Examples of Multi-Sensor Determination of Eruptive Source Parameters of Explosive Events at Mount Etna
Abstract
:1. Introduction
2. Methodology
2.1. ESPs from Tephra-Fallout Deposit
2.1.1. Total Erupted Mass and Mass Eruption Rate
2.1.2. Whole Deposit Grain-Size Distribution
2.2. ESPs from Doppler Radars
2.2.1. Mass Parameters from MWR
2.2.2. Mass Parameters from V2B
2.2.3. Radar Grain-Size Distribution
2.2.4. Plume Height
2.3. Mass Eruption Rate from Ground-Based Thermal Camera
2.4. ESPs from Satellite Retrievals
2.4.1. Plume Height
2.4.2. Erupted Mass and Grain-Size Distribution
2.5. ESPs from Infrasound Array
Exit Velocities and MER
2.6. Plume Height from Visible Camera
3. Results
3.1. Plume Height Estimates
3.2. Determination of Exit Velocity, TEM and MER
3.2.1. Mixture Exit Velocity from V2B and Infrasound
3.2.2. TEM and MER from Tephra-Fallout Deposit
3.2.3. MER and TEM from Remote Sensing
3.3. Total Grain-Size Distributions
3.3.1. Combination of WDGSD and GSDsat
3.3.2. Combination of the GSDMWR and GSDsat
4. Discussion
4.1. Determination of Plume Height
4.2. Insights into Exit Velocity Measurements
4.3. ESPs of Weak and Strong Paroxysms at Etna
4.3.1. Multi-Strategy TGSD Determination
4.3.2. The Role of Signal Duration in MER and TEM Determination
4.3.3. MER and TEM
5. Conclusions
- (1)
- eruption duration, a critical parameter to convert the TEM in the MER and vice versa, is different among all sensors analyzed because it is associated with different phases of Etna’s paroxysms. V2B, infrared, and infrasound signals correspond to the starting and sustained activity of the paroxysm (Phase I, i.e., lava fountaining activity, and Phase II, i.e., lava fountain-fed tephra plume activity). In contrast, the MWR and satellite signals are associated with both Phase II and the final waning phase (Phase III) related to the subsequent expansion of plume and cloud in the atmosphere with little or no tephra emission from the source vent. As a result, the MER should be derived based on the TEM and duration associated with the same sensor. In the case of TEM derived from the tephra-fallout deposit, the duration used to calculate MERs should be that associated with Phase II and III (i.e., associated with MWR and satellite signals);
- (2)
- the three techniques currently used at Etna for the near real-time determination of HT (visible camera, MWR, and satellite-based thermal-infrared observations) operate at various time resolutions (i.e., 1 min to 15 min). A critical application of the three techniques, including the use of visible cameras at different locations [22], allows us to assess the best value of average HT as well as to evaluate the uncertainties associated with each remote sensor. In addition, it appears that satellite-based HT tend to be underestimated during weak and unstable paroxysmal activity;
- (3)
- exit velocities from V2B can be used in combination with exit velocities from infrasound to better constrain the vent radius used for MER calculations, based on the SFA. For Etna, a range of 10–13.5 m was found as the best estimate of the NSEC radius. A combination of V2B and infrared camera signal with the existing early warning system based on infrasonic data at Etna [16] has also the potential to better characterize the MER in real-time at the beginning of the paroxysmal activity, i.e., Phase I;
- (4)
- MER approaches are based on various parameters, e.g., radar echoes, exit velocities, or HT, and their accuracy strongly depends on the eruption intensity. Overall, approaches based on HT (e.g., SEVIRI-TPA, MWR-TPA) or signals proportional to the quantity of detected tephra (e.g., MWR-NSA, MWR-MCA, V2B-NSA) are better suited for computing MER in a large set of eruptive intensities. As an example, MER can be constrained at various time-resolution from 0.2 s (V2B) to 10 min (MWR) for a wide range of eruptive intensities and for all weather and light conditions. Instead, SFA methods (e.g., MWR-SFA, V2B-SFA, Infrasound-SFA, Ground-IR-SFA), based on exit velocities that do not vary significantly among paroxysms, might overestimate or underestimate the MER and TEM for weak and strong paroxysms, respectively;
- (5)
- GSDMWR can be combined with GSDsat to provide a TGSD in near real-time, which is strongly affected by the determination of the relative TEMs. GSDMWR is representative of both the material contributing to the tephra-fallout deposit (contributing to the WDGSD) and to material that typically falls in the sea beyond the coastline (about 20 km from the vent in the case of Etna volcano). Nonetheless, a better constrain of the TEM associated with the two sensors and of the tails of the GSDs is required for operational use;
