Anatomy of a Paroxysmal Lava Fountain at Etna Volcano: The Case of the 12 March 2021, Episode
Abstract
:1. Introduction
2. Methods
2.1. Camera Networks
2.2. Satellite Thermal Monitoring
2.3. High Precision Strain from the Borehole Dilatometer
3. Eruptive Activity before the 12 March 2021, Paroxysm
4. Results
4.1. Eruptive Events and Characterization of the Lava Fountain and Ash Plume
4.2. Satellite Thermal Data
4.3. Strain
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, L.; Parfitt, E.A.; Head, J.W., III. Explosive volcanic eruptions-VIII. The role of magma recycling in controlling the behaviour of Hawaiian-style lava fountains. Geophys. J. Int. 1995, 121, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Swanson, D.A.; Duffield, W.A.; Jackson, D.B.; Peterson, D.W. Chronological Narrative of the 1969–71 Mauna Ulu Eruption of Kilauea Volcano, Hawai’i; U.S. Geological Survey Professional Paper 1056; U.S. Government Printing Office: Washington, DC, USA, 1979.
- Wolfe, E.W.; Neal, C.A.; Banks, N.G.; Duggan, T.J. Geological observations and chronology of eruptive events. In The Puu Oo eruption of Kilauea Volcano, Hawaii; Episodes 1 through 20, January 3, 1983, through June 8, 1984; U.S. Geological Survey Professional Paper 1463; U.S. Government Printing Office: Washington, DC, USA, 1988. [Google Scholar]
- Parfitt, E.A.; Wilson, L. The 1983–86 Pu’u’O’o eruption at Kilauea Volcano, Hawaii: A study of dike geometry and eruption mechanisms for a long-lived eruption. J. Volcanol. Geotherm. Res. 1994, 59, 179–205. [Google Scholar] [CrossRef]
- Parcheta, C.E.; Houghton, B.F.; Swanson, D.A. Contrasting patterns of vesiculation in low, intermediate, and high Hawaiian fountains: A case study of the 1969 Mauna Ulu eruption. J. Volcanol. Geotherm. Res. 2013, 255, 79–89. [Google Scholar] [CrossRef]
- Alparone, S.; Andronico, D.; Lodato, L.; Sgroi, T. Relationship between tremor and volcanic activity during the Southeast Crater eruption on Mount Etna in early 2000. J. Geophys. Res. 2003, 108, B52241. [Google Scholar] [CrossRef] [Green Version]
- Allard, P.; Burton, M.; Murè, F. Spectroscopic evidence for a lava fountain driven by previously accumulated magmatic gas. Nature 2005, 433, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Andronico, D.; Corsaro, R.A. Lava fountains during the episodic eruption of South–East Crater (Mt. Etna), 2000: Insights into magma-gas dynamics within the shallow volcano plumbing system. Bull. Volc. 2011, 73, 1165–1178. [Google Scholar] [CrossRef]
- Behncke, B.; Neri, M. The July-August 2001 eruption of Mt. Etna (Sicily). Bull. Volcanol. 2003, 65, 461–476. [Google Scholar] [CrossRef]
- Andronico, D.; Branca, S.; Calvari, S.; Burton, M.R.; Caltabiano, T.; Corsaro, R.A.; Del Carlo, P.; Garfì, G.; Lodato, L.; Miraglia, L.; et al. A multi-disciplinary study of the 2002–03 Etna eruption: Insights for into a complex plumbing system. Bull. Volcanol. 2005, 67, 314–330. [Google Scholar] [CrossRef]
- Andronico, D.; Scollo, S.; Caruso, S.; Cristaldi, A. The 2002–03 Etna explosive activity: Tephra dispersal and features of the deposits. J. Geophys. Res. 2008, 113, B04209. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorso, A.; Calvari, S. A new approach to investigate an eruptive paroxysmal sequence using camera and strainmeter networks: Lessons from the 3–5 December 2015 activity at Etna volcano. Earth Plan. Sci. Lett. 2017, 475, 231–241. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Calvari, S.; Linde, A.; Sacks, S. Eruptive processes leading to the most explosive lava fountain at Etna volcano: The 23 November 2013 episode. Geophys. Res. Lett. 2014, 41, 4912–4919. [Google Scholar] [CrossRef]
