remote Sens. Environ. 2018, 212, 161–175. [Google Scholar] [CrossRef]
- Rogge, D.; Bauer, A.; Zeidler, J.; Mueller, A.; Esch, T.; Heiden, U. Building an Exposed Soil Composite Processor (SCMaP) for Mapping Spatial and Temporal Characteristics of Soils with Landsat Imagery (1984–2014). Remote Sens. Environ. 2018, 205, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Loiseau, T.; Chen, S.; Mulder, V.L.; Román Dobarco, M.; Richer de Forges, A.; Lehmann, S.; Bourennane, H.; Saby, N.; Martin, M.; Vaudour, E.; et al. Satellite Data Integration for Soil Clay Content Modelling at a National Scale. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101905. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Lagacherie, P.; Loiseau, T.; Baghdadi, N.; Urbina-Salazar, D.; Loubet, B.; Arrouays, D. Temporal Mosaicking Approaches of Sentinel-2 Images for Extending Topsoil Organic Carbon Content Mapping in Croplands. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102277. [Google Scholar] [CrossRef]
- Castaldi, F.; Chabrillat, S.; van Wesemael, B. Sampling Strategies for Soil Property Mapping Using Multispectral Sentinel-2 and Hyperspectral EnMAP Satellite Data. Remote Sens. 2019, 11, 309. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Safanelli, J.L.; Poppiel, R.R.; Rizzo, R.; Silvero, N.E.Q.; de Sousa Mendes, W.; Bonfatti, B.R.; Dotto, A.C.; Salazar, D.F.U.; de Oliveira Mello, F.A.; et al. Bare Earth’s Surface Spectra as a Proxy for Soil Resource Monitoring. Sci. Rep. 2020, 10, 4461. [Google Scholar] [CrossRef] [PubMed]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the Largest Expandable Soil Dataset for Europe: A Review. Eur. J. Soil Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Ugalde, O.; Jones, A.; Meuli, R.G. Comparison of Sampling with a Spade and Gouge Auger for Topsoil Monitoring at the Continental Scale. Eur. J. Soil Sci. 2020, 71, 137–150. [Google Scholar] [CrossRef]
- ISO. ISO 13320:2009(En) Particle Size Analysis—Laser Diffraction Methods. Available online: https://www.iso.org/obp/ui/#iso:std:iso:13320:ed-1:v2:en (accessed on 23 July 2021).
- ISO. ISO 10694:1995(En) Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis). Available online: https://www.iso.org/obp/ui/#iso:std:iso:10694:ed-1:v1:en (accessed on 23 July 2021).
- ISO. ISO 10693:1995(En) Soil Quality—Determination of Carbonate Content—Volumetric Method. Available online: https://www.iso.org/obp/ui/#iso:std:iso:10693:ed-1:v1:en (accessed on 23 July 2021).
- Nocita, M.; Stevens, A.; Toth, G.; Panagos, P.; van Wesemael, B.; Montanarella, L. Prediction of Soil Organic Carbon Content by Diffuse Reflectance Spectroscopy Using a Local Partial Least Square Regression Approach. Soil Biol. Biochem. 2014, 68, 337–347. [Google Scholar] [CrossRef]
- Quinlan, J.R. Learning With Continuous Classes; World Scientific: Singapore, 1992; pp. 343–348. [Google Scholar]
- Kuhn, M.; Weston, S.; Keefer, C.; Coulter, N.; Code, R.Q. Cubist: Rule- and Instance-Based Regression Modeling. 2021. Available online: https://CRAN.R-project.org/package=Cubist (accessed on 23 August 2021).
