Estimating Primary Forest Attributes and Rare Community Characteristics Using Unmanned Aerial Systems (UAS): An Enrichment of Conventional Forest Inventories
Abstract
:1. Introduction
- Estimate forest stand biometrics derived from UAS-SfM models of northeastern forests.
- a.
- Estimate tree specific dbh using crown geometry and UAS digital photogrammetry.
- b.
- Calculate stand density using basal area and trees per acre by species.
- c.
- Compare these UAS-based estimates to CFI plot field inventory measurements at the forest stand level.
- Assess the detection of ‘large’ trees as economic and ecological indicators of forest condition.
2. Materials and Methods
2.1. Study Areas
2.2. Field Data Collection
2.3. UAS Data Collection and Processing
2.4. Individual Tree Detection and Delineation
2.5. Tree Species Classification
2.6. UAS Regression Analysis and Biometrics
2.7. UAS Large Tree Survey
3. Results
3.1. UAS-SfM Modelling
3.2. Individual Tree Detection and Delineation
3.3. Tree Species Classification
3.4. UAS Regression Analysis and Biometrics
3.5. UAS Large Tree Survey
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Stand Level Classification
- White Pine—any forested land surface dominated by tree species comprising an overstory canopy with greater than 70% basal area per unit area eastern white pine (Pinus strobus).
- Hemlock—any forested land surface dominated by tree species comprising an overstory canopy with greater than 70% basal area per unit area eastern hemlock (Tsuga canadensis).
- Mixed Conifer—any forested land area dominated by trees species comprising an overstory canopy with greater than 66% mixture of coniferous species but less than 70% of white pine or eastern hemlock independently.
- Mixed Forests—any forested land surface dominated by tree species comprising a heterogenous mixture of deciduous and coniferous species each comprising greater than 20% basal area per unit area composition. Important species associations include eastern white pine and northern red oak (Quercus rubra), red maple (Acer rubrum), white ash (Fraxinus americana), eastern hemlock, and birches (Betula spp.).
- Red Maple—any forested land surface dominated by tree species comprising an overstory canopy with a greater than 50% basal area per unit area of red maple.
- Oak—any forested land surface dominated by tree species comprising an overstory canopy with a greater than 50% basal area per unit area of white oak (Quercus alba), black oak (Quercus velutina), northern red oak (Quercus rubra), or a mixture of each.
- American Beech—any forested land surface dominated by tree species comprising an overstory canopy with a greater than 25% basal area per unit area American beech (Fagus grandifolia) composition. This unique class takes precedence over other mentioned hardwood classes if present.
- Mixed Hardwoods—any forested land surface dominated by tree species comprising other deciduous species besides red maple, oak, or American beech that comprises a greater than 66% basal area per unit area of the overstory canopy.
- Other Forest—any forested land surface dominated by tree species comprising an overstory composition that is highly distinct and subject to different management or use and not previously mentioned. This class includes areas dominated by early successional species such as paper birch (Betula papyrifera) or aspen (Populus spp.).
- Tree Level Classification
- White Pine—Any woody vegetation taller than 3 m and larger than 12.7 cm in diameter, representing the species white pine (Pinus strobus).
- Eastern Hemlock—Any woody vegetation taller than 3 m and larger than 12.7 cm in diameter, representing the species eastern hemlock (Tsuga canadensis).
- Other Conifer—Any woody vegetation taller than 3 m and larger than 12.7 cm in diameter, representing coniferous species other than white pine or eastern hemlock. Such species include red pine (Pinus resinosa), basal fir (Abies balsamea), and eastern red cedar (Juniperus virginiana).
- Oak—Any woody vegetation taller than 3 m and larger than 12.7 cm in diameter, representing species of the oak (Quercus spp.) family. Such species include northern red oak (Quercus rubra), black oak (Quercus velutina), and white oak (Quercus alba).
- Red Maple—Any woody vegetation taller than 3 m and larger than 12.7 cm in diameter, representing the species red maple (Acer rubrum).
- American Beech—Any woody vegetation taller than 3 m and larger than 12.7 cm in diameter, representing the species American beech (Fagus grandifolia).
- Other Hardwood—Any woody vegetation taller than 3 m and larger than 12.7 cm in diameter, representing non-early successional deciduous species other than oaks, red maple, or american Beech. Such species include shagbark hickory (Carya ovata), sugar maple (Acer saccharum), and basswood (Tilia americana).
- Other Forest—Any woody vegetation taller than 3 m and larger than 12.7 cm in diameter, representing early successional species such as birches (Betula spp.), aspen (Populus spp.), or ash (Fraxinus spp.).