- Calvari, S.; Salerno, G.G.; Spampinato, L.; Gouhier, M.; La Spina, A.; Pecora, E.; Harris, A.J.L.; Labazuy, P.; Biale, E.; Boschi, E. An unloading foam model to constrain Etna’s 11–13 January 2011 lava fountaining episode. J. Geophys. Res. 2011, 116, B11207. [Google Scholar] [CrossRef]
- Calvari, S.; Cannavò, F.; Bonaccorso, A.; Spampinato, L.; Pellegrino, A.G. Paroxysmal Explosions, Lava Fountains and Ash Plumes at Etna Volcano: Eruptive Processes and Hazard Implications. Front. Earth Sci. 2018, 6, 107. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Herault, A.; Zago, V.; Del Negro, C. Mapping volcanic deposits of the 2011–2015 Etna Eruptive events using satellite remote sensing. Front. Earth Sci. 2018, 6, 83. [Google Scholar] [CrossRef]
- Andronico, D.; Cannata, A.; Di Grazia, G.; Ferrari, F. The 1986–2021 paroxysmal episodes at the summit craters of Mt. Etna: Insights into volcano dynamics and hazard. Earth Sci. Rev. 2021, 220, 103686. [Google Scholar] [CrossRef]
- Behncke, B.; Stefano Branca, S.; Corsaro, R.A.; De Beni, E.; Miraglia, L.; Proietti, C. The 2011–2012 summit activity of Mount Etna: Birth, growth and products of the new SE crater. J. Volcanol. Geoth. Res. 2014, 270, 10–21. [Google Scholar] [CrossRef]
- Andronico, D.; Scollo, S.; Cristaldi, A.; Lo Castro, M.D. Representativity of incompletely sampled fall deposits in estimating eruption source parameters: A test using the 12–13 January 2011 lava fountain deposit from Mt. Etna volcano, Italy. Bull. Volcanol. 2014, 76, 861. [Google Scholar] [CrossRef]
- Wadge, G.; Guest, J.E. Steady-state magma discharge at Etna 1971–81. Nature 1981, 294, 548–550. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Steffke, A.; Calvari, S.; Spampinato, L. Thirty years of satellite-derived lava discharge rates at Etna: Implications for steady volumetric output. J. Geophys. Res. 2011, 116, B08204. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorso, A.; Calvari, S. Major effusive eruptions and recent lava fountains: Balance between erupted and expected magma volumes at Etna volcano. Geophys. Res. Lett. 2013, 40, 6069–6073. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Aloisi, M. Tracking magma storage: New perspectives from 40 years (1980–2020) of ground deformation source modeling on etna volcano. Front. Earth Sci. 2021, 9, 638742. [Google Scholar] [CrossRef]
- Aloisi, M.; Bonaccorso, A.; Cannavò, F.; Currenti, G.; Gambino, S. The 24 December 2018 eruptive intrusion at Etna volcano as revealed by multidisciplinary continuous deformation networks (CGPS, borehole strainmeters and tiltmeters). J. Geophys. Res. 2020, 125, e2019JB019117. [Google Scholar] [CrossRef]
- Calvari, S.; Bilotta, G.; Bonaccorso, A.; Caltabiano, T.; Cappello, A.; Corradino, C.; Del Negro, C.; Ganci, G.; Neri, M.; Pecora, E.; et al. The VEI 2 Christmas 2018 Etna eruption: A small but intense eruptive event or the starting phase of a larger one? Remote Sens. 2020, 12, 905. [Google Scholar] [CrossRef] [Green Version]
- De Beni, E.; Cantarero, M.; Neri, M.; Messina, A. Lava flows of Mt Etna, Italy: The 2019 eruption within the context of the last two decades (1999–2019). J. Maps. 2020, 17, 65–76. [Google Scholar] [CrossRef]
