Signatures of Wetland Impact: Spatial Distribution of Forest Aboveground Biomass in Tumen River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Modeling
2.2.1. Field Data
2.2.2. Remote Sensing Data
2.2.3. Climate Data
2.2.4. Other Data Sources
2.3. AGB Estimation Model
2.3.1. Processing Training Data
2.3.2. Model Prediction with the DNN Algorithm
2.3.3. Uncertainty Analysis of the Model
2.4. Spatial Distribution of Wetland in Tumen River Basin
2.5. The Impact of Inland Wetlands on Forest AGB
3. Results
3.1. Effects of Wetlands on Forest AGB
3.1.1. Relating Forest Canopy Height to AGB
3.1.2. Forest Biomass Mapping in Tumen River Basin
3.2. Effects of Wetlands on Forest AGB Climate Sensitivity
3.2.1. Control of Forest AGB in Wetland Area of Tumen River Basin by Climatic Factors
3.2.2. Effects of Wetlands on Forest AGB
4. Discussion
4.1. Find a Suitable Method to Map the Biomass Distribution of Tumen River Basin
4.2. Wetlands Limit the Impact of Precipitation on Forest AGB
4.3. Possible Impacts of Wetland Changes on the Tumen River Basin Forest AGB
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Wetlands and Water; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Wang, Z.; Wu, J.; Madden, M.; Mao, D. China’s wetlands: Conservation plans and policy impacts. Ambio 2012, 41, 782–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Li, X.; Brierley, G. Topographic influence on wetland distribution and change in Maduo County, Qinghai-Tibet Plateau, China. J. Mt. Sci. 2012, 9, 362–371. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, H.; Wang, X.; Yao, W.; Zhou, D.; Zhao, K.; Zhao, H.; Li, N.; Huang, H.; Li, C.; et al. Mapping wetland changes in China between 1978 and 2008. Chin. Sci. Bull. 2012, 57, 2813–2823. [Google Scholar] [CrossRef] [Green Version]
- Van Asselen, S.; Verburg, P.H.; Vermaat, J.E.; Janse, J.H. Drivers of wetland conversion: A global meta-analysis. PLoS ONE 2013, 8, e81292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinson, M.M.; Malvárez, A.I. Temperate freshwater wetlands: Types, status, and threats. Environ. Conserv. 2002, 29, 115–133. [Google Scholar] [CrossRef]
- Mitsch, W.J. Applying science to conservation and restoration of the world’s wetlands. Water Sci. Technol. 2005, 51, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Wang, Z.; Liu, D.; Niu, Z. Selecting sites for converting farmlands to wetlands in the Sanjiang Plain, Northeast China, based on remote sensing and GIS. Environ. Manag. 2010, 46, 790–800. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Summary for policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Lin, W.; Zhang, L.; Du, D.; Yang, L.; Lin, H.; Zhang, Y.; Li, J. Quantification of land use/land cover changes in Pearl River Delta and its impact on regional climate in summer using numerical modeling. Reg. Environ. Chang. 2009, 9, 75–82. [Google Scholar] [CrossRef]
- Seidl, A.F.; Moraes, A.S. Global valuation of ecosystem services: Application to the Pantanal da Nhecolandia, Brazil. Ecol. Econ. 2000, 33, 1–6. [Google Scholar] [CrossRef]