- Snags—Any woody vegetation larger than 12.7 cm in diameter, representing any tree species that is clearly identified as dead but still has a stem taller than 3 m.
References
- Smith, W.B. Forest inventory and analysis: A national inventory and monitoring program. Environ. Pollut. 2002, 116. [Google Scholar] [CrossRef]
- Eisenhaure, S. Kingman Farm Management and Operations Plan 2018; Introduction Kingman Farm: Madbury, NH, USA, 2018. [Google Scholar]
- Husch, B.; Miller, C.I.; Beers, T.W. Forest Mensuration, 2nd ed.; Ronald Press Company: New York, NY, USA, 1972. [Google Scholar]
- Betchold, W.A.; Patterson, P.L. The Enchanced Forest Inventory and Analysis Program-National Sampling Design and Estimation Procedures; USDA Forest Service, Southern Research Station: Asheville, NC, USA, 2005; Volume 80. [Google Scholar]
- Kershaw, J.A.; Ducey, M.J.; Beers, T.W.; Husch, B. Forest Mensuration, 5th ed.; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Cao, L.; Liu, H.; Fu, X.; Zhang, Z.; Shen, X.; Ruan, H. Comparison of UAV LiDAR and digital aerial photogrammetry point clouds for estimating forest structural attributes in subtropical planted forests. Forests 2019, 10, 145. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhou, G.; Wei, H.; Zhang, X. Estimation of the plot-level forest parameters from terrestrial laser scanning data. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 9014–9017. [Google Scholar]
- Stage, A.R.; Rennie, J.C. Fixed radius or variable plots? J. For. 1994, 92, 20–24. [Google Scholar]
- Cade, B.S. Comparisons of Tree Basal Area and Canopy Cover in Habitat Models: Subalpine Forest. J. Wildl. Manag. 1997, 61, 326. [Google Scholar] [CrossRef]
- MacLean, M.G.; Congalton, D.R.G. Map accuracy assessment issues when using an object-oriented approach. In Proceedings of the ASPRS Annual Conference Proceedings 2012, Sacramento, CA, USA, 19–23 March 2012; p. 5. [Google Scholar]
- Xu, Z.; Shen, X.; Cao, L.; Coops, N.C.; Goodbody, T.R.H.; Zhong, T.; Zhao, W.; Sun, Q.; Ba, S.; Zhang, Z.; et al. Tree species classification usingUAS-based digital aerial photogrammetry point clouds and multispectral imageries in subtropical natural forests. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102173. [Google Scholar] [CrossRef]
- Shang, C.; Coops, N.C.; Wulder, M.A.; White, J.C.; Hermosilla, T. Update and spatial extension of strategic forest inventories using time series remote sensing and modeling. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101956. [Google Scholar] [CrossRef]
- Oliver, C.D.; Larson, B.A. Forest Stand. Dynamics, updated ed.; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Ducey, M.J.; Knapp, R.A. A stand density index for complex mixed species forests in the northeastern United States. For. Ecol. Manag. 2010, 260, 1613–1622. [Google Scholar] [CrossRef]
- Forrester, D.I. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. For. Ecol. Manag. 2014, 312, 282–292. [Google Scholar] [CrossRef]
- Leckie, D.G.; Gougeon, F.A.; Walsworth, N.; Paradine, D. Stand delineation and composition estimation using semi-automated individual tree crown analysis. Remote Sens. Environ. 2003, 85, 355–369. [Google Scholar] [CrossRef]
- Frolking, S.; Palace, M.W.; Clark, D.B.; Chambers, J.Q.; Shugart, H.H.; Hurtt, G.C. Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J. Geophys. Res. Biogeosciences 2009, 114, G00E02. [Google Scholar] [CrossRef]
- Boisvenue, C.; White, J.C. Information needs of next-generation forest carbon models: Opportunities for remote sensing science. Remote Sens. 2019, 11, 463. [Google Scholar] [CrossRef] [Green Version]
- Saeed, S.; Yujun, S.; Beckline, M.; Chen, L.; Zhang, B.; Ahmad, A.; Mannan, A.; Khan, A.; Iqbal, A. Forest edge effect on biomass carbon along altitudinal gradients in Chinese Fir (Cunninghamia lanceolata): A study from Southeastern China. Carbon Manag. 2019, 10, 11–22. [Google Scholar] [CrossRef]
