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Abstract: The techniques for conducting forest inventories have been established over centuries of
land management and conservation. In recent decades, however, compelling new tools and method-
ologies in remote sensing, computer vision, and data science have offered innovative pathways for
enhancing the effectiveness and comprehension of these sampling designs. Now with the aid of
Unmanned Aerial Systems (UAS) and advanced image processing techniques, we have never been
closer to mapping forests at field-based inventory scales. Our research, conducted in New Hampshire
on complex mixed-species forests, used natural color UAS imagery for estimating individual tree
diameters (diameter at breast height (dbh)) as well as stand level estimates of Basal Area per Hectare
(BA/ha), Quadratic Mean Diameter (QMD), Trees per Hectare (TPH), and a Stand Density Index (SDI)
using digital photogrammetry. To strengthen our understanding of these forests, we also assessed the
proficiency of the UAS to map the presence of large trees (i.e., >40 cm in diameter). We assessed the
proficiency of UAS digital photogrammetry for identifying large trees in two ways: (1) using the UAS
estimated dbh and the 40 cm size threshold and (2) using a random forest supervised classification
and a combination of spectral, textural, and geometric features. Our UAS-based estimates of tree
diameter reported an average error of 19.7% to 33.7%. At the stand level, BA/ha and QMD were
overestimated by 42.18% and 62.09%, respectively, while TPH and SDI were underestimated by
45.58% and 3.34%. When considering only stands larger than 9 ha however, the overestimation of
BA/ha at the stand level dropped to 14.629%. The overall classification of large trees, using the
random forest supervised classification achieved an overall accuracy of 85%. The efficiency and
effectiveness of these methods offer local land managers the opportunity to better understand their
forested ecosystems. Future research into individual tree crown detection and delineation, especially
for co-dominant or suppressed trees, will further support these efforts.

Keywords: Unmanned Aerial Systems (UAS); Unmanned Aerial Vehicle (UAV); forest inventory;
precision forestry; large trees; Structure from Motion (SfM); photogrammetry

1. Introduction

The alteration of forest stand dynamics by mechanisms such as anthropogenic climate
change, landscape fragmentation, land cover change, and overutilization have driven the
need to revise our conventional forest management tools and procedures with modern
technologies without forgetting silvicultural fundamentals. With the aid of more progres-
sive workflows, foresters and other stakeholders can make decisions at the scales that are
necessary to be successful. The main objective of many forest inventories is to quantify the
size, structure, and distribution of observed tree species [1,2]. Numerous plot sampling
designs have been established and refined over the centuries based on silvicultural prac-
tices and evolving technologies [3–7]. However, field-based campaigns are still severely
limited in terms of their temporal and spatial scales. These inventory designs also do not
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often record the full suite of forest attributes which could be useful for managing and
understanding the dynamics of forest communities.

For many researchers and land managers, forest characterization has been achieved
through the sampling designs that quantify stand basal area and tree density [8–12]. Basal
area, or the cross-sectional areas of a tree at breast height, is used to define size classes, and
therefore, to infer stand dynamics such as resource availability and competition [5,9,13].
Tree density, a measure of the number of trees per unit area (e.g., hectare), provides
insight regarding stand biomass, carbon accumulation, species diversity, growth, and
mortality [14,15]. Both of these variables are often key elements collected during timber
cruises and permanent plot frameworks (i.e., Continuous Forest Inventory (CFI) and
Forest Inventory and Analysis (FIA)) [16]. From these variables, indirect estimations or
broad trends in biomass, carbon stock, economic value, and other ecosystem services can be
drawn [17–20]. Forest managers are becoming increasingly aware of the resources provided
by forest ecosystem functions outside of those that are typically measured (i.e., economic
value or abundance of wood) [21,22]. To manage forest stands for alternative characteristics,
either indirect estimates must be made (with accepted uncertainty) or additional effort
must be made to take supplementary measurements in the field. For this purpose, many
ecological researchers have turned to using indicators [22–24].

Indicators provide access to otherwise unavailable attributes, representing a more
complete understanding of community condition and function although at often a higher
cost of sampling. They are also important due to the inability to sample both every desired
stand feature and sample across a large enough area [25,26]. However, the selection of the
most appropriate indicator is no simple task. Using imperfect representation can quickly
lead to errors in understanding and management [27,28].