- (6)
- the combination of the WDGSD and GSDsat. can be used to validate the near real-time strategy described in the previous point as well as a proxy for near real-time tephra forecasting of future eruptions of similar intensity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Summary of Acronyms and Variables Used in This Study
Acronym | Term |
ARPA | Agenzia Regionale per la Protezione dell’Ambiente |
BTD | Brightness Temperature Difference |
EBHD | Etna Bronte High Definition camera |
ECV | Etna Catania Visible |
ESP | Eruptive Source Parameter |
ETN | Etna |
GSD | Grain-Size Distribution |
GSDsat | Grain-Size Distribution derived from satellite retrievals |
GSDMWR | Grain-Size Distribution derived from X-band radar data |
HYSPLIT | Hybrid Single-Particle Lagrangian Integrated Trajectory Model |
INGV-OE | Istituto Nazionale di Geofisica e Vulcanologia-Osservatorio Etneo |
TIR | Thermal InfraRed |
IS | InfraSound |
MCA | Mass Continuity Approach |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MVT | Monte Vetore |
MWR | Microwave Weather Radar |
NSA | Near Surface Approach |
NASA | National Aeronautics and Space Agency |
NSEC | New SouthEast Crater |
SEVIRI | Spinning Enhances Visible and InfraRed Imager |
SFA | Surface Flux Approach |
TIR | Thermal InfraRed |
TGSD | Total Grain-Size Distribution |
TPA | Top Plume Approach |
UTC | Universal Time Coordinated |
VARR | Volcanic Ash Radar Retrieval |
VATDM | Volcanic Ash Transport and Dispersal Model |
VPR | Volcanic Plume Retrieval |
V2B | VOLDORAD 2B |
WDGSD | Whole Deposit Grain-Size Distribution (i.e., GSD derived from tephra-fallout deposit) |
Symbol | Variable |
A | Entry Surface of volcanic jets in the radar beams (m2) |
c | Speed of sound (m/s) [65] |
Ct | Tephra concentration (kg/m3) [15] |
Dn | Reflectivity-weighted mean radar diameter (m) [15] |
HT | Plume Top Height (km a.s.l.) |
IL | Insertion loss caused by topography (dB) [65] |
ka | Product between the acoustic wave number k (m−1) and the vent radius a (m) [65] |
MER | Mass Eruption Rate (kg/s) |
qi | Volumetric flux from infrasound (m3/s) [65] |
|R| | Acoustic reflectance [65] |
Re | Effective radius (m) |
S | Eruptive vent surface (m2) |
t | Time (s) |
TEM | Total Erupted Mass (kg) |
ventry | Entry velocity of particles in the radar beams (m/s) |
vexit | Exit velocity (m/s) [12,30] |
vr | Radial velocity (m/s) |
Z | Radar Reflectivity factor (dBZ) |
α | Directivity of the acoustic wave at 0° [65] |
Β,γ,δ,ε | VARR Parameters to be used in Equations (3) and (4) [15] |
θ | Radar beam elevation angle (°) [12,30] |
ΔP | Pressure signal (Pa) [65] |
λ | Radar wavelength (m) |
ρ | Atmosphere density (kg/m3) |
ρx | Mixture density (kg/m3) [15] |
Φ | Phi unit of particle sizes |
Appendix B. Grain-Size Data from the 29 August 2011 Tephra-Fallout Deposit
References
- Jenkins, S.F.; Wilson, T.; Magill, C.; Miller, V.; Stewart, C.; Blong, R.; Marzocchi, W.; Boulton, M.; Bonadonna, C.; Costa, A. Volcanic ash fall hazard and risk. In Global Volcanic Hazard and Risk; Loughlin, S.C., Sparks, S., Brown, S.K., Jenkins, S.F., Brown, C., Eds.; Cambridge University Press: Cambridge, UK, 2015; ISBN 978-1-107-11175-2. [Google Scholar]
- Wilson, T.M.; Jenkins, S.; Stewart, C. Impacts from volcanic ash fall. In Volcanic Hazards, Risk and Disasters; Papale, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Calvari, S.; Salerno, G.G.; Spampinato, L.; Gouhier, M.; La Spina, A.; Pecora, E.; Harris, A.J.L.; Labazuy, P.; Biale, E.; Boschi, E. An unloading foam model to constrain Etna’s 11–13 January 2011 lava fountaining episode. J. Geophys. Res. 2011, 116, 1–18. [Google Scholar] [CrossRef]
- Calvari, S.; Cannavò, F.; Bonaccorso, A.; Spampinato, L.; Pellegrino, A.G. Paroxysmal Explosions, Lava Fountains and Ash plumes at Etna Volcano: Eruptive Processes and Hazard Implications. Front. Earth Sci. 2018, 6, 107. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Caltabiano, T.; Currenti, G.; Del Negro, C.; Gambino, S.; Ganci, G.; Boschi, E. Dynamics of a lava fountain revealed by geophysical, geochemical and thermal satellite measurements: The case of the 10 April 2011 Mt Etna eruption. Geophys. Res. Lett. 2011, 38, 1–7. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Calvari, S.; Linde, A.; Sacks, S. Eruptive processes leading to the most explosive lava fountain at Etna volcano: The 23 November 2013 episode. Geophys. Res. Lett. 2014, 41, 4912–4919. [Google Scholar] [CrossRef]