- Mattia, M.; Bruno, V.; Montgomery-Brown, E.; Patanè, D.; Barberi, G.; Coltelli, M. Combined seismic and geodetic analysis before, during, and after the 2018 Mount Etna eruption. Geochem. Geophys. Geosyst. 2020, 21, e2020GC009218. [Google Scholar] [CrossRef]
- Kampouri, A.; Amiridis, V.; Solomos, S.; Gialitaki, A.; Marinou, E.; Spyrou, C.; Georgoulias, A.K.; Akritidis, D.; Papagiannopoulos, N.; Mona, L. Investigation of Volcanic Emissions in the Mediterranean: “The Etna–Antikythera Connection”. Atmosphere 2021, 2, 40. [Google Scholar] [CrossRef]
- Wilson, T.M.; Cole, J.W.; Stewart, C.; Cronin, S.J.; Johnston, D.M. Ash storms: Impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bull. Volc. 2011, 73, 223–239. [Google Scholar] [CrossRef]
- Andronico, D.; Del Carlo, P. PM10 measurements in urban settlements after lava fountain episodes at Mt. Etna, Italy: Pilot test to assess volcanic ash hazard to human health. Nat. Hazards Earth Syst. Sci. Discuss. 2016, 16, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Donnadieu, F.; Freville, P.; Hervier, C.; Coltelli, M.; Scollo, S.; Prestifilippo, M.; Valade, S.; Rivet, S.; Cacault, P. Near-source Doppler radar monitoring of tephra plumes at Etna. J. Volcanol. Geotherm. Res. 2016, 312, 26–39. [Google Scholar] [CrossRef]
- Marzano, F.S.; Mereu, L.; Scollo, S.; Donnadieu, F.; Bonadonna, C. Tephra Mass Eruption Rate From Ground-Based X-Band and L-Band Microwave Radars During the November 23, 2013, Etna Paroxysm. IEEE Trans. Geosci. Rem. Sens. 2020, 58, 3314–3327. [Google Scholar] [CrossRef]
- Patrick, M.R.; Harris, A.J.L.; Ripepe, M.; Dehn, J.; Rothery, D.; Calvari, S. Strombolian explosive styles and source conditions: Insights from thermal (FLIR) video. Bull. Volcanol. 2007, 69, 769–784. [Google Scholar] [CrossRef]
- Murata, K.J.; Dondoli, C.; Saenz, R. The 1963–65 eruption of Irazú Volcano, Costa Rica (the period of March 1963 to October 1964). Bull. Volcanol. 1966, 29, 765–796. [Google Scholar] [CrossRef]
- Booth, B.; Walker, G.P.L. Ash deposits from the new explosion crater, Etna 1971. Trans. R. Soc. Lond. 1973, A274, 147–161. [Google Scholar]
- Taddeucci, J.; Pompilio, M.; Scarlato, P. Conduit processes during the July–August 2001 explosive activity of Mt Etna (Italy): Inferences from glass chemistry and crystal size distribution of ash particles. J. Volcanol. Geotherm. Res. 2004, 137, 33–54. [Google Scholar] [CrossRef]
- Lautze, N.; Houghton, B.F. Physical mingling of magma and complex eruption dynamics in the shallow conduit at Stromboli Volcano, Italy. Geology 2005, 33, 425–428. [Google Scholar] [CrossRef]
- Head, J.W.; Wilson, L. Lava fountain heights at Pu’u O’o, Kilauea, Hawaii: Indicators of amount and variations of ex- solved magma volatiles. J. Geophys. Res. 1987, 92, 13715–13719. [Google Scholar] [CrossRef]
- Parfitt, E.A.; Wilson, L.; Neal, C.A. Factors influencing the height of Hawaiian lava fountains: Implications for the use of fountain height as an indicator of magma gas content. Bull. Volcanol. 1995, 57, 440–450. [Google Scholar] [CrossRef]
- Walker, G.P.L. Explosive volcanic eruptions—a new classification scheme. Geol. Rundsch. 1973, 62, 431–446. [Google Scholar] [CrossRef]
- Parfitt, E.A. A study of clast size distribution, ash deposition and fragmentation in a Hawaiian-style volcanic eruption. J. Volcanol. Geotherm. Res. 1998, 84, 197–208. [Google Scholar] [CrossRef]