Vascular plants have served as cost-effective indicators of community dynamics [25,29].
Large diameter trees have been widely recognized as important indicators. These trees
comprise most of the stand structure and dynamics across tropical and temperate forests
[26,30]. Large diameter trees are defined in several different ways, usually dependent on the
region or forest community type and the tree species [31,32]. Lutz et al. [32] recommends an
upper percentile (e.g., 99th percent) of the observed tree size distribution. Such definitions,
however, can be biased when considering unevenly sized populations. Better suited is the
definition for New England forests proposed by Whitman and Hagan [26] and followed
by Ducey et al. [33], which classifies large trees as those greater than or equal to 40 cm
(15.748 inches) diameter at breast height (dbh). These large trees, both living and dead,
have been successfully used as indicators of old growth and late-successional forests
[26,34]. Living large trees create both timber and non-timber value, through culturally
and spiritually important qualities [30]. Large dead trees remain as keystone elements
within the ecosystem for decades due their ecosystem services, including nutrient cycling
and wildlife habitats [31,35]. However, the presence of large trees alone cannot be used to
define old growth forests. The density of large trees can, however, provide a signal for the
ecological and economic status of the stand [13,36]. Even in low stem densities, large trees
control much of the forest community carbon storage and biomass [30,32,33]. Low stem
densities, restricted sampling extents, and between plot variability have challenged most
attempts to understand the presence or absence of large diameter trees. Although it seems
an obvious choice to implement remote sensing to locate and quantity large tree presence,
many platforms lack the combined spatial, spectral, and temporal resolution to reliably
generate estimates [37–39].

Remote sensing has a long history of collaboration with forest inventory and manage-
ment, with photogrammetric mapping and aerial surveys being in use for nearly 100 years
[3,40–44]. Advanced tools and techniques such as Light Detection and Ranging (LiDAR)
and radar sensors present current users with promising results [22,45–48]. Many of these
cutting-edge technologies, however, bring barriers such as hardware and software costs or
the need for additional specialized knowledge with them. Additionally, they often do not
provide the temporal or spatial resolution to map individual trees or scales, which would
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be the features that are the best suited for individual landowners [49]. To ensure optionally
feasible management, remote sensing systems must find compelling ways to estimate a
variety of forest attributes while maintaining workflows that can be adapted to diverse
projects and users.

Since their proliferation in the early 2000s, Unmanned Aerial Systems (i.e., UAS,
UAV, or drones) have made vast strides in their ability to monitor and model forests
[42,50–52]. UAS offer the potential to further reduce the moderate amounts of uncertainty
in estimating forest attributes from high-resolution manned aircraft or satellite imagery
[16,53,54]. The expanded adoption of UAS can also provide managers with better qualita-
tive and quantitative information at a large scale, while maintaining relatively low levels
of uncertainty [27,52,55]. Technological advances including Structure from Motion (SfM),
segmentation algorithms for automated individual tree detection and delineation, and
increases in battery performance have paved the way for the general adoption of this
platform [56,57]. While there are noted improvements in data resolution and the associated
techniques, however, this framework is not without its inherent challenges in measuring
complex stand structure and composition [58,59].

To build the best and the most approachable silvicultural perspective of forest stands,
this study defines the errors in UAS-based forest inventories and the proficiencies in
observing additional stand attributes using photogrammetric measurements. Additionally,
we provide a new perspective on the challenges of species-based mapping through the
classification of individual large trees [60]. Similar studies, such as Iizuka et al. [61],
have demonstrated a strong relationship between crown area or crown width and tree
diameter, although for predominantly coniferous forests. Ramalho de Oliveria et al. [62]
demonstrated that both the UAS-LiDAR and UAS photogrammetry methods could achieve
tree detection accuracies higher than 90% among tree plantations. Many other studies, such
as Goodbody et al. [63], have compared UAS photogrammetric measurements to other
remotely sensed data for the measurement of tree height. Our research instead focused
on complex, mixed species forests, with two primary objectives focused on enhancing the
power of local scale land managers. These objectives are to:

1. Estimate forest stand biometrics derived from UAS-SfM models of northeastern forests.

a. Estimate tree specific dbh using crown geometry and UAS digital photogrammetry.
b. Calculate stand density using basal area and trees per acre by species.
c. Compare these UAS-based estimates to CFI plot field inventory measurements

at the forest stand level.

2. Assess the detection of ‘large’ trees as economic and ecological indicators of forest condition.

2. Materials and Methods
2.1. Study Areas

To conduct the analysis for our first objective, estimating forest stand biometrics
using UAS-SfM, seven woodland properties located in southeastern New Hampshire were
studied (Figure 1). In total, 466 hectares (ha) were quantified, representing a mixture
of forest community types and ages. Each of these sites were selected based on their
availability of field-based inventory data within 5 years of when the woodlot could be
sampled using our UAS. All of the properties (College Woods, Kingman Farm, East Foss
Farm, Moore Fields, Dudley, and Burley-Demeritt) other than the Blue Hills study area are
managed by the University of New Hampshire (UNH) for their naturalness and research
integrity. The Blue Hills Foundation lands are contiguous forests, managed by the Harvard
Forest as conservation lands. Due to logistical constraints with the UAS, only 118.64 ha
out of the original 1034.78 ha of upland forests within the Blue Hills conservation lands
were used in this study. These seven properties were stratified into 44 forests stands with
an average stand size of 10.59 ha and were based on the available forest inventory data
using the methods described in the next section.



Remote Sens. 2021, 13, 2971 4 of 22

Figure 1. Depiction of the forest stands for each of the seven study areas located in southeastern New
Hampshire. In numbered order: (1) Kingman Farm (97.2 ha), (2) College Woods (111.6 ha), (3) Moore
Fields (17.2 ha), (4) East Foss Farm (59.9 ha), (5) Burley-Demeritt (43.9 ha), (6) Dudley (17.5 ha), and
(7) Blue Hills (118.6 ha).