- Corradini, S.; Montopoli, M.; Guerrieri, L.; Ricci, M.; Scollo, S.; Merucci, L.; Marzano, F.S.; Pugnaghi, S.; Prestifilippo, M.; Ventress, L.J.; et al. A Multi-Sensor Approach for Volcanic Ash Cloud Retrieval and Eruption Characterization: The 23 November 2013 Etna Lava Fountain. Remote Sens. 2016, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Corradini, S.; Guerrieri, L.; Lombardo, V.; Merucci, L.; Musacchio, M.; Prestifilippo, M.; Scollo, S.; Silvestri, M.; Spata, G.; Stelitano, D. Proximal Monitoring of the 2011-2015 Etna Lava Fountains Using MSG-SEVIRI Data. Geosciences 2018, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Marzano, F.S.; Barbieri, S.; Vulpiani, G.; Rose, W.I. Volcanic cloud retrieval by ground-based microwave weather radar. IEEE Trans. Geosci. Rem. Sens. 2006, 44, 3235–3246. [Google Scholar] [CrossRef]
- Marzano, F.S.; Barbieri, S.; Picciotti, E.; Karlsdóttir, S. Monitoring subglacial Volcanic Eruption using Ground-Based C-Band Radar Imagery. IEEE Trans. Geosc. Remote Sens. 2010, 48, 403–414. [Google Scholar] [CrossRef]
- Donnadieu, F. Volcanological applications of Doppler radars: A review and examples from a transportable pulse radar in L-band. In Doppler Radar Observations—Weather Radar, Wind Profiler, Ionospheric Radar, and Other Advanced Applications; Bech, J., Chau, J.L., Eds.; In TechOpen: London, UK, 2012; pp. 409–446. ISBN 978-957-51-0496-4. [Google Scholar]
- Donnadieu, F.; Freville, P.; Hervier, C.; Coltelli, M.; Scollo, S.; Prestifilippo, M.; Valade, S.; Rivet, S.; Cacault, P. Near-source Doppler radar monitoring of tephra plumes at Etna. J. Volcanol. Geotherm. Res. 2016, 312, 26–39. [Google Scholar] [CrossRef]
- Montopoli, M. Velocity profiles inside volcanic clouds from three-dimensional scanning microwave dual polarization Doppler radars. J. Geophys. Res. Atmos. 2016, 121, 7881–7900. [Google Scholar] [CrossRef] [Green Version]
- Vulpiani, G.; Ripepe, M.; Valade, S. Mass discharge rate retrieval combining weather radar and thermal camera observations. J. Geophys. Res. Solid Earth 2016, 121, 5679–5695. [Google Scholar] [CrossRef] [Green Version]
- Marzano, F.S.; Mereu, L.; Scollo, S.; Donnadieu, F.; Bonadonna, C. Tephra Mass Eruption Rate from Ground-based X-Band and L-Band Microwave Radars during the 23 November 2013 Etna Paroxysm. IEEE Trans. Geosc. Remote Sens. 2020, 58, 3314–3327. [Google Scholar] [CrossRef]
- Ripepe, M.; Marchetti, E.; Delle Donne, D.; Genco, R.; Innocenti, L.; Lacanna, G.; Valade, S. Infrasonic Early Warning System for Explosive Eruption. J. Geophys. Res. Solid Earth 2018, 123, 9570–9585. [Google Scholar] [CrossRef]
- Sciotto, M.; Cannata, A.; Prestifilippo, M.; Scollo, S.; Fee, D.; Privitera, E. Unravelling the links between seismo-acoustic signals and eruptive parameters: Etna lava fountain case study. Sci. Rep. 2019, 9, 16417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scollo, S.; Boselli, A.; Coltelli, M.; Leto, G.; Pisani, G.; Spinelli, N.; Wang, X. Monitoring Etna volcanic plumes using a scanning lidar. Bull. Volcanol. 2012, 74, 2382–2395. [Google Scholar] [CrossRef]
- Scollo, S.; Boselli, A.; Coltelli, M.; Leto, G.; Pisani, G.; Prestifilippo, M.; Spinelli, N.; Wang, X. Volcanic ash concentration during the 12 August 2011 Etna eruption. Geophys. Res. Lett. 2015, 42, 2634–2641. [Google Scholar] [CrossRef]
- Scollo, S.; Prestifilippo, M.; Spata, G.; D’Agostino, M.; Coltelli, M. Monitoring and forecasting Etna volcanic plumes. Nat. Hazard Earth Syst. Sci. 2009, 9, 1573–1585. [Google Scholar] [CrossRef] [Green Version]
- Scollo, S.; Prestifilippo, M.; Pecora, E.; Corradini, S.; Merucci, L.; Spata, G.; Coltelli, M. Height estimation of the 2011–2013 Etna lava fountains. Ann. Geophys. 2014, 57, 0214. [Google Scholar] [CrossRef] [Green Version]
- Scollo, S.; Prestifilippo, M.; Bonadonna, C.; Cioni, R.; Corradini, S.; Degruyter, W.; Rossi, E.; Silvestri, M.; Biale, E.; Carparelli, G.; et al. Near-Real-Time Tephra Fallout Assessment at Mt. Etna, Italy. Remote Sens. 2019, 11, 2987. [Google Scholar] [CrossRef] [Green Version]
- Scollo, S.; Del Carlo, P.; Coltelli, M. Tephra fallout of 2001 Etna flank eruption: Analysis of the deposit and plume dispersion. J. Volcanol. Geotherm. Res. 2007, 160, 147–164. [Google Scholar] [CrossRef]
- Andronico, D.; Scollo, S.; Caruso, S.; Cristaldi, A. The 2002-03 Etna explosive activity: Tephra dispersal and features of the deposits. J. Geophys. Res. 2008, 113, B04209. [Google Scholar] [CrossRef] [Green Version]
- Andronico, D.; Scollo, S.; Cristaldi, A.; Ferrari, F. Monitoring ash emission episodes at Mt. Etna: The 16 november 2006 case study. J. Volcanol. Geotherm. Res. 2009, 180, 123–134. [Google Scholar] [CrossRef]
- Andronico, D.; Scollo, S.; Cristaldi, A.; Lo Castro, M.D. Representivity of incompletely sampled fall deposits in estimating eruption source parameters: A test using the 12–13 January 2011 lava fountain deposit from Mt. Etna volcano, Italy. Bull. Volcanol. 2014, 76, 861. [Google Scholar] [CrossRef]