- Gunn, J.S.; Ducey, M.J.; Buchholz, T.; Belair, E.P. Forest Carbon Resilience of Eastern Spruce Budworm (Choristoneura fumiferana) Salvage Harvesting in the Northeastern United States. Front. For. Glob. Chang. 2020, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- FAO. Forests and Agriculture: Land-Use Challenges and Opportunities, State of the World’s Forests; FAO: Rome, Italy, 2016. [Google Scholar]
- Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding forest health with Remote sensing-Part II-A review of approaches and data models. Remote Sens. 2017, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Gatica-Saavedra, P.; Echeverría, C.; Nelson, C.R. Ecological indicators for assessing ecological success of forest restoration: A world review. Restor. Ecol. 2017, 25, 850–857. [Google Scholar] [CrossRef]
- Asbeck, T.; Großmann, J.; Paillet, Y.; Winiger, N.; Bauhus, J. The Use of Tree-Related Microhabitats as Forest Biodiversity Indicators and to Guide Integrated Forest Management. Curr. For. Rep. 2021, 7, 59–68. [Google Scholar] [CrossRef]
- Juutinen, A.; Mönkkönen, M. Testing alternative indicators for biodiversity conservation in old-growth boreal forests: Ecology and economics. Ecol. Econ. 2004, 50, 35–48. [Google Scholar] [CrossRef]
- Whitman, A.A.; Hagan, J.M. An index to identify late-successional forest in temperate and boreal zones. For. Ecol. Manag. 2007, 246, 144–154. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Margules, C.R.; Botkin, D.B. Indicators of Biodiversity for Ecologically Sustainable Forest Management. Conserv. Biol. 2000, 14, 941–950. [Google Scholar] [CrossRef]
- Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding forest health with remote sensing-Part I-A review of spectral traits, processes and remote-sensing characteristics. Remote Sens. 2016, 8, 1029. [Google Scholar] [CrossRef] [Green Version]
- Kuchler, A.W. Vegetation Mapping; The Ronald Press Company: New York, NY, USA, 1976. [Google Scholar]
- Lutz, J.A.; Larson, A.J.; Swanson, M.E.; Freund, J.A. Ecological importance of large-diameter trees in a temperate mixed-conifer forest. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Laurance, W.F.; Franklin, J.F. Global Decline in Large Old Trees. Science 2012, 338, 1305–1306. [Google Scholar] [CrossRef]
- Lutz, J.A.; Furniss, T.J.; Johnson, D.J.; Davies, S.J.; Allen, D.; Alonso, A.; Anderson-Teixeira, K.J.; Andrade, A.; Baltzer, J.; Becker, K.M.L.; et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 2018, 27, 849–864. [Google Scholar] [CrossRef] [Green Version]
- Ducey, M.J.; Gunn, J.S.; Whitman, A.A. Late-successional and old-growth forests in the northeastern United States: Structure, dynamics, and prospects for restoration. Forests 2013, 4, 1055–1086. [Google Scholar] [CrossRef] [Green Version]
- Lutz, J.A.; Larson, A.J.; Freund, J.A.; Swanson, M.E.; Bible, K.J. The importance of large-diameter trees to forest structural heterogeneity. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, G.M.; Keane, J.J.; Gutiérrez, R.J.; Peery, M.Z. Declining old-forest species as a legacy of large trees lost. Divers. Distrib. 2018, 24, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G.; Green, K.; Teply, J. Mapping old growth forests on national forest and park lands in the Pacific Northwest from remotely sensed data. Photogramm. Eng. Remote Sens. 1993, 59, 529–535. [Google Scholar]
- He, H.S.; Mladenoff, D.J.; Radeloff, V.C.; Crow, T.R. Integration of GIS Data and Classified Satellite Imagery for Regional Forest Assessment. Ecol. Appl. 1998, 8, 12. [Google Scholar] [CrossRef]
- Berni, J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, N.; Pádua, L.; Marques, P.; Silva, N.; Peres, E.; Sousa, J.J. Forestry remote sensing from unmanned aerial vehicles: A review focusing on the data, processing and potentialities. Remote Sens. 2020, 12, 1046. [Google Scholar] [CrossRef] [Green Version]
- Spurr, S.H. Aerial Photographs in Forestry; The Ronald Press Company: New York, NY, USA, 1948. [Google Scholar]