For our second objective, quantifying the presence of large trees, we revisited two
of our original study areas: College Woods and Kingman Farm. These study areas were
selected due to their proximity, known presence of large trees, and diversity of forest stand
types. For these two properties, seven forest stands were selected to conduct our large tree
analysis. These included three predominantly coniferous stands, two mixed forest stands,
and two deciduous stands. These stands reflected approximately 103 ha of forest and a
minimum of 100 sampled trees in each of the coniferous, deciduous, and mixed forest
stand types.

2.2. Field Data Collection

CFI plot parameters were measured across UNH woodlands using a systematic grid
sampling design. These plots were distributed on a grid spacing of 1 plot per hectare.
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At each plot location, a variable radius plot (using horizontal point sampling) was estab-
lished [2]. Measured trees were identified using a basal area factor (BAF) 4.95 m2/ha (BAF
20 f t2/acre) angle gauge. For each measured tree, the species, dbh, and a silvicultural
code (i.e., living or dead status) was recorded. Each measured tree was also numbered and
geolocated using a bearing and distance from the plot center.

To improve the positional accuracy of the original CFI plot center locations, based
on the uncertainty discovered in Fraser and Congalton, [64] the plots centers for several
sites were recollected during the 2018–2020 summer field seasons. These sites included:
College Woods, Kingman Farm, and East Foss Farm. During this recollection, a wide area
augmentation system (WAAS) enabled GPS and location averaging was used.

For the Blue Hills conservation land forests, field inventories were conducted in
2008, 2010, and 2017. In 2008, 100 inventory plots were randomly distributed across the
conservation lands upland forests and were measured. These same 100 plots were then
remeasured in 2010 and 2017. In 2017, an additional 20 new plots were generated. At each
plot, overstory vegetation measurements were made for all of the trees that were taller than
1.4 m and that had a dbh greater than or equal to 2.5 cm. These data were filtered so that
only the trees with a dbh greater than or equal to 12.7 cm (5 inches) were retained. This
filtering ensured that non-tree vegetation would be removed and so that the calculations
of forest stand composition that were based on basal area would more closely match the
sampling design of the other study areas.

Using the provided forest inventory data, the forest stands were delineated into
9 mutually exclusive community types. These community types included: white pine
(Pinus strobus), eastern hemlock (Tsuga canadensis), other conifer, mixed forest, red maple
(Acer rubrum), oak (Quercus spp.), American beech (Fagus grandifolia), other hardwoods, and
other forest. The full definitions for theses forest communities can be found in Appendix
A. This stand delineation was accomplished using the majority class composition of the
individual forest inventory plots and was based on species basal area proportions aggre-
gated in their local area. Additionally, high-resolution image interpretation conducted by
trained and experienced forest technicians familiar with the study sites was used to digitize
specific boundaries (see Fraser and Congalton, [64]).

For each of these forest stands, the aggregated CFI plot measurements were used as
the basis for calculating the stand level attributes, which served as the field-based reference
data for our first objective. These stand level attributes are summarized in Table 1.

Table 1. Forest biometric equations for the stand level characterizations of structure and composition.

Forest Parameter Equation Variables
Cross-sectional Area (CA) of individual trees CA = dbh2 × 0.00007854 dbh = diameter at breast height

Basal Area per Hectare (BA/ha) BA/ha = (Number of Trees× BAF)
Number of Plots

BAF = Basal Area Factor

Trees per Hectare (TPH) Σ TFi
Number of plots TFi = Tree Factor of Tree i

Quadratic Mean Diameter (QMD or dQ) dQ =
√

BA/ha
TPH×0.00007854

Additive Stand Density Index (ASDI) ASDI =
TPH× ( QMD

25.4 )
1.605

Number of plots
1.605 and 25.4 are constants

Basal area is a useful characteristic for defining the composition of forest stands [5].
The Quadratic Mean Diameter (QMD) compliments basal area as a description of stand
composition and provides an additional level of insight for those looking to quantify
stand volume [5,65]. The Stand Density Index (SDI) and stocking, are used to depict the
production quality of a given site (i.e., a measure of the sites production efficiency or
quality) [5,66].