- Sparks, R.S.J.; Bursik, M.I.; Carey, S.N.; Gilbert, J.S.; Glaze, L.S.; Sigurdsson, H.; Woods, A.W. Volcanic Plumes; John Wiley Sons: Hoboken, NJ, USA, 1997; p. 574. ISBN 0-471-93901-3. [Google Scholar]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Lodato, L. Shallow magma transport for the 2002–03 Mt. Etna eruption inferred from thermal infrared surveys. J. Volcanol. Geotherm. Res. 2008, 177, 301–312. [Google Scholar] [CrossRef]
- Taddeucci, J.; Pompilio, M.; Scarlato, P. Monitoring the explosive activity of the July–August 2001 eruption of Mt. Etna (Italy) by ash characterization. Geophys. Res. Lett. 2002, 29, 71-1–71-4. [Google Scholar] [CrossRef]
- Dellino, P.; Kyriakopoulos, K. Phreatomagmatic ash from the ongoing eruption of Etna reaching the Greek island of Cefalonia. J. Volcanol. Geotherm. Res. 2003, 126, 341–345. [Google Scholar] [CrossRef]
- Calvari, S.; Pinkerton, H. Birth, growth and morphologic evolution of the “Laghetto” cinder cone during the 2001 Etna eruption. J. Volcanol. Geotherm. Res. 2004, 132, 225–239. [Google Scholar] [CrossRef]
- Calvari, S.; Pinkerton, H. Instabilities in the summit region of Mount Etna during the 1999 eruption. Bull. Volcanol. 2002, 63, 526–535. [Google Scholar] [CrossRef]
- Andronico, D.; Spinetti, C.; Cristaldi, A.; Buongiorno, M.F. Observations of Mt. Etna volcanic ash plumes in 2006: An integrated approach from ground-based and polar satellite NOAA–AVHRR monitoring system. J. Volcanol. Geotherm. Res. 2009, 180, 135–147. [Google Scholar] [CrossRef]
- Harris, D.M.; Rose, W.I. Estimating particle size, concentrations, and total mass of ash in volcanic clouds using weather radar. J. Geoph. Res. 1983, 88, 10969–10983. [Google Scholar] [CrossRef]
- Spinetti, C.; Barsotti, S.; Neri, A.; Buongiorno, M.F.; Doumaz, F.; Nannipieri, L. Investigation of the complex dynamics and structure of the 2010 Eyjafjallajokull volcanic ash cloud using multispectral images and numerical simulations. J. Geophys. Res. Atmos. 2013, 118, 4729–4747. [Google Scholar] [CrossRef]
- Durig, T.; Gudmundsson, M.T.; Karmann, S.; Zimanowski, B.; Dellino, P.; Rietze, M.; Buttner, R. Mass eruption rates in pulsating eruptions estimated from video analysis of the gas thrust-buoyancy transition—A case study of the 2010 eruption of Eyjafjallajökull, Iceland. Earth Planets Space 2015, 67, 180. [Google Scholar] [CrossRef] [Green Version]
- Corradini, S.; Montopoli, M.; Guerrieri, L.; Ricci, M.; Scollo, S.; Merucci, L.; Marzano, F.S.; Pugnaghi, S.; Prestifilippo, M.; Ventress, L.J.; et al. Multi-Sensor Approach for volcanic ash cloud retrieval and eruption characterization: The 23 November 2013 Etna Lava Fountain. Remote Sens. 2016, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Corradini, S.; Guerrieri, L.; Stelitano, D.; Salerno, G.; Scollo, S.; Merucci, L.; Prestifilippo, M.; Musacchio, M.; Silvestri, M.; Lombardo, V.; et al. Near real-time monitoring of the Christmas 2018 Etna eruption using SEVIRI and products validation. Remote Sens. 2020, 12, 1336. [Google Scholar] [CrossRef] [Green Version]
- Corradini, S.; Guerrieri, L.; Brenot, H.; Clarisse, L.; Merucci, L.; Pardini, F.; Prata, A.J.; Realmuto, V.J.; Stelitano, D.; Theys, N. Tropospheric volcanic SO2 mass and flux retrievals from satellite. The Etna December 2018 eruption. Remote Sens. 2021, 13, 2225. [Google Scholar] [CrossRef]