- Colwell, R.N. Some uses of Three-Dimensional Models for Illustrating Photogrammetric Principles. Photogramm. Eng. 1955, 20. [Google Scholar]
- Hinkley, E.A.; Zajkowski, T. USDA forest service-NASA: Unmanned aerial systems demonstrations-pushing the leading edge in fire mapping. Geocarto Int. 2011, 26, 103–111. [Google Scholar] [CrossRef]
- Pause, M.; Schweitzer, C.; Rosenthal, M.; Keuck, V.; Bumberger, J.; Dietrich, P.; Heurich, M.; Jung, A.; Lausch, A. In situ/remote sensing integration to assess forest health-a review. Remote Sens. 2016, 8, 471. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Wang, Y.; Pyörälä, J.; Lehtomäki, M.; Yu, X.; Kaartinen, H.; Kukko, A.; Honkavaara, E.; Issaoui, A.E.I.; Nevalainen, O.; et al. Forest in situ observations using unmanned aerial vehicle as an alternative of terrestrial measurements. For. Ecosyst. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Vierling, K.T.; Vierling, L.A.; Gould, W.A.; Martinuzzi, S.; Clawges, R.M. Lidar: Shedding new light on habitat characterization and modeling. Front. Ecol. Environ. 2008, 6, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Pearson Education Inc.: Glenview, IL, USA, 2016. [Google Scholar]
- Chen, Y.; Hakala, T.; Karjalainen, M.; Feng, Z.; Tang, J.; Litkey, P.; Kukko, A.; Jaakkola, A.; Hyyppä, J. UAV-Borne Profiling radar for Forest Research. Remote Sens. 2017, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Muhamad-Afizzul, M.; Siti-Yasmin, Y.; Hamdan, O.; Tan, S.A. Estimating stand-level structural and biophysical variables of lowland dipterocarp forest using airborne LiDAR data. J. Trop. For. Sci. 2019, 31, 312–323. [Google Scholar] [CrossRef]
- Janowiak, M.K.; D’Amato, A.W.; Swanston, C.W.; Iverson, L.; Thompson, F.R.; Dijak, W.D.; Matthews, S.; Peters, M.P.; Prasad, A.; Fraser, J.S.; et al. New England and Northern New York Forest Ecosystem Vulnerability Assessment and Synthesis: A Report from the New England Climate Change Response Framework Project; US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2018. [Google Scholar] [CrossRef]
- Falkowski, M.J.; Evans, J.S.; Martinuzzi, S.; Gessler, P.E.; Hudak, A.T. Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA. Remote Sens. Environ. 2009, 113, 946–956. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; He, Y.; Liu, H.H.T.; Bartholomé, E.; Belward, A.S.; Blaschke, T.; Cook, B.D.; Bolstad, P.V.; Martin, J.G.; Heinsch, F.A.; et al. Mapping vegetation biophysical and biochemical properties using unmanned aerial vehicles-acquired imagery. Int. J. Remote Sens. 2018, 39, 5265–5287. [Google Scholar] [CrossRef]
- Corte, A.P.D.; Rex, F.E.; de Almeida, D.R.A.; Sanquetta, C.R.; Silva, C.A.; Moura, M.M.; Wilkinson, B.; Zambrano, A.M.A.; da Cunha Neto, E.M.; Veras, H.F.P.; et al. Measuring individual tree diameter and height using gatoreye high-density UAV-lidar in an integrated crop-livestock-forest system. Remote Sens. 2020, 12, 863. [Google Scholar] [CrossRef] [Green Version]
- Mikita, T.; Janata, P.; Surovỳ, P.; Boisvenue, C.; White, J.C.; Brandt, M.; Tucker, C.J.; Kariryaa, A.; Rasmussen, K.; Abel, C.; et al. Forest stand inventory based on combined aerial and terrestrial close-range photogrammetry. Forests 2016, 7, 165. [Google Scholar] [CrossRef] [Green Version]
- Hogland, J.; Anderson, N.; St. Peter, J.; Drake, J.; Medley, P. Mapping Forest Characteristics at Fine Resolution across Large Landscapes of the Southeastern United States Using NAIP Imagery and FIA Field Plot Data. ISPRS Int. J. Geo-Inf. 2018, 7, 140. [Google Scholar] [CrossRef] [Green Version]
- Goodbody, T.R.H.; Coops, N.C.; Hermosilla, T.; Tompalski, P.; Crawford, P. Assessing the status of forest regeneration using digital aerial photogrammetry and unmanned aerial systems. Int. J. Remote Sens. 2018, 39, 5246–5264. [Google Scholar] [CrossRef]
- Cummings, A.; McKee, A.; Kulkarni, K.; Markandey, N. The Rise of UAVs. Photogramm. Eng. Remote Sens. 2017, 83, 317–325. [Google Scholar] [CrossRef]