- Andronico, D.; Scollo, S.; Cristaldi, A. Unexpected hazards from tephra fallouts at Mt Etna: The 23 November 2013 lava fountain. J. Volcanol. Geotherm. Res. 2015, 304, 118–125. [Google Scholar] [CrossRef]
- Marzano, F.S.; Lamantea, M.; Montopoli, M.; Herzog, M.; Graf, H.; Cimini, D. Microwave remote sensing of Plinian eruption due to the Grímsvötn Icelandic volcano on May 2011. Rem. Sens. Env. 2013, 129, 168–184. [Google Scholar] [CrossRef]
- Guerrieri, L.; Merucci, L.; Corradini, S.; Pugnaghi, S. Evolution of the 2011 Mt. Etna ash and SO2 lava fountain episodes using SEVIRI data and VPR retrieval approach. J. Volcanol. Geotherm. Res. 2015, 291, 63–71. [Google Scholar] [CrossRef]
- Freret-Lorgeril, V.; Donnadieu, F.; Scollo, S.; Provost, A.; Fréville, F.; Ghéhenneux, Y.; Hervier, C.; Prestifilippo, M.; Coltelli, M. Mass Eruption Rates of Tephra Plumes During the 2011-2015 Lava Fountain Paroxysms at Mt. Etna From Doppler Radar Retrievals. Front. Earth Sci. 2018, 6, 73. [Google Scholar] [CrossRef]
- Poret, M.; Corradini, S.; Merucci, L.; Costa, A.; Andronico, D.; Montopoli, M.; Vulpiani, G.; Freret-Lorgeril, V. Reconstructing volcanic plume evolution integrating satellite and ground-based data: Application to the 23 November 2013 Etna eruption. Atmos. Chem. Phys. 2018, 18, 4695–4714. [Google Scholar] [CrossRef] [Green Version]
- Poret, M.; Costa, A.; Andronico, D.; Scollo, S.; Gouhier, M.; Cristaldi, A. Modelling eruption source parameters by integrating field, ground-based and satellite-based data: The case of the 23rd February 2013 Etna paroxysm. J. Geophys. Res. Solid Earth 2018, 123, 5427–5450. [Google Scholar] [CrossRef]
- Mereu, L.; Scollo, S.; Bonadonna, C.; Freret-Lorgeril, V.; Marzano, F.S. Multisensor Characterization of the Incandescent Jet Region of Lava Fountain-Fed Tephra Plumes. Remote Sens. 2020, 12, 3629. [Google Scholar] [CrossRef]
- Scollo, S.; Boselli, A.; Corradini, S.; Leto, G.; Guerrieri, L.; Merucci, L.; Prestifilippo, M.; Sanchez, R.Z.; Sannino, A.; Stelitano, D. Multi-Sensor Analysis of a Weak and Long-Lasting Volcanic Plume Emission. Remote Sens. 2020, 12, 3866. [Google Scholar] [CrossRef]
- Behncke, B.; Branca, S.; Corsaro, R.A.; De Beni, E.; Miraglia, L.; Proietti, C. The 2011–2012 summit activity of Mount Etna: Birth, growth and products of the new SE crater. J. Volcanol. Geotherm. Res. 2014, 270, 10–21. [Google Scholar] [CrossRef]
- De Beni, E.; Behncke, B.; Branca, S.; Nicolosi, I.; Carluccio, R.; D’Ajello Caracciolo, F.; Chiappini, M. The continuing story of Etna’s New Southeast Crater (2012–2014): Evolution and volume calculations based on field surveys and aerophotogrammetry. J. Volcanol. Geotherm. Res. 2015, 303, 175–186. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Calvari, S. A new approach to investigate an eruptive paroxysmal sequence using camera and strainmeter networks: Lessons from the 3–5 December 2015 activity at Etna volcano. Earth Planet. Sci. Lett. 2017, 475, 231–241. [Google Scholar] [CrossRef]
- Corsaro, R.A.; Andronico, D.; Behncke, B.; Branca, S.; Caltabiano, T.; Ciancitto, F.; Cristaldi, A.; De Beni, E.; La Spina, A.; Lodato, L.; et al. Monitoring the December 2015 summit eruption of Mt. Etna (Italy): Implications on eruptive dynamics. J. Volcanol. Geotherm. Res. 2017, 341, 53–69. [Google Scholar] [CrossRef]
- Boichu, M.; Clarisse, L.; Péré, J.C.; Herbin, H.; Goloub, P.; Thieuleux, F.; Ducos, F.; Clerbaux, C.; Tanré, C. Temporal variations of flux and altitude of sulfur dioxide emissions during volcanic eruptions: Implications for long-range dispersal of volcanic clouds. Atmos. Chem. Phys. 2015, 15, 8381–8400. [Google Scholar] [CrossRef] [Green Version]
- Pyle, D.M. The thickness, volume, and grainsize of tephra fall deposits. Bull. Volcanol. 1989, 51, 1–15. [Google Scholar] [CrossRef]
- Bonadonna, C.; Houghton, B.F. Total grain-size distribution and volume of tephra-fall deposits. Bull. Volcanol. 2005, 67, 441–456. [Google Scholar] [CrossRef]
- Bonadonna, C.; Costa, A. Estimating the volume of tephra deposits: A new simple strategy. Geology 2012, 40, 415–418. [Google Scholar] [CrossRef]
- Biass, S.; Bonadonna, C. A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: The example of two large eruptions of Cotopaxi volcano, Ecuador. Bull. Volcanol. 2011, 73, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Donnadieu, F.; Freville, P.; Rivet, S.; Hervier, C.; Cacault, P. The Volcano Doppler radar data base of Etna (VOLDORAD 2B). Université Clermont Auvergne—CNRS. 2015. Available online: http://www.obs.univ-bpclermont.fr/SO/televolc/voldorad/bddtr.php (accessed on 22 May 2021).