- Athanassiadou, M. The Mt Etna SO2 eruption in December 2015—The view from space. Weather 2016, 71, 273–278. [Google Scholar] [CrossRef]
- Bluth, G.J.S.; Doiron, S.D.; Schnetzler, C.C.; Krueger, A.J.; Walter, L.S. Global tracking of the SO2 cloud from the June, 1991 Mount Pinatubo eruptions. Geophys. Res. Lett. 1992, 19, 151–154. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Calvari, S.; Currenti, G.; Del Negro, C.; Ganci, G.; Linde, A.; Napoli, R.; Sacks, S.; Sicali, A. From source to surface: Dynamics of Etna’s lava fountains investigated by continuous strain, magnetic, ground and satellite thermal data. Bull. Volcanol. 2013, 75, 690. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Currenti, G.; Linde, A.; Sacks, S. New data from borehole strainmeters to infer lava fountain sources (Etna 2011–2012). Geophys. Res. Lett. 2013, 40, 3579–3584. [Google Scholar] [CrossRef] [Green Version]
- Corradini, S.; Guerrieri, L.; Lombardo, V.; Merucci, L.; Musacchio, M.; Prestifilippo, M.; Scollo, S.; Silvestri, M.; Spata, G.; Stelitano, D. Proximal monitoring of the 2011–2015 Etna lava fountains using MSG-SEVIRI data. Geosciences 2018, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Scollo, S.; Prestifilippo, M.; Pecora, E.; Corradini, S.; Merucci, L.; Spata, G.; Coltelli, M. Eruption column height estimation of the 2011–2013 Etna lava fountains. Ann. Geophys. 2014, 57, S0214. [Google Scholar]
- Scollo, S.; Prestifilippo, M.; Bonadonna, C.; Cioni, R.; Corradini, S.; Degruyter, W.; Rossi, E.; Silvestri, M.; Biale, E.; Carparelli, G.; et al. Near-real-time tephra fallout assessment at Mt. Etna, Italy. Remote Sens. 2019, 11, 2987. [Google Scholar] [CrossRef] [Green Version]
- Ganci, G.; James, M.R.; Calvari, S.; Del Negro, C. Separating the thermal fingerprints of lava flows and simultaneous lava fountaining using ground-based thermal camera and SEVIRI measurements. Geophys. Res. Lett. 2013, 40, 5058–5063. [Google Scholar] [CrossRef]
- Corradino, C.; Ganci, G.; Cappello, A.; Bilotta, G.; Calvari, S.; Del Negro, C. Recognizing eruptions of mount etna through machine learning using multiperspective infrared images. Remote Sens. 2020, 12, 970. [Google Scholar] [CrossRef] [Green Version]
- Ganci, G.; Vicari, A.; Cappello, A.; Del Negro, C. An emergent strategy for volcano hazard assessment: From thermal satellite monitoring to lava flow modelling. Remote Sens. Environ. 2012, 119, 197–207. [Google Scholar] [CrossRef]
- Ganci, G.; Harris, A.J.L.; Del Negro, C.; Guéhenneux, Y.; Cappello, A.; Labazuy, P.; Calvari, S.; Gouhier, M. A year of lava fountaining at Etna: Volumes from SEVIRI. Geophys. Res. Lett. 2012, 39, L06305. [Google Scholar] [CrossRef]
- Ganci, G.; Vicari, A.; Fortuna, L.; Del Negro, C. The HOTSAT volcano monitoring system based on combined use of SEVIRI and MODIS multispectral data. Ann. Geophys. 2011, 54, 5. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Corradino, C.; Mangiameli, M.; Mussumeci, G.; Del Negro, C. 3D Lava flow mapping in volcanic areas using multispectral and stereo optical satellite data. AIP Conf. Proc. 2020, 2293, 300003. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Dehn, J.; Calvari, S. Lava effusion rate definition and measurement: A review. Bull. Volcanol. 2007, 70, 1–22. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Flynn, L.P.; Keszthelyi, L.; Mouginis-Mark, P.J.; Rowland, S.K.; Resing, J.A. Calculation of lava effusion rates from Landsat TM data. Bull. Volcanol. 1998, 60, 52–71. [Google Scholar] [CrossRef]