Using the delineated stand maps, seven forest stands located throughout the Kingman
Farm and College Woods study sites were used to collect field-based reference data on large
trees. This stratification allowed for the evaluation of large trees across divergent forest
communities [26,33]. These forest stands included a variety of coniferous, hardwood, and
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mixed forest types. For each of these forest stands, the original CFI plot data was reviewed
for the presence of large trees. From these CFI plot records, all trees with a dbh greater than
or equal to 37 cm (14.57 inches) were remeasured during the 2020 field season. Trees smaller
than 40 cm in dbh were included in this sampling so that the classification accuracy of the
trees below the size threshold of ‘large’ would be evaluated. A new tree-specific position
was recorded using our high-precision GPS, and a new dbh measurement was taken. An
EOS Arrow 200 GPS [67] was used to collect this position, which is reported to reach
centimeter level accuracy. From our use from below the dense canopy, the GPS receiver
reported a 1.54 m average confidence, which would provide an approximate estimate of
the tree location given the known difference between the tree stem and the crown apex [68].
From these data, approximately 459 trees were sampled for this second research objective,
45 of these trees were snags, and 64 had a dbh smaller than 40 cm. The dbh of these trees
ranged from 17.272 cm to 130.81 cm. The point locations of individual trees were manually
edited in ArcGIS when necessary to better correspond to the tree crowns visible within the
UAS orthoimagery. GPS points that could not be matched to tree crowns based on their
dbh or species were removed, resulting in a final count of 393 reference trees.

2.3. UAS Data Collection and Processing

The UAS imagery that was collected for this study was captured using a combination
of two fixed-wing aircraft and two natural color sensors. These aircraft included the sense-
Fly eBee Plus and its newer iteration, the senseFly eBee X, from Parrot [69,70]. Both UAS
were controlled using pre-programmed autonomous mission planning software (eMotion
versions 3.15 and 3.19) [71]. The results of previous studies were used to select the flight
parameters, including flying only on days with consistent sun-angle and exposure, flying
when winds were light and perpendicular to the flight lines, and flying at altitudes near
121.92 m (400 ft), the maximum allowed by Part 107 of the Federal Aviation Administration
(FAA) guidelines [72–74]. All missions were set to have 85% forward overlap and 80% side
overlap to aid in the modeling of the complex forest landscape [64,74]. The internal Real
Time Kinematic (RTK) feature of both aircrafts was enabled during all missions so that
the image capture locations could be post processed to a higher degree of precision before
SfM modeling. The two sensors deployed by these aircraft included (1) the Aeria X natural
color camera and (2) the Sensor Optimized for Drone Applications (SODA) natural color
camera [75,76]. Due to its improved hardware characteristics, the Aeria X sensor was used
whenever possible, however the SODA was used to capture several of the study sites due
to logistical and technical constraints.

A number of best practices have been discussed for UAS-SfM software choice and
settings, but with constant refinements and no established output standards, there remains
some flexibility in this procedure [72,74,77]. Agisoft Metashape (previously ‘Agisoft Photo-
Scan’) v1.5.5. was used for all SfM modeling. The processing workflow first selected the
‘High Accuracy’ image alignment and the ‘Ultra High’ quality settings for the dense point
cloud formation, digital elevation model (DEM) generation, and orthomosaicking. These
selections ensured that the full resolution of the original imagery was used during Structure
from Motion-Multiview Stereo (SfM-MVS) processing. This also provided a far greater
amount of detail in the DEMs, which was necessary for establishing the segmentation pro-
cess [78]. For each image collection date, the SfM outputs included an ultra-high-resolution
natural color orthoimage and an ultra-high-resolution DEM.

2.4. Individual Tree Detection and Delineation

Our original individual tree detection and delineation (ITDD) procedure consisted of
applying a multiresolution segmentation to the orthoimagery and relying on their spec-
tral, textural, and geometric principals to segment individual tree canopies. After several
iterations of this method, however, even the best results, both quantitatively and visu-
ally, displayed poor performance. Instead, a marker-controlled watershed segmentation
(MCWS) approach, outlined in Gu et al. [78], was used to achieve far more realistic indi-
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vidual tree segments [79]. For our approach, we used an ultra-high-quality canopy height
model (CHM) for each study area due to its performance during initial testing. To create
each of the CHMs, we began by normalizing the heights to above ground elevation values
by subtracting the New Hampshire 2 m lidar bare earth dataset using a common datum and
vertical coordinate system [80]. We then applied a low pass (Gaussian) filter to the resulting
layer to reduce the notable presence of noise (i.e., excess pits and peaks) [78,79,81]. A local
maxima operation was applied to this final CHM in ArcGIS Pro version 2.7 to identify the
individual treetops (i.e., markers for MCWS). The fixed window size for this operation
was set to the average size of the reference tree crowns, approximately 4.5 m, based on the
results of similar studies [78,82]. To evaluate the performance of the individual tree detec-
tion and mitigate biases for the under detection of sub-dominant trees, which does occur
with the remotely sensed imagery acquired from above, we calculated the object detection
rate of the final treetops in comparison to our field reference data [12,16,70,71,83,84]. We
also compared the tree detection error (commission and omission rate) for this 4.5 m fixed
window size to both larger and smaller window sizes in a subset of our data to ensure the
most accurate representation of individual tree canopies (i.e., optimal detection of singular
trees). The identified treetops were then compared to digitized reference trees to calculate
the individual tree detection accuracy (i.e., object detection rate or ODR) as well as the
rate of over detection and under detection [85,86]. For the College Woods and Kingman
Farm study sites, two iterations of reference tree segments were on-screen digitized by
trained and experienced field technicians using the species, size, and location information
from our field inventory. We then used the intersection of these two independent sample
sets as reference polygons to validate the accuracy of our MCWS. This produced a total of
237 reference polygons.