- Marzano, F.S.; Picciotti, E.; Vulpiani, G.; Montopoli, M. Synthetic signatures of volcanic ash cloud particles from X-Band dual-polarization radar. IEEE Trans. Geosc. Remote Sens. 2012, 50, 193–211. [Google Scholar] [CrossRef]
- Mereu, L.; Marzano, F.S.; Montopoli, M.; Bonadonna, C. Retrieval of Tephra Size Spectra and Mass Flow Rate From C-Band Radar During the 2010 Eyjafjallajökull Eruption, Icelande. IEEE Trans. Geosc. Remote Sens. 2015, 53, 5644–5660. [Google Scholar] [CrossRef]
- Sauvageot, H. Radar Meteorology; Artech House: Boston, MA, USA, 1992; ISBN 0890063184. [Google Scholar]
- Degruyter, W.; Bonadonna, C. Improving on mass flow rate estimates of volcanic eruptions. Geophys. Res. Lett. 2012, 39, L16308. [Google Scholar] [CrossRef] [Green Version]
- Corradini, S.; Spinetti, C.; Carboni, E.; Tirelli, C.; Buongiorno, M.F.; Pugnaghi, S.; Gangale, G. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging Spectroradiometer measurements. J. Appl. Remote Sens. 2008, 2, 023550. [Google Scholar] [CrossRef]
- Gouhier, M.; Eychenne, J.; Azzaoui, N.; Guillin, A.; Deslandes, M.; Poret, M.; Costa, A.; Husson, P. Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere. Sci. Rep. 2019, 9, 1449. [Google Scholar] [CrossRef] [PubMed]
- Prata, A.J.; Grant, I.F. Retrieval of microphysical and morphological properties of volcanic ash plumes from satellite data: Application to Mt. Ruapehu, New Zealand. Q. J. Royal Meteorol. Soc. 2001, 127, 2153–2179. [Google Scholar] [CrossRef]
- Corradini, S.; Guerrieri, L.; Stelitano, D.; Salerno, G.; Scollo, S.; Merucci, L.; Prestifilippo, M.; Musacchio, M.; Silvestri, M.; Lombardo, V.; et al. Near Real-Time Monitoring of the Christmas 2018 Etna Eruption Using SEVIRI and Products Validation. Remote Sens. 2020, 12, 1336. [Google Scholar] [CrossRef] [Green Version]
- Prata, A.J. Infrared radiative transfer calculations for volcanic ash clouds. Geophys. Res. Lett. 1989, 16, 1293–1296. [Google Scholar] [CrossRef]
- Pugnaghi, S.; Guerrieri, L.; Corradini, S.; Merucci, L.; Arvani, B. A new simplified procedure for the simultaneous SO2 and ash retrieval in a tropospheric volcanic cloud. Atmos. Meas. Tech. 2013, 6, 1315–1327. [Google Scholar] [CrossRef] [Green Version]
- Pugnaghi, S.; Guerrieri, L.; Corradini, S.; Merucci, L. Real time retrieval of volcanic cloud particles and SO2 by satellite using an improved simplified approach. Atmos. Meas. Tech. 2016, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Corradini, S.; Pugnaghi, S.; Pscini, A.; Guerrieri, L.; Merucci, L.; Picchiani, M.; Chini, M. Volcanic Ash and SO2 retrievals using synthetic MODIS TIR data: Comparison between inversion procedures and sensitivity analysis. Ann. Geophys. 2014, 57, 2. [Google Scholar]
- Wen, S.; Rose, W.I. Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5. J. Geophys. Res. 1994, 99, 5421–5431. [Google Scholar] [CrossRef]
- Pugnaghi, S.; Gangale, G.; Corradini, S.; Buongiorno, M.F. Etna sulfur dioxide flux monitoring using ASTER-TIR data and atmospheric observations. J. Volcanol. Geotherm. Res. 2006, 152, 74–90. [Google Scholar] [CrossRef]
- Corradini, S.; Merucci, L.; Prata, A.J. Retrieval of SO2 from thermal infrared satellite measurements: Correction procedures for the effects of volcanic ash. Atmos. Meas. Tech. 2009, 2, 177–191. [Google Scholar] [CrossRef] [Green Version]
- Merucci, L.; Burton, M.; Corradini, S.; Salerno, G. Reconstruction of SO2 flux emission chronology from space-based measurements. J. Volcanol. Geotherm. Res. 2011, 206, 80–87. [Google Scholar] [CrossRef]