- Wright, R.; Blake, S.; Harris, A.; Rothery, D. A simple explanation for the space-based calculation of lava eruption rates. Earth Plan. Sci. Lett. 2001, 192, 223–233. [Google Scholar] [CrossRef]
- Garel, F.; Kaminski, E.; Tait, S.; Limare, A. An experimental study of the surface thermal signature of hot subaerial isoviscous gravity currents: Implications for thermal monitoring of lava flows and domes. J. Geophys. Res. 2012, 117, B02205. [Google Scholar] [CrossRef]
- Hon, K.; Kauahikaua, J.; Denlinger, R.; Mackay, K. Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol. Soc. Am. Bull. 1994, 106, 351–370. [Google Scholar] [CrossRef]
- Prata, A.J.; Bluth, G.J.S.; Rose, W.I.; Schneider, D.J.; Tupper, A.C. Comments on failures in detecting volcanic ash from a satellite-based technique. Remote Sens. Environ. 2001, 78, 341–346. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Ganci, G. Quantifying lava flow hazards in response to effusive eruption. Geol. Soc. Am. 2015, 128, 752–763. [Google Scholar] [CrossRef]
- Corradino, C.; Ganci, G.; Cappello, A.; Bilotta, G.; Herault, A.; Del Negro, C. Mapping recent lava flows at Mount Etna using multispectral sentinel-2 images and machine learning techniques. Remote Sens. 2019, 11, 1916. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorso, A.; Linde, A.; Currenti, G.; Sacks, S.; Sicali, A. Theborehole dilatometer network of Mount Etna: A powerful tool to detect and infer volcano dynamics. J. Geophys. Res. Solid Earth 2016, 121, 4655–4669. [Google Scholar] [CrossRef] [Green Version]
- Currenti, G.; Zuccarello, L.; Bonaccorso, A.; Sicali, A. Borehole volumetric strainmeter calibration from a nearby seismic broadband array at Etna volcano. J. Geophys. Res. 2017, 122, 7729–7738. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Currenti, G.; Linde, A.; Sacks, S.; Sicali, A. Advances in understanding intrusive, explosive and effusive processes as revealed by the borehole dilatometer network on Mt. Etna volcano. Front. Earth Sci. 2020, 7, 357. [Google Scholar] [CrossRef] [Green Version]
- Marchese, F.; Neri, M.; Behncke, B. Main morpho-structural changes and eruptions of Etna in 2016–2019 captured by satellite observations. In Proceedings of the 22nd EGU General Assembly, Online Event, 4–8 May 2020; p. EGU2020-13909. [Google Scholar] [CrossRef]
- Genzano, N.; Marchese, F.; Neri, M.; Pergola, N.; Tramutoli, V. Implementation of robust satellite techniques for volcanoes on ASTER data under the google earth engine platform. Appl. Sci. 2021, 11, 4201. [Google Scholar] [CrossRef]
- Jaupart, C.; Vergniolle, S. Laboratory models of Hawaiian and Strombolian eruptions. Nature 1988, 331, 58–60. [Google Scholar] [CrossRef]
- Jaupart, C.; Veirgniolle, S. The generation and collapse of foam layer at the roof of a basaltic magma chamber. J. Fluid Mech. 1989, 203, 347–380. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Cannata, A.; Corsaro, R.A.; Di Grazia, G.; Gambino, S.; Greco, F.; Miraglia, L.; Pistorio, A. Multi-disciplinary investigation on a lava fountain preceding a flank eruption: The 10 May 2008 Etna case. Geochem. Geophys. Geosyst. 2011, 12, 7. [Google Scholar] [CrossRef]
- Jaupart, C. Magma ascent at shallow levels. Encycl. Volcanoes 1999, 1, 237–245. [Google Scholar]