- Kuželka, K.; Surový, P. Mapping forest structure using uas inside flight capabilities. Sensors 2018, 18, 2245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritz, A.; Kattenborn, T.; Koch, B. UAV-based photogrammetric point clouds; tree stem mapping in open stands in comparison to terrestrial laser scanner point clouds. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Goldbergs, G.; Maier, S.W.; Levick, S.R.; Edwards, A. Efficiency of individual tree detection approaches based on light-weight and low-cost UAS imagery in Australian Savannas. Remote Sens. 2018, 10, 161. [Google Scholar] [CrossRef] [Green Version]
- Franklin, S.E.; Ahmed, O.S. Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data. Int. J. Remote Sens. 2018, 39, 5236–5245. [Google Scholar] [CrossRef]
- Iizuka, K.; Yonehara, T.; Itoh, M.; Kosugi, Y. Estimating Tree Height and Diameter at Breast Height (DBH) from Digital Surface Models and Orthophotos Obtained with an Unmanned Aerial System for Japanese Cypress (Chamaecyparis obtusa) Forest. Remote Sens. 2017, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, L.F.; Lassiter, H.A.; Wilkinson, B.; Whitley, T.; Ifju, P.; Logan, S.R.; Peter, G.F.; Vogel, J.G.; Martin, T.A. Moving to Automated Tree Inventory: Comparison of UAS_Derived Lidar and Photogrammetric Data with Manual Ground Estimates. Remote Sens. 2021, 13, 72. [Google Scholar] [CrossRef]
- Goodbody, T.R.H.; Coops, N.C.; Marshall, P.L.; Tompalski, P.; Crawford, P. Unmanned aerial systems for precision forest inventory purposes: A review and case study. For. Chron. 2017, 93, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Fraser, B.T.; Congalton, R.G. Evaluating the Effectiveness of Unmanned Aerial Systems (UAS) for Collecting Thematic Map Accuracy Assessment Reference Data in New England Forests. Forests 2019, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Curtis, R.O.; Marshall, D.D. Why quadratic mean diameter? West. J. Appl. For. 2000, 15, 137–139. [Google Scholar] [CrossRef] [Green Version]
- Woodall, C.W.; Miles, P.D.; Vissage, J.S. Determining maximum stand density index in mixed species stands for strategic-scale stocking assessments. For. Ecol. Manag. 2005, 216, 367–377. [Google Scholar] [CrossRef]
- Systems, E.P. Arrow 200 RTK GNSS. Available online: https://eos-gnss.com/product/arrow-series/arrow-200/?gclid=Cj0KCQjw2tCGBhCLARIsABJGmZ47-nIPNrAuu7Xobgf3P0HGlV4mMLHHWZz25lyHM6UuI_pPCu7b2gMaAukeEALw_wcB (accessed on 20 May 2021).
- Fuchs, H.J. Methodisch Anasatze zur Erfassung von Waldbaumen mittels digitaler Luftbildauswertung; Gottingen University: Gottingen, Germany, 2003. [Google Scholar]
- SenseFly eBee Plus Drone User Manual v1.8; SenseFly Parrot Group: Cheseaux-sur-Lausanne, Switzerland, 2018.
- SenseFly eBee X Fixed-Wing Mapping Drone. Available online: https://www.sensefly.com/drone/ebee-x-fixed-wing-drone/ (accessed on 20 May 2019).
- EMotion, S. SenseFly Drone Flight Management Software Versions 3.15 (eBee Plus) and 3.19 eBee X. Available online: https://www.sensefly.com/software/emotion/ (accessed on 20 May 2021).
- Dandois, J.P.; Olano, M.; Ellis, E.C. Optimal altitude, overlap, and weather conditions for computer vision uav estimates of forest structure. Remote Sens. 2015, 7, 13895–13920. [Google Scholar] [CrossRef] [Green Version]
- Puliti, S.; Ørka, H.O.; Gobakken, T.; Næsset, E. Inventory of small forest areas using an unmanned aerial system. Remote Sens. 2015, 7, 9632–9654. [Google Scholar] [CrossRef] [Green Version]
- Fraser, B.T.; Congalton, R.G. Issues in Unmanned Aerial Systems (UAS) data collection of complex forest environments. Remote Sens. 2018, 10, 908. [Google Scholar] [CrossRef] [Green Version]
- SenseFly. SenseFly Aeria X Photogrammetry Camera. Available online: https://www.sensefly.com/camera/sensefly-aeria-x-photogrammetry-camera/ (accessed on 20 May 2019).
- SenseFly. SenseFly S.O.D.A. Photogrammetry Camera. Available online: https://www.sensefly.com/camera/sensefly-soda-photogrammetry-camera/ (accessed on 20 May 2019).