- Theys, N.; Campion, R.; Clarisse, L.; Brenot, H.; van Gent, J.; Dils, B.; Corradini, S.; Merucci, L.; Coheur, P.-F.; Van Roozendael, M.; et al. Volcanic SO2 Fluxes Derived from Satellite Data: A Survey Using OMI, GOME-2, IASI and MODIS. Atmos. Chem. Phys. 2013, 13, 5945–5968. [Google Scholar] [CrossRef] [Green Version]
- Ulivieri, G.; Ripepe, M.; Marchetti, E. Infrasound reveals transition to oscillatory discharge regime during lava fountaining: Implication for early warning. Geophys. Res. Lett. 2013, 40, 3008–3013. [Google Scholar] [CrossRef]
- Marchetti, E.; Ripepe, M.; Campus, P.; Le Pichon, A.; Vergoz, J.; Lacanna, G.; Mialle, P.; Héreil, P.; Husson, P. Long range infrasound monitoring of Etna volcano. Sci. Rep. 2019, 9, 18015. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, C.; Ripepe, M.; Lacanna, G.; Poggi, P. Experimental modeling of mass eruption rates from acoustics wave. J. Acoust. Soc. Am. 2019, 146, 3076. [Google Scholar] [CrossRef]
- Lacanna, G.; Ripepe, M. Modeling the Acoustic Flux inside the Magmatic Conduit by 3D-FDTD Simulation. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018849. [Google Scholar] [CrossRef]
- Ripepe, M.; Bonadonna, C.; Folch, A.; Delle Donne, D.; Lacanna, G.; Marchetti, E.; Hoskuldsson, A. Ash-plume dynamics and eruption source parameters by infrasound and thermal imagery. Earth Planet. Sci. Lett. 2013, 366, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Carbone, D.; Zuccarello, L.; Messina, A.; Scollo, S.; Rymer, H. Balancing bulk gas accumulation and gas output before and during lava fountaining episodes at Mt. Etna. Sci Rep. 2015, 5, 18049. [Google Scholar] [CrossRef] [Green Version]
- Bonadonna, C.; Biass, S.; Costa, A. Physical characterization of explosive volcanic eruptions based on tephra deposits: Propagation of uncertainties and sensitivity analysis. J. Volcanol. Geotherm. Res. 2015, 296, 80–100. [Google Scholar] [CrossRef]
- Spanu, A.; de’ Michieli Vitturi, M.; Barsotti, S. Reconstructing eruptive source parameters from tephra deposit: A numerical study of medium-sized explosive eruptions at Etna volcano. Bull. Volcanol. 2016, 78, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Inman, D.L. Measures for describing the size distribution of sediments. J. Sed. Petrol. 1952, 22, 125–145. [Google Scholar]
- Bonadonna, C.; Genco, R.; Gouhier, M.; Pistolesi, M.; Cioni, R.; Alfano, F.; Hoskuldsson, A.; Ripepe, M. Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations. J. Geophys. Res. Lett. 2011, 116, B12202. [Google Scholar] [CrossRef]
- Petersen, G.N.; Bjornsson, H.; Arason, P.; von Löwis, S. Two weather radar time series of the altitude of the volcanic plume during the May 2011 eruption of Grímsvötn, Iceland. Earth Syst. Sci. Data 2012, 4, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Folch, A. A review of tephra transport and dispersal models: Evolution, current status, and future perspectives. J. Volcanol. Geotherm. Res. 2012, 235–236, 96–115. [Google Scholar] [CrossRef]
- Witham, C. Assessment of the impact of radar height data on model forecasts for Grímsvötn 2011. In Statistical Assessment of Dispersion Model Sensitivity; Deliverable report D8.5 of the EU FUTUREVOLC project; Beckett, F., Witham, C., Devenish, B., Eds.; 2015; Available online: http://futurevolc.hi.is/sites/futurevolc.hi.is/files/Pdf/Deliverables/fv_d8_5_to_submit_low.pdf (accessed on 1 January 2020).