A two-stage algorithm written in Python was used to complete the MCWS [78].
The first stage involved masking non-forest areas and large canopy gaps. This mask
set a minimum height threshold of 3 m (~10 ft) for all image segments. Due to the
presence of pits and smoothed regions within some of the CHM canopy gaps, an additional
greenness index threshold was calculated from the orthoimagery and applied to this mask.
A conservative greenness index threshold was used to retain connected portions of lower
canopy vegetation, which were still present in the imagery, but also to remove isolated
or understory remnant vegetation. The second stage of the algorithm applied MCWS
segmentation. This algorithm started with the identified treetops and delineated individual
tree boundaries using the height gradients found within the CHM [78].

The accuracy of these final individual tree segments was evaluated both quantita-
tively and qualitatively. An Overlap Index (OI) was used to determine the corresponding
best match between the digitized reference polygons and the canopy segments to sup-
port our quantitative evaluation of the image segments [78,81]. During this empirical
evaluation of the segmentation quality, three matching indices were calculated. Both an
Over-segmentation index (Oa) and Under-segmentation index (Ua) were calculated to
determine the degree to which the segments corresponded with individual trees [81,87].
Over-segmentation was prioritized over under-segmentation while comparing the results
of various segmentation parameters due to its influence on species classification [81]. The
final empirical evaluator that we calculated was a Quality Rate (QR) index. The QR index
measures the geometric correspondence between the reference polygon and the segmented
trees, with a result of 0 indicating a complete match [78,81,88]. A final, visual assessment
was conducted following each empirical assessment of segmentation quality to ensure
that the crown edges represented in the orthoimagery matched the highest performing
quantitative results [81].
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2.5. Tree Species Classification

For each of the final tree segments (canopies), a variety of spectral, geometric, and
textural attributes were calculated using eCognition Developer (v9.1). These attributes,
shown in Table 2, were used as both the species classification parameters and the secondary
classification framework for large trees.

Table 2. Individual tree crown features (parameters) derived from both eCognition and ArcGIS software tools.

Classification Features
Spectral Geometric Textural (All Directions)

Greenness *
Mean of Brightness band

Mean of Red band
Mean of Green band
Mean of Blue band
Std. Dev Red band

Std. Dev. Green band
Std. Dev. Blue band

Intensity

Area (Pixels)
Length/Width

Asymmetry
Border index
Compactness

Density
Radius of largest enclosed ellipse

Radius of smallest enclosed ellipse
Roundness

Shape Index
Area (m2) *

Radius (minimum bounding circle radius) *

GLCM Homogeneity *
GLCM Contrast

GLCM Dissimilarity
GLCM Entropy

GLCM Mean
GLCM Correlation

GLDV Mean *
GLDV Contrast

* Greenness = (Mean Green −Mean Red)+(Mean Green−Mean Blue)
(2 ∗Mean Green)+(Mean Red)+(Mean Blue) ; GLCM = Gray Level Co-Occurrence Matrix; GLDV = Grey Level Difference

Vector; Area (m2) and Radius are calculated in ArcGIS.

Our species classification was completed using a random Forest supervised classifi-
cation algorithm in Python [89]. This classification scheme included white pine, eastern
hemlock, other conifer, American beech, red maple, oak, other hardwood, other forest,
and snag. The full definitions of these classes can be seen in Appendix A. An additional
sampling of individual reference trees, gathered through a blend of field inventory and
photo interpretation, was used to generate reference data for this classification. A minimum
of 30 training and 30 validation trees, located throughout several of the study areas, were
used for each class. The Gini index was used to control the impurity of the individual
decision tree splits [90,91]. A measure of variable importance was also generated using the
mean decrease in impurity (MDI) to ensure the performance of the algorithm [92]. The
thematic accuracy of this species-based classification was evaluated using a thematic map
accuracy assessment error matrix [93].

2.6. UAS Regression Analysis and Biometrics

A linear regression was used to empirically model dbh estimates from the UAS data.
Both the crown area and the crown radius of individual tree segments were examined
for their relationship (i.e., fit) to field-based dbh measurements [94,95]. The crown area
was calculated for all of the individual tree segments based on their geometry in ArcGIS.
The crown radius was derived from the radius of the minimum bounding circle for each
segment. The relationship between the UAS tree canopies (segments) and field-based
measurements of dbh included 393 reference trees. These data were split with a consid-
eration for species diversity, size diversity, and stand composition diversity so that 75%
of the reference samples were used to build the regression models, and 25% were used to
validate its accuracy. Both the crown area and crown radius models were examined for all
species, coniferous species, and deciduous species independently [5,96,97]. The Pearson’s
coefficient (r) was used to determine the strength of the relationship [98]. Additionally, the
validation trees were used to generate a root mean square error (RMSE) for the best fitting
regression model to determine if these data fell within the 2% to 18% confidence interval
expected from the field-based dbh measurements [99].