- Dubosclard, G.; Cordesses, R.; Allard, P.; Hervier, C.; Coltelli, M.; Kornprobst, J. First testing of a volcano Doppler radar (Voldorad) at Mt. Etna. Geophys. Res. Lett. 1999, 26, 3389–3392. [Google Scholar] [CrossRef]
- De Beni, E.; Behncke, S.; Branca, I.; Nicolosi, R.; Carluccio, F.; D’Ajello, C.; Chiappini, M. The continuing story of Etna’s new southeast crater (2012–2014): Evolution and volume calculations based on field surveys and aerophotogrammetry. J. Volcanol. Geotherm. Res. 2015, 303, 175–186. [Google Scholar] [CrossRef]
- Roeloffs, E.A.; Linde, A.T. Borehole observations and continuous strain and fluid pressure. In Volcano Deformation Geodetic Measurments Techniques; Dzurisin, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 305–322. [Google Scholar] [CrossRef]
- Vulpiani, G.; Ripepe, M.; Valade, S. Mass discharge rate retrieval combining weather radar and thermal camera observations. J. Geophys. Res. Solid Earth 2016, 121, 5679–5695. [Google Scholar] [CrossRef] [Green Version]
- Pailot-Bonnétat, S.; Harris, A.J.L.; Calvari, S.; De Michele, M.; Gurioli, L. Plume height time-series retrieval using shadow in single spatial resolution satellite images. Remote Sens. 2020, 12, 3951. [Google Scholar] [CrossRef]
- Spanu, A.; de’Michieli Vitturi, M.; Barsotti, S. Reconstructing eruptive source parameters from tephra deposit: A numerical study of medium-sized explosive eruptions at Etna volcano. Bull. Volcanol. 2016, 78, 59. [Google Scholar] [CrossRef] [Green Version]
- Casadevall, T.J. Volcanic ash and aviation safety: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety. USGS Bull. 1994, 2047, 450–469. [Google Scholar]
- Rose, W.I.; Delene, D.J.; Schneider, D.J.; Bluth, G.J.S.; Krueger, A.J.; Sprod, I.; McKee, C.; Davies, H.L.; Erns, G.G.J. Ice in the 1994 Rabaul eruption cloud: Implications for volcano hazard and atmospheric effects. Nature 1995, 375, 477–479. [Google Scholar] [CrossRef]
- Marzano, F.S.; Picciotti, E.; Montopoli, M.; Vulpiani, G. Inside Volcanic Clouds. Remote Sensing of Ash Plumes Using Microwave Weather Radars. Am. Meteorol. Soc. 2013, 94, 1567–1586. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Calvari, S.; Boschi, E. Hazard mitigation and crisis management during major flank eruptions at Etna volcano: Reporting on real experience. In Detecting, Modelling and Responding to Effusive Eruptions; Harris, A.J.L., De Groeve, T., Garel, F., Carn, S.A., Eds.; Special Publications (IAVCEI) Series; Geological Society of London: London, UK, 2015; Volume 426, pp. 447–461. ISBN 978-1-86239-736-1. [Google Scholar] [CrossRef]
- Solana, M.C.; Calvari, S.; Kilburn, C.R.J.; Gutierrez, H.; Chester, D.; Duncan, A. Supporting the development of procedures for communications during volcanic emergencies: Lessons learnt from the Canary Islands (Spain) and Etna and Stromboli (Italy). In Advances in Volcanology, Observing the Volcano World, Volcano Crisis Communication; Fearnley, C.J., Bird, D.K., Haynes, K., McGuire, W.J., Jolly, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 289–305. ISBN 978-3-319-44095-8. [Google Scholar] [CrossRef] [Green Version]
Label | Type | Location | Distance from the Craters (km) | Frame Rate | Field of View |
---|---|---|---|---|---|
ENT | Thermal FLIR A40M | Nicolosi, South flank 730 m a.s.l. | 15.0 | 2 frames/s | 24° (horizontal) 18° (vertical) |
EBT | Thermal FLIR A320 | Bronte, NW flank 85 m a.s.l. | 13.5 | 2 frames/s | 25° (horizontal) 18.8° (vertical) |