- Wang, G.; Li, H.; An, M.; Ni, J.; Ji, S.; Wang, J. A regional-scale consideration of the effects of species richness on above-ground biomass in temperate natural grasslands of China. J. Veg. Sci. 2011, 22, 414–424. [Google Scholar] [CrossRef]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.Y.; Wang, G.G.; Liu, G.H.; Xu, S.L. Forest biomass of China: An estimate based on the biomass–volume relationship. Ecol. Appl. 1998, 8, 1084–1091. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S. Changes in forest biomass and linkage to climate and forest disturbances over Northeastern China. Glob. Chang. Biol. 2014, 20, 2596–2606. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.K. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Su, Y.; Xue, B.; Liu, J.; Zhao, X.; Fang, J.; Guo, Q. Mapping global forest aboveground biomass with spaceborne LiDAR, optical imagery, and forest inventory data. Remote Sens. 2016, 8, 565. [Google Scholar] [CrossRef] [Green Version]
- Granier, A.; Loustau, D.; Bréda, N. A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Ann. For. Sci. 2000, 57, 755–765. [Google Scholar] [CrossRef]
- Hayakawa, A.; Shimizu, M.; Woli, K.P.; Kuramochi, K.; Hatano, R. Evaluating stream water quality through land use analysis in two grassland catchments: Impact of wetlands on stream nitrogen concentration. J. Environ. Qual. 2006, 35, 617–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granier, A.; Reichstein, M.; Breda, N.; Janssens, I.A.; Falge, E.; Ciais, P.; Grünwald, T.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; et al. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. For. Meteorol. 2007, 143, 123–145. [Google Scholar] [CrossRef]
- Brooks, J.R.; Meinzer, F.C.; Coulombe, R.O.B.; Gregg, J. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiol. 2002, 22, 1107–1117. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Lu, D.; Li, G.; Wang, G.; Chen, Q.; Liu, L.; Li, D. Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sens. 2018, 10, 627. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.; Piao, S.; Peng, C.; Fang, J. Satellite-based estimation of biomass carbon stocks for northeast China’s forests between 1982 and 1999. For. Ecol. Manag. 2007, 240, 114–121. [Google Scholar] [CrossRef]
- Ren, H.; Qin, H.; Ouyang, Z.; Wen, X.; Jin, X.; Liu, H.; Lu, H.; Liu, H.; Zhou, J.; Zeng, Y.; et al. Progress of implementation on the Global Strategy for Plant Conservation in (2011–2020) China. Biol. Conserv. 2019, 230, 169–178. [Google Scholar] [CrossRef]
- Chen, H.Y.; Vasiliauskas, S.; Kayahara, G.J.; Ilisson, T. Wildfire promotes broadleaves and species mixture in boreal forest. For. Ecol. Manag. 2009, 257, 343–350. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Zhu, W.; Cao, G.; Li, Y.; Xu, W.; Shi, M.; Qin, L. Evaluation of river ecosystem health in tumen River Basin. Acta Oecologica 2014, 14, 3969–3977. (In Chinese) [Google Scholar]
- Tootchi, A.; Jost, A.; Ducharne, A. Multi-source global wetland maps combining surface water imagery and groundwater constraints. Earth Syst. Sci. Data 2019, 11, 189–220. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zheng, Y.; Qi, D.; Li, R.; Yi, X. DNN-based prediction model for spatio-temporal data. In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Burlingame, CA, USA, 31 October–3 November 2016; pp. 1–4. [Google Scholar]
- Jiapaer, G.; Chen, X.; Bao, A. A comparison of methods for estimating fractional vegetation cover in arid regions. Agric. For. Meteorol. 2011, 151, 1698–1710. [Google Scholar] [CrossRef]
- Rumney, G.R. Climatology and the World’s Climates; The Macmillan Company: New York, NY, USA, 1968; pp. 187–206. [Google Scholar]