Using this new relationship for dbh derived from the UAS data, the dbh for all of the
detected trees for our 7 study sites was calculated. From this variable, stand level attributes
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such as basal area per hectare, TPH, QMD, and SDI were calculated using the same
fundamental equations as the field inventory assessment with two adjustments [5,14,33].
The first adjustment was that these estimates of stand level characteristics were made
using all of the observed trees within each stand and not just using the independent
field sampling plots. Second, to calculate the total observed stand basal area and then
basal area per hectare, individual tree segments that were smaller than 3 m2 or 500 pixels
were removed using a semi-automated method based on the visual inspection of the
orthoimagery and then the later implementation of a filter in ArcGIS Pro. This process
removed small and erroneous image objects, which were mostly located around the canopy
gaps and edges and did not represent tree canopies and would negatively bias the total
stand basal area. The accuracy for these UAS-based forest inventory estimates were
assessed based on their percent difference from the field-based estimates for each stand.

2.7. UAS Large Tree Survey

To meet our second objective, the quantification of large tree presence, we again used
the geometry of the individual tree segments (crowns) identified in the last section. With
these tree canopies, two distinct methods were used to categorize large and small trees.
First, we used the best fitting regression equation from our first objective to estimate the
dbh of each of our reference trees from their crown geometry. This dbh was then cross-
referenced with the validation trees to determine their agreement for the classification for
large and small trees (i.e., greater than or less than 40 cm dbh). Trees with an estimated
dbh smaller than 40 cm were labeled as small, while trees with an estimated dbh greater
than or equal to 40 cm were labeled as large. Our second method consisted of a supervised
classification of large and small trees using the random forest classifier, similar to the
original species-based classification. This random forest classification was established
using the same training and validation samples as the estimated dbh regression [80]. Each
of the features calculated for the original species-based classification (29 features) were
reapplied for the purpose of defining large and small trees. The species of each reference
tree was also used as an additional feature for this classification. This secondary, thematic,
classification was evaluated using a thematic map accuracy assessment error matrix [93].

3. Results
3.1. UAS-SfM Modelling

The spatial resolution of the SfM-MVS orthoimagery and CHMs ranged from 2.53 cm
to 3.6 cm. The average spatial resolution was 2.94 cm. In total, 14 spatial models were
created: one orthoimage model and one CHM model for each of the seven study areas
using the ultra-high-quality setting in Agisoft Metashape.

3.2. Individual Tree Detection and Delineation

A total of 237 digitized reference trees from College Woods and Kingman Farm were
used to quantify the overall tree detection accuracy based on our selected, optimal window
size. Alternate window sizes and segmentation parameters were evaluated but were found
to be less accurate for overall detection accuracy. Table 3 shows the overall detection
accuracy for individual trees as well as the rate of over detection (commission error) and
under detection (omission error). Of these trees, 64.56% were correctly identified and
delineated as a singular canopy. The percentage of over detected (i.e., over segmented)
trees, 18.14%, and under detected (under segmented) trees, 17.3%, were roughly balanced.
The overall detection rate was 82.7%. This is a combination of the trees detected with
singular canopies (i.e., ‘correct detection’) and those that were falsely detected as multiple
trees (i.e., over detected).
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Table 3. Individual tree detection (ITD) accuracy, including the rates of commission and omission error as well as the overall
detection accuracy.

Individual Tree Detection Field (Reference) Data

Correct Detection Over Detection
(Commission Error)

Under Detection
(Omission Error) Total

UAS
Detected Total 153 43 41 237

Accuracy
Percentage 64.56% 18.14% 17.3%

Overall
Detection

82.7%

The geometric accuracy of the final tree segments were compared to these same
digitized reference trees using the Oa, Ua, and QR indices. This resulted in an Oa of 0.2103,
a Ua of 0.3741, and a QR of 0.49796. In the effort to obtain the most accurate delineation
of individual trees, we tested the influence of applying an additional multiresolution
segmentation to these tree segments. This would further interject spectral information
into the segmentation process. All of the tests, however, resulted in a minimum of a 0.86%
decrease in the QR, which would negatively affect the resulting dbh estimates.

3.3. Tree Species Classification

Our species-based classification, which included nine classes, resulted in an overall
accuracy of 56.10% (Table 4). Classes such as snags, white pine, and other conifer displayed
the highest producer and user accuracies. Alternatively, classes such as other forest, other
hardwoods, and red maple resulted in the lowest user accuracies, with 36.11%, 37.84%,
and 43.75% accuracies, respectively. This was echoed in the producer accuracies, with each
of these classes as well as the oak class showing increased rates of commission error.

Table 4. Species-based classification thematic map error matrix conducted on nine species: American beech (AB), eastern
hemlock (EH), oaks, other conifers (OC), other forests (OF), other hardwoods (OH), red maple (RM), snags, and white pine
(WP). Classification was completed using the random forest (RF) supervised classification algorithm.