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Grybas, H.; Congalton, R.G. A comparison of forest tree crown delineation from unmanned aerial imagery using canopy height models vs. spectral lightness. Forests 2020, 11, 605. [Google Scholar] [CrossRef]
- Panagiotidis, D.; Abdollahnejad, A.; Surový, P.; Chiteculo, V. Determining tree height and crown diameter from high-resolution UAV imagery. Int. J. Remote Sens. 2017, 38, 2392–2410. [Google Scholar] [CrossRef]
- GRANIT. GRANIT LiDAR Distribution Site. Available online: https://lidar.unh.edu/map/ (accessed on 20 May 2021).
- Chen, Y.; Ming, D.; Zhao, L.; Lv, B.; Zhou, K.; Qing, Y. Review on high spatial resolution remote sensing image segmentation evaluation. Photogramm. Eng. Remote Sens. 2018, 84, 629–646. [Google Scholar] [CrossRef]
- Hwang, S.; Lee, I. Current Status of Tree Height Estimation from Airborne LiDAR Data. Korean J. Remote Sens. 2011, 27, 389–401. [Google Scholar] [CrossRef]
- Hirschmugl, M.; Ofner, M.; Raggam, J.; Schardt, M. Single tree detection in very high resolution remote sensing data. Remote Sens. Environ. 2007, 110, 533–544. [Google Scholar] [CrossRef]
- Yang, J.; He, Y.; Caspersen, J. Region merging using local spectral angle thresholds: A more accurate method for hybrid segmentation of remote sensing images. Remote Sens. Environ. 2017, 190, 137–148. [Google Scholar] [CrossRef]
- Mohan, M.; Silva, C.A.; Klauberg, C.; Jat, P.; Catts, G.; Cardil, A.; Hudak, A.T.; Dia, M. Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forests 2017, 8, 340. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Grybas, H.; Congalton, R.G. Individual Tree Crown Delineation from UAS Imagery Based on Region Growing and Growth Space Considerations. Remote Sens. 2020, 12, 2363. [Google Scholar] [CrossRef]
- Clinton, N.; Holt, A.; Scarborough, J.; Yan, L.; Gong, P. Accuracy Assessment measures for object-based image segmentation goodness. Photogramm. Eng. Remote Sens. 2010, 76, 289–299. [Google Scholar] [CrossRef]
- Weidner, U. Contribution to the assessment of segmentation quality for remote sensing applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 479–484. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. JMLR 2011, 12, 2825–2830. [Google Scholar]
- Loh, W.-Y. Classification and regression trees. WIREs Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Krzywinski, M.; Altman, N. Corrigendum: Classification and regression trees. Nat. Methods 2017, 14, 757–758. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principals and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Lamson, N.I. D.b.h./Crown Diameter Relationships in Mixed Appalachian Hardwood Stands; US Department of Agriculture, Forest Service, Northern Research Station: Broomall, PA, USA, 1987; Volume NE-610. [Google Scholar]
- Lockhart, B.R.; Weih, R.C., Jr.; Smith, K.M. Crown Radius and Diameter at Breast Height Relationships for Six Bottomland Hardwood Species. J. Ark. Acad. Sci. 2005, 59, 110–115. [Google Scholar]
- Minor, C.O. Stem-crown diameter relations in Southern Pine. J. For. 1951, 59, 490–493. [Google Scholar]
- Bonnor, G.M. A tree volume table for red pine by crown width and height. For. Chron. 1964, 40, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Snedcor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; John Wiley and Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Bohlin, J.; Wallerman, J.; Fransson, J.E.S. Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scand. J. For. Res. 2012, 27, 692–699. [Google Scholar] [CrossRef]
- Gillis, M.D.; Omule, A.Y.; Brierley, T. Monitoring Canada’s forests: The national forest inventory. For. Chron. 2005, 81, 214–221. [Google Scholar] [CrossRef]
- Goodbody, T.R.H.; Tompalski, P.; Coops, N.C.; Hopkinson, C.; Treitz, P.; van Ewijk, K. Forest inventory and diversity attribute modelling using structural and intensity metrics from multi-spectral airborne laser scanning data. Remote Sens. 2020, 12, 2109. [Google Scholar] [CrossRef]