- Beckett, F.M.; Witham, C.S.; Leadbetter, S.J.; Crocker, R.; Webster, H.N.; Hort, M.C.; Jones, A.R.; Devenish, B.J.; Thomson, D.J. Atmospheric Dipersion Modelling at the London VACC: A review of Developments since the 2010 Eyjafjallajökull Volcano Ash Cloud. Atmosphere 2020, 11, 352. [Google Scholar] [CrossRef] [Green Version]
- Lacasse, C.; Karlsdóttir, S.; Larsen, G.; Soosalu, H.; Rose, W.I.; Ernst, G.G.J. Weather radar observations of the Hekla 2000 eruption cloud, Iceland. Bull. Volcanol. 2004, 66, 457–473. [Google Scholar] [CrossRef]
- Morton, B.; Taylor, G.; Turner, J. Gravitational turbulent convection from maintained and instantaneous sources. Proc. Math. Phys. Eng. Sci. 1956, 234, 1–23. [Google Scholar] [CrossRef]
- Sparks, R.S.J. The dimensions and dynamics of volcanic eruption columns. Bull. Volcanol. 1986, 48, 3–15. [Google Scholar] [CrossRef]
- Mastin, L.G. A user-friendly one-dimensional model for wet volcanic plumes. Geochem. Geophys. Geosys. 2007, 8, Q03014. [Google Scholar] [CrossRef]
- De’ Michieli Vitturi, M.; Neri, A.; Barsotti, S. PLUME-MoM 1.0: A new integral model of volcanic plumes based on the method of moments. Geosci. Model. Dev. 2015, 8, 2447–2463. [Google Scholar] [CrossRef] [Green Version]
- Snee, E.; Degruyter, W.; Bonadonna, C.; Scollo, S.; Rossi, E.; Freret-Lorgeril, V. A model for buoyant tephra plumes couples to lava fountains with an application to paroxysmal eruptions at Mount Etna, Italy. J. Geophys. Res. Solid Earth 2021, e2020JB021360. [Google Scholar] [CrossRef]
- Bonadonna, C.; Folch, A.; Loughlin, S.; Puempel, H. Future developments in modelling and monitoring of volcanic ash clouds: Outcomes from the first IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation. Bull. Volcanol. 2012, 74, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, J.; Millington, S.; Beckett, F.M.; Swindles, G.; Thordarson, T. Understanding the discrepancy between tephrochronology and satellite infrared measurements of volcanic ash. Atmos. Meas. Tech. 2015, 8, 2069–2091. [Google Scholar] [CrossRef] [Green Version]
- Gouhier, M.; Donnadieu, F. Mass estimations of ejecta from Strombolian explosions by inversion of Doppler radar measurements. J. Geophys. Res. 2008, 113, B10202. [Google Scholar] [CrossRef] [Green Version]
- Alparone, S.; Andronico, D.; Lodato, L.; Sgroi, T. Relationship between tremor and volcanic activity during the Southeast Crater eruption of Mount Etna in early 2000. J. Geophys. Res. 2003, 108, 2241. [Google Scholar] [CrossRef] [Green Version]
- Carey, S.; Sparks, R.S.J. Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull. Volcanol. 1986, 48, 109–125. [Google Scholar] [CrossRef]
- Rossi, E.; Bonadonna, C.; Degruyter, W. A new strategy for the estimation of plume height from clast dispersal in various atmospheric and eruptive conditions. Earth. Planet. Sci. Lett. 2019, 505, 1–12. [Google Scholar] [CrossRef]
Mean Exit Velocity (m/s) | Max HT (km a.s.l.) | Method | Duration (min) | TEM (kg) | Averaged MER (kg/s) | |
---|---|---|---|---|---|---|
ECV | / | >9 | ECV | / | / | / |
V2B | 43.7 ± 26.7 | / | SFA | 250 | 5.8 × 109 | 2.8 ± 1.6 × 105 |
NSA | 250 | 2.2 × 109 | 1.4 ± 1.2 × 105 | |||
Proxy | 250 | 4.0 × 108 | 2.7 ± 3.5 × 104 | |||
MEAN | 250 | 2.8 ± 2.8 × 109 | 1.5 ± 1.3 × 105 | |||
MWR | / | 8.9 | SFA | 210 | 1.2 × 109 | 9.3 ± 0.4 × 104 |
NSA | 190 | 2.6 × 109 | 2.3 ± 1.7 × 105 | |||
TPA | 420 | 4.7 × 109 | 1.9 ± 2.3 × 105 | |||
MCA | 410 | 6.4 × 108 | 2.6 ± 2.4 × 104 | |||
MEAN | 308 ± 124 | 2.3 ± 1.8 × 109 | 1.4 ± 0.9 × 105 | |||
Infrasound | 42.6 ± 18.8 | / | SFA | 273 | 2.9 × 109 | 2.0 ± 0.9 × 105 |
Ground-IR | / | / | SFA | 240 * | 1.2 × 109 | 8.6 ± 2.5 × 104 |
SEVIRI | / | 6.1 | TPA | 315 | 6.0 × 108 | 2.7 ± 2.5 × 104 |
VPR-ASH | 255 | 2.0 × 106 | 1.2 ± 0.9 × 102 | |||
VPR-ICE | 370 | 4.9 × 107 | 2.1 ± 1.3 × 103 | |||
MODIS | / | 7.9 | ASH | 160 | 2.3 × 106 | 2.6 ± 3.1 × 102 |
ICE | 170 | 1.4 × 107 | 1.7 ± 1.7 × 103 | |||
Deposit | / | / | Power-law ** | 310 ± 94 *** | 4.7 ± 2.3 × 107 | 2.5 ± 2.0 × 103 |
Weibull | 1.3 × 107 | 0.7 × 103 | ||||
Exponential | 1.4 × 107 | 0.8 × 103 | ||||
MEAN | 2.5 ± 1.9 × 107 | 1.4 ± 1.1 × 103 |
Mean Exit Velocity (m/s) | Max HT (km a.s.l.) | Method | Signal Duration (min) | TEM (kg) | Averaged MER (kg/s) | |
---|---|---|---|---|---|---|