Random Forest
Classification Field (Reference) Data

AB EH OAK OC OF OH RM SNAG WP Total Users
accuracy

UAS
Data

AB 23 4 9 0 2 0 0 0 0 38 60.05%

EH 6 16 8 3 0 1 2 0 3 39 41.03%

OAK 6 2 44 6 8 6 4 0 0 76 57.89%

OC 2 6 2 32 0 0 0 0 3 45 71.11%

OF 6 1 9 0 13 5 2 0 0 36 36.11%

OH 1 1 9 2 4 14 4 1 1 37 37.84%

RM 2 0 11 2 4 7 21 0 1 48 43.75%

SNAG 0 0 0 1 0 0 1 33 5 40 82.50%

WP 2 5 1 3 1 1 1 3 34 51 66.67%

Total 48 35 93 49 32 34 35 37 47 410

Produc-
ers

accuracy
47.92% 45.71% 47.31% 65.31% 40.63% 41.18% 60.00% 89.19% 72.34%

Overall
accuracy
230/410
56.10%
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3.4. UAS Regression Analysis and Biometrics

To model the relationship between crown geometry and dbh, two regression models
were examined. First, the relationship between crown area and dbh was modeled (Figure 2)
for all species and then for coniferous and deciduous species independently. Crown area
resulted in an r value of 0.2816 value overall, with deciduous and coniferous species
reaching r values of 0.1517 and 0.3603. The second regression modelled the relationship
between crown radius and dbh (Figure 3). All three trend lines for this model had a
better overall fit than those of the crown area regression. The combined species r value
reached 0.3792, while deciduous and coniferous species had values of 0.3895 and 0.4686. In
comparing these two models, in both cases, the deciduous species showed a worse fit than
the coniferous species did. The equation for the line of the combined species crown radius
to dbh is given below in Equation (1). This equation gave the best overall fit for all species
and was used as the basis for the stand level biometric estimation in the next section. In
this equation ‘x’ is the crown radius of an individual tree segment, and ‘Y’ is the trees dbh.

Y = 3.26057x + 36.05689 (1)

Figure 2. Linear regression between field measured dbh and crown area estimated using the UAS tree segments. A total of
three trend lines and their respective equations are displayed for all species combined as well as for the deciduous species
and coniferous species independently.

Using this equation, we compared the UAS estimated dbh for our validation trees
to the field-measured dbh. This comparison resulted in a RMSE of 13.15 cm, which is
equivalent to an error of 19.7% to 33.7% based on the average size of our measured trees
(based on one standard deviation from the mean).
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Figure 3. Linear regression between field measured dbh and crown radius estimated using UAS tree segments. A total of
three trend lines and their respective equations are displayed for all species combined as well as for the deciduous species
and coniferous species independently.

To understand the proficiency for estimating stand level characteristics, the crown
radius to dbh regression equation above was used to calculate the basal area of individual
tree segments. In conjunction with this, the TPH was determined based on the detection
of treetops in each stand, and both were used to derive estimates of QMD and SDI that
could be compared to field-based reference data. Below, Figure 4 shows our comparison
between the UAS estimates of BA/ha, TPH, QMD, and SDI, with 100% depicting an
equivalent estimate between both sources. The estimates of BA/ha showed that the UAS
on average was 42.18% higher (142.181% or +8.59 m2/ha) than field-based measurements.
On the other hand, the TPH estimates were 45.58% lower than the field-based estimates at
54.417% (322 vs. 626.5 TPH). This overestimation of BA/ha and underestimation of TPH
was reflected in the other comparisons, which resulted in overestimations of 62.081% for
QMD (+14.99 cm) and an underestimation of 3.337% for SDI (−6.01).

3.5. UAS Large Tree Survey

A total of two methods were used to quantify the accuracy of large tree classification
using the UAS tree segments (Table 5). The first consisted of classifying trees as large,
which included trees with a dbh greater than or equal to a 40 cm, based on their estimated
dbh from the crown radius regression model discussed in the above section. For the
100 trees that were validation measured and classified based on our field reference data,
84% were correctly classified as large trees. In contrast to this, however, all 16 of the trees
that were smaller than 40 cm in diameter (100% of these samples) were also classified
as large based on the UAS data. The second method to classify trees as large or small
included applying a random forest supervised classification to the same training (n = 293)
and validation (n = 100) trees as the regression model. This supervised classification used
the same input features as the species-based classification (Table 2) with one addition: a
numeric code for the known species ID. This random forest classification resulted in an
overall accuracy of 85%. The slight increase in classification accuracy was the result of the
successful classification of one small sugar maple (Acer saccharum) tree.
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Figure 4. Comparison of field-based inventory estimates and UAS-based inventory estimates of stand level characteristics
including: Basal Area per Hectare (BA/ha), Trees per Hectare (TPH), Quadratic Mean Diameter (QMD), and Stand Density
Index (SDI).

Table 5. Thematic accuracy error matrices for the classification of large trees. (A) Using the linear regression equation for
dbh based on the segmented crown radius and (B) using a random forest supervised classification.