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Castaldi, F.; Chabrillat, S.; Chartin, C.; Genot, V.; Jones, A.R.; van Wesemael, B. Estimation of Soil Organic Carbon in Arable Soil in Belgium and Luxembourg with the LUCAS Topsoil Database. Eur. J. Soil Sci. 2018, 69, 592–603. [Google Scholar] [CrossRef]
- Shi, P.; Castaldi, F.; van Wesemael, B.; Van Oost, K. Vis-NIR Spectroscopic Assessment of Soil Aggregate Stability and Aggregate Size Distribution in the Belgian Loam Belt. Geoderma 2020, 357, 113958. [Google Scholar] [CrossRef]
- Safanelli, J.L.; Chabrillat, S.; Ben-Dor, E.; Demattê, J.A.M. Multispectral Models from Bare Soil Composites for Mapping Topsoil Properties over Europe. Remote Sens. 2020, 12, 1369. [Google Scholar] [CrossRef]
- Silvero, N.E.Q.; Demattê, J.A.M.; Amorim, M.T.A.; dos Santos, N.V.; Rizzo, R.; Safanelli, J.L.; Poppiel, R.R.; de Sousa Mendes, W.; Bonfatti, B.R. Soil Variability and Quantification Based on Sentinel-2 and Landsat-8 Bare Soil Images: A Comparison. Remote Sens. Environ. 2021, 252, 112117. [Google Scholar] [CrossRef]
- European Commission. Joint Research Centre. Assessment of Changes in Topsoil Properties in LUCAS Samples between 2009/2012 and 2015 Surveys; Publications Office: Luxembourg, 2020. [Google Scholar]
- Atkinson, P.M.; Curran, P.J. Defining an Optimal Size of Support for Remote Sensing Investigations. IEEE Trans. Geosci. Remote Sens. 1995, 33, 768–776. [Google Scholar] [CrossRef]
- Castaldi, F.; Castrignanò, A.; Casa, R. A Data Fusion and Spatial Data Analysis Approach for the Estimation of Wheat Grain Nitrogen Uptake from Satellite Data. Int. J. Remote Sens. 2016, 37, 4317–4336. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Noon, C.; van Wesemael, B. Prediction of Soil Organic Carbon for Different Levels of Soil Moisture Using Vis-NIR Spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Cracknell, A.P. Review Article Synergy in Remote Sensing-What’s in a Pixel? Int. J. Remote Sens. 1998, 19, 2025–2047. [Google Scholar] [CrossRef]
- Villa, A.; Chanussot, J.; Benediktsson, J.A.; Jutten, C. Spectral Unmixing for the Classification of Hyperspectral Images at a Finer Spatial Resolution. IEEE J. Sel. Top. Signal. Process. 2011, 5, 521–533. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the Potential of the Current and Forthcoming Multispectral and Hyperspectral Imagers to Estimate Soil Texture and Organic Carbon. Remote Sens. Environ. 2016, 179, 54–65. [Google Scholar] [CrossRef]
- Cogliati, S.; Sarti, F.; Chiarantini, L.; Cosi, M.; Lorusso, R.; Lopinto, E.; Miglietta, F.; Genesio, L.; Guanter, L.; Damm, A.; et al. The PRISMA Imaging Spectroscopy Mission: Overview and First Performance Analysis. Remote Sens. Environ. 2021, 262, 112499. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef] [Green Version]
- Nieke, J.; Rast, M. Status: Copernicus Hyperspectral Imaging Mission for the Environment (CHIME). In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4609–4611. [Google Scholar]
Band | Central Wavelength nm | Bandwidth nm | Resolution m | |
---|---|---|---|---|
Landsat-8/OLI | B2 | 483 | 60 | 30 |
B3 | 560 | 57 | 30 | |
B4 | 660 | 37 | 30 | |
B5 | 865 | 28 | 30 | |
B6 | 1650 | 85 | 30 | |
B7 | 2220 | 187 | 30 | |
Sentinel-2/MSI | B2 | 490 | 65 | 10 |
B3 | 560 | 35 | 10 | |
B4 | 665 | 30 | 10 | |
B5 | 705 | 15 | 20 | |
B6 | 740 | 15 | 20 | |
B7 | 783 | 20 | 20 | |
B8 | 842 | 115 | 10 | |
B8a | 865 | 20 | 20 | |
B11 | 1610 | 90 | 20 | |
B12 | 2190 | 180 | 20 |
L8 | S2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Satellite Collection | Mean | Min | Max | Std | Mean | Min | Max | Std | |