ECV | / | >9 | / | / | / | / |
V2B | 53.8 ± 63.7 (07:00–10:30) 101.1 ± 63.1 (09:00–10:30) | / | SFA | 193 | 4.2 × 109 | 3.4 ± 3.8 × 105 |
NSA | 193 | 2.7 × 109 | 2.3 ± 3.5 × 105 | |||
Proxy | 193 | 4.3 × 109 | 3.6 ± 8.3 × 105 | |||
MEAN | 193 | 3.7 ± 0.9 × 109 | 3.1 ± 0.7 × 105 | |||
MWR | / | 11.7 | SFA | 40 | 3.5 × 109 | 1.5 ± 0.4 × 106 |
NSA | 30 | 4.3 × 109 | 2.6 ± 2.2 × 106 | |||
TPA | 80 | 6.4 × 109 | 1.3 ± 1.5 × 106 | |||
MCA | 70 | 5.5 × 109 | 1.3 ± 1.5 × 106 | |||
MEAN | 55 ± 24 | 4.9 ± 1.3 × 109 | 1.7 ± 0.6 × 106 | |||
Infrasound | 129.2 ± 62.7 (09:00–10:30) | / | SFA | 85 | 3.7 × 109 | 7.4 ± 3.7 × 105 |
Ground-IR | / | / | SFA | 130 | 5.8 × 109 | 7.5 ± 4.7 × 105 |
SEVIRI | / | 12.0 | TPA | 40 | 3.6 × 109 | 1.4 ± 1.8 × 106 |
VPR-ASH | 120 | 1.3 × 107 | 1.6 ± 1.8 × 103 | |||
VPR-ICE | 105 | 1.0 × 107 | 1.4 ± 1.3 × 103 | |||
Deposit | / | / | Power–Law * | 69 ± 35 *** | 1.4 ± 0.0 × 109 | 3.4 ± 1.7 × 105 |
Weibull ** | 1.3 × 109 | 3.1 × 105 | ||||
Exponential | 1.2 × 109 | 2.9 × 105 | ||||
MEAN | 1.3 ± 0.1 × 109 | 3.1 ± 0.3 × 105 |
Sensor/Method | Time Resolution (s) | Event Duration | Plume Height HT | Total Erupted Mass TEM | Mass Eruption Rate MER | Total Grain-Size Distribution |
---|---|---|---|---|---|---|
L-band Doppler radar V2B | 0.2 | Phase I + II | Calibration based on HT vs MER laws | Based on MER and duration | SFA, NSA, PROXY | Based on VARR model Single value of Dn; Detection of small lapilli to bomb/blocks (Lava fountain; Phase I and II) |
X-band Doppler radar MWR | 600 | Phase II + III | HT ~12 km (a.s.l.) for plumes dispersed southeastwardly | Based on MER and duration | SFA, NSA, MCA, TPA | GSDMWR based on VARR model; Detection of fine ash to lapilli (Phase II and III). |
Ground-based infrared | 60 | Phase I + II (no meteorological clouds) | Based on MER and duration | SFA | ||
Satellite-based infrared/visible (SEVIRI, MODIS) | 900 | Phase II + III (no meteorological clouds) | Based on atmospheric temperature profile | Based on MER and duration | Based on Particle Re and AOD, TPA | GSDsat Resolved for particles ≤20 µm (i.e., 5.5 Φ) (Phase II and III) |
Infrasound | 60 | Phase I + II | Based on HT vs MER laws | Based on MER and duration | SFA | |
Visible camera | 30–60 | Phase II + III (no meteorological clouds) | ECV: HT <9 km (a.s.l.) EBHD: HT <15 km (a.s.l.) (requires day light and no cloudy conditions) | Based on MER and duration | Based on HT vs MER laws | |
Tephra-fallout deposit | after the end of the eruption | Based on MdΦ and/or largest clasts data * | Integration of best fit of mass/area vs. sqrt(area) trends (Exponential, Power-Law, Weibull) | Based on TEM and duration (Phase II + III especially if sampled >0.5 km from the vent) | WDGSD Potentially whole size range from very fine ash to block and bombs; limited to coastline (typically <30 km from vent depending on plume dispersal) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freret-Lorgeril, V.; Bonadonna, C.; Corradini, S.; Donnadieu, F.; Guerrieri, L.; Lacanna, G.; Marzano, F.S.; Mereu, L.; Merucci, L.; Ripepe, M.; et al. Examples of Multi-Sensor Determination of Eruptive Source Parameters of Explosive Events at Mount Etna. Remote Sens. 2021, 13, 2097. https://doi.org/10.3390/rs13112097
Freret-Lorgeril V, Bonadonna C, Corradini S, Donnadieu F, Guerrieri L, Lacanna G, Marzano FS, Mereu L, Merucci L, Ripepe M, et al. Examples of Multi-Sensor Determination of Eruptive Source Parameters of Explosive Events at Mount Etna. Remote Sensing. 2021; 13(11):2097. https://doi.org/10.3390/rs13112097
Chicago/Turabian StyleFreret-Lorgeril, Valentin, Costanza Bonadonna, Stefano Corradini, Franck Donnadieu, Lorenzo Guerrieri, Giorgio Lacanna, Frank Silvio Marzano, Luigi Mereu, Luca Merucci, Maurizio Ripepe, and et al. 2021. "Examples of Multi-Sensor Determination of Eruptive Source Parameters of Explosive Events at Mount Etna" Remote Sensing 13, no. 11: 2097. https://doi.org/10.3390/rs13112097
APA StyleFreret-Lorgeril, V., Bonadonna, C., Corradini, S., Donnadieu, F., Guerrieri, L., Lacanna, G., Marzano, F. S., Mereu, L., Merucci, L., Ripepe, M., Scollo, S., & Stelitano, D. (2021). Examples of Multi-Sensor Determination of Eruptive Source Parameters of Explosive Events at Mount Etna. Remote Sensing, 13(11), 2097. https://doi.org/10.3390/rs13112097