- Fang, J.; Piao, S.; Zhou, L.; He, J.; Wei, F.; Myneni, R.B.; Tucker, C.J.; Tan, K. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Stegen, J.C.; Swenson, N.G.; Enquist, B.J.; White, E.P.; Phillips, O.L.; Jørgensen, P.M.; Weiser, M.D.; Monteagudo Mendoza, A.; Núñez Vargas, P. Variation in above-ground forest biomass across broad climatic gradients. Glob. Ecol. Biogeogr. 2011, 20, 744–754. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Jiang, M.; Lu, X. Marshland loss warms local land surface temperature in China. Geophys. Res. Lett. 2020, 47, e2020GL087648. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.J.; Sun, P.; Zhu, W.H.; Xu, Z.; Fu, J.; Man, W.D.; Li, H.L.; Zhang, J.; Qin, L. Landscape dynamics and driving forces of wetlands in the Tumen River Basin of China over the past 50 years. Landsc. Ecol. Eng. 2017, 13, 237–250. [Google Scholar] [CrossRef]
- Xiang, H.; Jia, M.; Wang, Z.; Li, L.; Mao, D.; Zhang, D.; Cui, G.; Zhu, W. Impacts of land cover changes on ecosystem carbon stocks over the transboundary Tumen River Basin in Northeast Asia. Chin. Geogr. Sci. 2018, 28, 973–985. [Google Scholar] [CrossRef] [Green Version]
Name | Wave Length (μm) | |
---|---|---|
Band1 | Green | 0.52–0.60 |
Band2 | Red | 0.63–0.69 |
Band4 | Near infrared red | 0.76–0.90 |
Band5 | Shortwave infrared red | 1.55–1.75 |
Band7 | Shortwave infrared red | 2.08–2.35 |
Name | |
---|---|
Bio1 | Annual Mean Temperature |
Bio4 | Temperature Seasonality |
Bio5 | Max Temperature of Warmest Month |
Bio6 | Min Temperature of Coldest Month |
Bio7 | Temperature Annual Range |
Bio8 | Mean Temperature of Wettest Quarter |
Bio9 | Mean Temperature of Driest Quarter |
Bio10 | Mean Temperature of Warmest Quarter |
Bio11 | Mean Temperature of Coldest Quarter |
Bio12 | Annual Precipitation |
Bio13 | Precipitation of Wettest Month |
Bio14 | Precipitation of Driest Month |
Bio15 | Precipitation Seasonality |
Bio16 | Precipitation of Wettest Quarter |
Bio17 | Precipitation of Driest Quarter |
Bio18 | Precipitation of Warmest Quarter |
Bio19 | Precipitation of Coldest Quarter |
Parameter | Weight |
---|---|
Hidden layer | 4 |
Number of Neure | 500 |
Learning rate | 0.0002 |
Epoch | 50 |
Dropout | 0.4 |
DNN | |
---|---|
Average AGB (Mg ha−1) | 103.62 |
Range (Mg ha−1) | 88.73~146.18 |
Broadleaf Deciduous (Mg ha−1) | 103.58 |
Needleleaf Evergreen (Mg ha−1) | 102.24 |
Needleleaf Deciduous (Mg ha−1) | 102.62 |
Reduced Area (km2) | Reduced AGB (Mg ha−1) |
---|---|
22.86 | 1.53 |
34.45 | 2.44 |
45.96 | 3.35 |
57.42 | 4.22 |
68.59 | 5.15 |
79.26 | 6.06 |
89.74 | 7.10 |
100.17 | 8.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, G.; Cui, G.; Wang, X.; Yu, H.; Huang, X.; Zhu, W.; Lin, Z. Signatures of Wetland Impact: Spatial Distribution of Forest Aboveground Biomass in Tumen River Basin. Remote Sens. 2021, 13, 3009. https://doi.org/10.3390/rs13153009
Lv G, Cui G, Wang X, Yu H, Huang X, Zhu W, Lin Z. Signatures of Wetland Impact: Spatial Distribution of Forest Aboveground Biomass in Tumen River Basin. Remote Sensing. 2021; 13(15):3009. https://doi.org/10.3390/rs13153009
Chicago/Turabian StyleLv, Guanting, Guishan Cui, Xiaoyi Wang, Hangnan Yu, Xiao Huang, Weihong Zhu, and Zhehao Lin. 2021. "Signatures of Wetland Impact: Spatial Distribution of Forest Aboveground Biomass in Tumen River Basin" Remote Sensing 13, no. 15: 3009. https://doi.org/10.3390/rs13153009
APA StyleLv, G., Cui, G., Wang, X., Yu, H., Huang, X., Zhu, W., & Lin, Z. (2021). Signatures of Wetland Impact: Spatial Distribution of Forest Aboveground Biomass in Tumen River Basin. Remote Sensing, 13(15), 3009. https://doi.org/10.3390/rs13153009