EMCT | Thermal FLIR A320 | Mt. Cagliato, East flank 1160 m a.s.l. | 8.3 | 2 frames/s | 25° (horizontal) 18.8° (vertical) |
EMOT | Thermal FLIR A320 | Montagnola, South flank 2600 m a.s.l. | 3.0 | 1 frame/s | 25° (horizontal) 18.8° (vertical) |
EMCH | Visible Vivotec IP8172 | Mt. Cagliato, East flank 390 m a.s.l. | 8.3 | 2 frames/min | 33°~93° (horizontal), 24°~68° (vertical) |
ECV | Visible Canon VC-C4R | Catania Nesima, South flank 35 m a.s.l. | 26.7 | 1 frame/2 s | 3–47.5° (horizontal and vertical) |
ECVH | Visible Vivotec IP8172 | Catania Nesima, South flank 35 m a.s.l. | 27.0 | 1 frame/min | 33°~93° (horizontal), 24°~68° (vertical) |
EBVH | Visible Vivotec IP8172 | Bronte, NW flank 163 m a.s.l. | 13.5 | 1 frame/min | 33°~93° (horizontal), 24°~68° (vertical) |
Time UTC | Eruptive Activity | Notes |
---|---|---|
02:35 | Strombolian activity started at the NSEC | Figure 7 |
02:56 | First satellite thermal anomaly detected and Strombolian activity intensified | Figure 7 |
05:00 | Plume already reached 4000 m a.s.l. | Figures 5 and 6a |
06:40 | Transitional activity between Strombolian and lava fountaining started at NSEC | Figures 3a and 6b |
07:00 | Lava flow output started from the E rim of NSEC, expanding E | Figure 3a |
07:22 | A second lava flow started from the NE rim of NSEC, expanding N, strain suddenly declining | Figure 3b |
07:35 | Lava fountaining phase with significant ash emission and formation of an eruptive column, 20–30 m s−1 of muzzle velocity | Figures 3b and 6d |
07:35–08:56 | Radiant heat flux increased from satellite, muzzle velocity of ~70 m s−1, strain rate increased | Figure 9 |
08:14 | Maximum muzzle velocity of 133 m s−1 reached by the lava fountain | |
08:30 | Maximum plume height of 11.3 km a.s.l. detected from EBVH | Figures 4 and 5 |
08:47–08:49 | Maximum elevation reached by the lava fountain of 3000 m above the crater rim (from EBT), and of 2400 m above the crater rim (from ENT) and peak IER of 276 m3 s−1 | Figures 4b and 5 |
08:57 | Peak value of 35 GW measured from satellite and peak value from strain | Figures 5 and 9 |
09:05–09:30 | The ash plume started declining in height | Figure 5 |
09:20 | A third lava flow started from the SE rim of NSEC, expanding SE | Figure 3c |
09:45 | Lava fountain ended, strain declining stopped | Figure 3c |
10:10–10:15 | The ash plume dropped below 6.0 km a.s.l. | Figure 5 |
10:54 | Explosive paroxysm ended | Figure 3c |
12:00 | Lava flow output ended and lava flow field cooling |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvari, S.; Bonaccorso, A.; Ganci, G. Anatomy of a Paroxysmal Lava Fountain at Etna Volcano: The Case of the 12 March 2021, Episode. Remote Sens. 2021, 13, 3052. https://doi.org/10.3390/rs13153052
Calvari S, Bonaccorso A, Ganci G. Anatomy of a Paroxysmal Lava Fountain at Etna Volcano: The Case of the 12 March 2021, Episode. Remote Sensing. 2021; 13(15):3052. https://doi.org/10.3390/rs13153052
Chicago/Turabian StyleCalvari, Sonia, Alessandro Bonaccorso, and Gaetana Ganci. 2021. "Anatomy of a Paroxysmal Lava Fountain at Etna Volcano: The Case of the 12 March 2021, Episode" Remote Sensing 13, no. 15: 3052. https://doi.org/10.3390/rs13153052
APA StyleCalvari, S., Bonaccorso, A., & Ganci, G. (2021). Anatomy of a Paroxysmal Lava Fountain at Etna Volcano: The Case of the 12 March 2021, Episode. Remote Sensing, 13(15), 3052. https://doi.org/10.3390/rs13153052