- Gu, J.; Congalton, R.G. Individual Tree Crown Delineation from UAS Imagery Based on Region Growing by Over-Segments with a Competitive Mechanism. IEEE Trans. Geosci. Remote Sens. 2021, 1–11. [Google Scholar] [CrossRef]
- Liu, L.; Lim, S.; Shen, X.; Yebra, M. A hybrid method for segmenting individual trees from airborne lidar data. Comput. Electron. Agric. 2019, 163, 104871. [Google Scholar] [CrossRef]
- Rautiainen, M.; Mõttus, M.; Stenberg, P.; Ervasti, S. Crown envelope shape measurements and models. Silva. Fenn. 2008, 42, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Rötzer, T.; Caldentey, J.; Koike, T.; van Con, T.; Chavanne, A.; Seifert, T.; et al. Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban For. Urban Green. 2015, 14, 466–479. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H. The effect of tree crown allometry on community dynamics in mixed-species stands versus monocultures. A review and perspectives for modeling and silvicultural regulation. Forests 2019, 10, 810. [Google Scholar] [CrossRef] [Green Version]
- Rudge, M.L.M.; Levick, S.R.; Bartolo, R.E.; Erskine, P.D. Modelling the diameter distribution of savanna trees with drone-based LiDAR. Remote Sens. 2021, 13, 1266. [Google Scholar] [CrossRef]
- Wieser, M.; Mandlburger, G.; Hollaus, M.; Otepka, J.; Glira, P.; Pfeifer, N. A case study of UAS borne laser scanning for measurement of tree stem diameter. Remote Sens. 2017, 9, 1154. [Google Scholar] [CrossRef] [Green Version]
- Hyyppa, H.J.; Hyyppa, J.M. Effects of stand size on the accuracy of remote sensing-based forest inventory. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2613–2621. [Google Scholar] [CrossRef]
- Bohlin, J.; Bohlin, I.; Jonzén, J.; Nilsson, M. Mapping forest attributes using data from stereophotogrammetry of aerial images and field data from the national forest inventory. Silva. Fenn. 2017, 51, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Lin, S.L.; He, J.K.; Kong, F.M.; Yu, J.H.; Jiang, H.S. Big-sized trees overrule remaining trees’ attributes and species richness as determinants of aboveground biomass in tropical forests. Glob. Chang. Biol. 2019, 25, 2810–2824. [Google Scholar] [CrossRef]
- Kebrle, D.; Zasadil, P.; Hošek, J.; Barták, V.; Šťastný, K. Large trees as a key factor for bird diversity in spruce-dominated production forests: Implications for conservation management. For. Ecol. Manag. 2021, 496. [Google Scholar] [CrossRef]
- Yuan, Z.; Ali, A.; Sanaei, A.; Ruiz-Benito, P.; Jucker, T.; Fang, L.; Bai, E.; Ye, J.; Lin, F.; Fang, S.; et al. Few large trees, rather than plant diversity and acomposition, drive the above-ground biomass stock and dynamics of temperate forests in northeast China. For. Ecol. Manag. 2021, 481. [Google Scholar] [CrossRef]
- Harris, D.J.; Ndolo Ebika, S.T.; Sanz, C.M.; Madingou, M.P.N.; Morgan, D.B. Large trees in tropical rain forests require big plots. Plants People Planet. 2021, 3, 282–294. [Google Scholar] [CrossRef]
- Hartel, T.; Hanspach, J.; Moga, C.I.; Holban, L.; Szapanyos, Á.; Tamás, R.; Hováth, C.; Réti, K.O. Abundance of large old trees in wood-pastures of Transylvania (Romania). Sci. Total Environ. 2018, 613–614, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Ganz, S.; Käber, Y.; Adler, P. Measuring Tree Height with Remote Sensing—A Comparison of Photogrammetric and LiDAR Data with Different Field Measurements. Forests 2019, 10, 694. [Google Scholar] [CrossRef] [Green Version]
- Morin, R.S.; Barnett, C.J.; Butler, B.J.; Crocker, S.J.; Domke, G.M.; Hansen, M.H.; Hatfield, M.A.; Horton, J.; Kurtz, C.M.; Lister, T.W.; et al. Forests of Vermont and New Hampshire 2012; US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2015. [Google Scholar]
Forest Parameter | Equation | Variables |
---|---|---|