Baltic states | 3Y | 20.1 | 8 | 52 | 10.5 | 23.2 | 7 | 56 | 14.3 |
2Y | 13.6 | 7 | 31 | 6.8 | 13 | 3 | 31 | 8.3 | |
1Y | 5.5 | 2 | 13 | 3 | 4.7 | 1 | 13 | 3 | |
1Y_L | 9.4 | 1 | 18 | 4.4 | |||||
Ireland | 3Y | 11.1 | 1 | 24 | 7.2 | 12.8 | 4 | 29 | 9 |
2Y | 7.5 | 1 | 20 | 5.8 | 5.7 | 1 | 11 | 4.3 | |
1Y | 4.2 | 1 | 9 | 2.9 | 3.7 | 1 | 8 | 2.7 | |
1Y_L | 3.4 | 1 | 8 | 2.3 | |||||
South Italy | 3Y | 14.8 | 1 | 27 | 2.3 | 38.3 | 2 | 108 | 36.2 |
2Y | 10 | 1 | 22 | 6.3 | 30.8 | 2 | 92 | 30.8 | |
1Y | 4.8 | 1 | 12 | 3.5 | 15.3 | 2 | 47 | 15.4 | |
1Y_L | 4 | 1 | 10 | 3 | |||||
Est Germany–West Poland | 3Y | 17.4 | 3 | 42 | 12.6 | 48 | 9 | 92 | 30.1 |
2Y | 10 | 1 | 22 | 6.2 | 25 | 9 | 58 | 19.2 | |
1Y | 4.4 | 1 | 12 | 3.1 | 10.5 | 3 | 29 | 8.7 | |
1Y_L | 5.3 | 3 | 10 | 2.2 |
Satellite Collection | Soil Property | n° | Min | Max | Mean | Std |
---|---|---|---|---|---|---|
3Y | SOC g kg−1 | 144 | 3.4 | 261.6 | 22 | 28.4 |
Clay % | 144 | 2 | 56 | 23.1 | 10.9 | |
CaCO3 g kg−1 | 144 | 0 | 712 | 62.6 | 128.9 | |
2Y | SOC g kg−1 | 140 | 3.4 | 261.6 | 22 | 28.7 |
Clay % | 140 | 2 | 56 | 22.9 | 10.7 | |
CaCO3 g kg−1 | 140 | 0 | 712 | 59.8 | 128.9 | |
1Y | SOC g kg−1 | 118 | 3.4 | 261.6 | 23.2 | 31 |
Clay % | 118 | 2 | 56 | 22.9 | 11.3 | |
CaCO3 g kg−1 | 118 | 0 | 712 | 61.3 | 134.8 | |
1Y_L | SOC g kg−1 | 121 | 3.4 | 261.6 | 22.5 | 30.5 |
Clay % | 121 | 2 | 56 | 24 | 11.3 | |
CaCO3 g kg−1 | 121 | 0 | 712 | 70.6 | 137 |
Soil Property | Sensor | Acquisition Time | Model | N° Samples | RMSE * | RPD |
---|---|---|---|---|---|---|
SOC | Lab | 2015 | Cubist | 144 | 17.96 | 1.58 |
Lab_L8 | 2015 | Cubist | 144 | 20.30 | 1.40 | |
Lab_S2 | 2015 | Cubist | 144 | 20.32 | 1.40 | |
L8 | 3Y | Cubist | 144 | 18.55 | 1.53 | |
L8 | 2Y | Cubist | 140 | 20.67 | 1.39 | |
L8 | 1Y | Cubist | 118 | 22.43 | 1.38 | |
L8 | 1Y_L | Cubist | 121 | 26.48 | 1.15 | |
S2 | 3Y | Cubist | 144 | 16.31 | 1.74 | |
S2 | 2Y | Cubist | 140 | 21.35 | 1.35 | |
S2 | 1Y | Cubist | 118 | 19.64 | 1.58 | |
Clay | Lab | 2015 | PLSR | 144 | 5.92 | 1.83 |
Lab_L8 | 2015 | Cubist | 144 | 7.58 | 1.43 | |
Lab_S2 | 2015 | Cubist | 144 | 7.34 | 1.48 | |
L8 | 3Y | Cubist | 144 | 9.08 | 1.20 | |
L8 | 2Y | Cubist | 140 | 9.42 | 1.14 | |
L8 | 1Y | Cubist | 118 | 9.81 | 1.15 | |
L8 | 1Y_L | Cubist | 121 | 10.94 | 1.03 | |
S2 | 3Y | Cubist | 144 | 8.25 | 1.32 | |
S2 | 2Y | Cubist | 140 | 8.38 | 1.28 | |
S2 | 1Y | Cubist | 118 | 9.07 | 1.25 | |
CaCO3 | Lab | 2015 | PLSR | 144 | 47.08 | 2.74 |
Lab_L8 | 2015 | Cubist | 144 | 96.97 | 1.33 | |
Lab_S2 | 2015 | Cubist | 144 | 92.57 | 1.40 | |
L8 | 3Y | Cubist | 144 | 103.54 | 1.24 | |
L8 | 2Y | Cubist | 140 | 125.05 | 1.03 | |
L8 | 1Y | Cubist | 118 | 124.69 | 1.08 | |
L8 | 1Y_L | Cubist | 121 | 137.80 | 0.99 | |
S2 | 3Y | Cubist | 144 | 109.97 | 1.17 | |
S2 | 2Y | Cubist | 140 | 108.32 | 1.19 | |
S2 | 1Y | Cubist | 118 | 118.89 | 1.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castaldi, F. Sentinel-2 and Landsat-8 Multi-Temporal Series to Estimate Topsoil Properties on Croplands. Remote Sens. 2021, 13, 3345. https://doi.org/10.3390/rs13173345
Castaldi F. Sentinel-2 and Landsat-8 Multi-Temporal Series to Estimate Topsoil Properties on Croplands. Remote Sensing. 2021; 13(17):3345. https://doi.org/10.3390/rs13173345
Chicago/Turabian StyleCastaldi, Fabio. 2021. "Sentinel-2 and Landsat-8 Multi-Temporal Series to Estimate Topsoil Properties on Croplands" Remote Sensing 13, no. 17: 3345. https://doi.org/10.3390/rs13173345
APA StyleCastaldi, F. (2021). Sentinel-2 and Landsat-8 Multi-Temporal Series to Estimate Topsoil Properties on Croplands. Remote Sensing, 13(17), 3345. https://doi.org/10.3390/rs13173345