Cross-sectional Area (CA) of individual trees | CA = | dbh = diameter at breast height |
Basal Area per Hectare (BA/ha) | BA/ha = | BAF = Basal Area Factor |
Trees per Hectare (TPH) | = Tree Factor of Tree i | |
Quadratic Mean Diameter (QMD or) | ||
Additive Stand Density Index (ASDI) | 1.605 and 25.4 are constants |
Classification Features | ||
---|---|---|
Spectral | Geometric | Textural (All Directions) |
Greenness * Mean of Brightness band Mean of Red band Mean of Green band Mean of Blue band Std. Dev Red band Std. Dev. Green band Std. Dev. Blue band Intensity | Area (Pixels) Length/Width Asymmetry Border index Compactness Density Radius of largest enclosed ellipse Radius of smallest enclosed ellipse Roundness Shape Index Area (m2) * Radius (minimum bounding circle radius) * | GLCM Homogeneity * GLCM Contrast GLCM Dissimilarity GLCM Entropy GLCM Mean GLCM Correlation GLDV Mean * GLDV Contrast |
Individual Tree Detection | Field (Reference) Data | |||||
---|---|---|---|---|---|---|
Correct Detection | Over Detection (Commission Error) | Under Detection (Omission Error) | Total | |||
UAS Detected | Total | 153 | 43 | 41 | 237 | |
Accuracy Percentage | 64.56% | 18.14% | 17.3% | Overall Detection 82.7% |
Random Forest Classification | Field (Reference) Data | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AB | EH | OAK | OC | OF | OH | RM | SNAG | WP | Total | Users accuracy | ||
UAS Data | AB | 23 | 4 | 9 | 0 | 2 | 0 | 0 | 0 | 0 | 38 | 60.05% |
EH | 6 | 16 | 8 | 3 | 0 | 1 | 2 | 0 | 3 | 39 | 41.03% | |
OAK | 6 | 2 | 44 | 6 | 8 | 6 | 4 | 0 | 0 | 76 | 57.89% | |
OC | 2 | 6 | 2 | 32 | 0 | 0 | 0 | 0 | 3 | 45 | 71.11% | |
OF | 6 | 1 | 9 | 0 | 13 | 5 | 2 | 0 | 0 | 36 | 36.11% | |
OH | 1 | 1 | 9 | 2 | 4 | 14 | 4 | 1 | 1 | 37 | 37.84% | |
RM | 2 | 0 | 11 | 2 | 4 | 7 | 21 | 0 | 1 | 48 | 43.75% | |
SNAG | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 33 | 5 | 40 | 82.50% | |
WP | 2 | 5 | 1 | 3 | 1 | 1 | 1 | 3 | 34 | 51 | 66.67% | |
Total | 48 | 35 | 93 | 49 | 32 | 34 | 35 | 37 | 47 | 410 | ||
Producers accuracy | 47.92% | 45.71% | 47.31% | 65.31% | 40.63% | 41.18% | 60.00% | 89.19% | 72.34% | Overall accuracy 230/410 56.10% |
A: Linear Regression: Large Trees | Field (Reference) Data | |||||
---|---|---|---|---|---|---|
Large | Small | Total | User accuracy | |||
UAS Data | Large | 84 | 16 | 100 | 84.00% | |
Small | 0 | 0 | 0 | 100% | ||
Total | 84 | 16 | 100 | |||
Producers accuracy | 100% | 0% | Overall accuracy 84/100 84.00% | |||
B: Random Forest: Large Trees | Field (Reference) Data | |||||
Large | Small | Total | User accuracy | |||
UAS Data | Large | 84 | 15 | 99 | 84.85% | |
Small | 0 | 1 | 0 | 100% | ||
Total | 84 | 16 | 100 | |||
Producers accuracy | 100% | 6.25% | Overall accuracy 85/100 85.00% | |||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraser, B.T.; Congalton, R.G. Estimating Primary Forest Attributes and Rare Community Characteristics Using Unmanned Aerial Systems (UAS): An Enrichment of Conventional Forest Inventories. Remote Sens. 2021, 13, 2971. https://doi.org/10.3390/rs13152971
Fraser BT, Congalton RG. Estimating Primary Forest Attributes and Rare Community Characteristics Using Unmanned Aerial Systems (UAS): An Enrichment of Conventional Forest Inventories. Remote Sensing. 2021; 13(15):2971. https://doi.org/10.3390/rs13152971
Chicago/Turabian StyleFraser, Benjamin T., and Russell G. Congalton. 2021. "Estimating Primary Forest Attributes and Rare Community Characteristics Using Unmanned Aerial Systems (UAS): An Enrichment of Conventional Forest Inventories" Remote Sensing 13, no. 15: 2971. https://doi.org/10.3390/rs13152971
APA StyleFraser, B. T., & Congalton, R. G. (2021). Estimating Primary Forest Attributes and Rare Community Characteristics Using Unmanned Aerial Systems (UAS): An Enrichment of Conventional Forest Inventories. Remote Sensing, 13(15), 2971. https://doi.org/10.3390/rs13152971