A: Linear Regression: Large Trees Field (Reference) Data

Large Small Total User accuracy

UAS
Data

Large 84 16 100 84.00%

Small 0 0 0 100%

Total 84 16 100

Producers accuracy
100% 0% Overall accuracy

84/100
84.00%

B: Random Forest: Large Trees Field (Reference) Data

Large Small Total User accuracy

UAS
Data

Large 84 15 99 84.85%

Small 0 1 0 100%

Total 84 16 100

Producers accuracy
100% 6.25% Overall accuracy

85/100
85.00%

The feature importance of all 30 input features for this supervised random forest clas-
sification of large trees using their MDI values (Figure 5). Crown radius (0.0585) followed
by the greenness index (0.0493) and crown area in m2 (0.0467) displayed the highest feature
importance. Many of the additional geometric and textural features displayed the lowest
feature importance.
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Figure 5. Feature importance values for the random forest classification input features for large trees based on the mean
decrease in impurity (MDI) index.

4. Discussion

The quantification of forest stand and individual tree characteristics using remote
sensing has been a topic of interest for several decades [57,99–101]. Our first objective
investigated the ability of UAS-SfM photogrammetry to estimate individual tree diameter
as well as stand level characterizations of BA/ha, TPH, QMD, and SDI. In addition to this,
we used a random forest supervised classification to examine individual tree species and
in support of our second objective, a survey of large tree presence using UAS.

The overall classification accuracy for our nine-class (species) system was 56.10%.
Classes that were highly distinct, such as white pine and snags, reported both high
producer and user accuracies. Other classes such as other forest and other hardwoods
showed the worst performance. The class for eastern hemlock also showed poor perfor-
mance, likely because of their poor reconstruction in the SfM models for some regions
of the orthoimagery and DEMs, which was realized during the visual exploration of the
data and canopy delineation procedures. The results of quantifying dbh for individual
trees using crown geometry demonstrated a relatively low precision (±13.15 cm) and fit
(r = 0.3792). This contrasts with a study by Iizuka et al. [61], which demonstrated a strong
relationship between canopy geometry and field-measured dbh, especially for crown width
(r = 0.7786). Their study, however, was conducted using predominantly coniferous species
(e.g., Chamaecyparis obtuse) in a low species diversity area, while our study had a complex
mixture of dense conifers and deciduous trees. In Figure 3, we see the presence of several
large outlier trees with low crown radius values that were over segmented. These training
trees were recorded with diameters ranging up to 130 cm. Segmentation has been a large
concern when considering the modeling of large trees using only optical, natural color
imagery. Our approach used an MCWS algorithm following multiple testing cycles. For
example, when performing this same MCWS algorithm on medium-quality SfM data
products, we achieved a slightly higher individual tree detection accuracy, however, there
was a subsequent 9% decrease in the segments QR, which negatively impacted each of the
dbh regression models. More recently, region growing segmentation algorithms that show
promising results for this same procedure have been published [102]. The complexity of
these northeastern, mixed species forests present a challenge, however. The diversity of
tree canopy appearances has led to a continual pursuit for the improved identification and
delineation of trees within closed canopy forests [57,103]. The correct identification and
extraction of small trees in particular is noted as a source of uncertainty for the classification
of large and small trees, which will be further reflected on in the next section. Finally,
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several studies have recognized that site-specific and species-specific allometric equations
based on crown geometry have achieved good performance for measuring indirect forest
characteristics [104–107]. Future research will explore methods for improving species-based
classifications and the increases in accuracy found by adapting species-specific equations
for tree crown–dbh mathematical models.

Based on the regression equation for crown radius, our UAS-based estimates of tree
diameter showed an average difference of 19.7% to 33.7% when compared to field reference
data. In a study by Wieser et al. [108], UAS-lidar measurements of tree diameter ranged
from 9% for trees between 20 and 30 cm in diameter to 1.8% for trees larger than 40 cm in
diameter. This study was conducted on pre-alpine alluvial forests in Austria [108]. Corte
et al. [52] established a similar result for UAS-lidar with the measurements of individual
tree diameter reaching an RMSE of 11.3% on a eucalyptus planation (Eucalyptus benthamii).
While our results have not yet reached those of UAS-lidar, the affordability and technical
accessibility of our photogrammetric framework provide a strong incentive for its use in
local scale management. Our results for stand level estimations showed an overestimation
of BA/ha (42.181%) and QMD (62.088%), while TPH and SDI were underestimated by
46.439% and 3.309%. The underestimation of tree density using UAS-SfM is not uncommon.
Goldbergs et al. [59] analyzed the detection rate of individual trees using a SfM point cloud.
Their results showed that dominant and co-dominant trees had a detection accuracy of
approximately 70%, while suppressed trees resulted in a detection accuracy under 35%.
The complexity of our multi-canopy forests make the comparison of field-based and remote
sensing inventory measurements challenging. In a study by Ramalho de Oliveira et al. [62],
the detection accuracies of individual trees within a loblolly pine (Pinus taeda) plantation in
central Florida reached 96% and 92% for UAS-lidar and UAS photogrammetry, respectively.
Recognizing that the UAS-based estimations of tree diameter tended to exaggerate their
actual sizes, we implemented a filtering of tree segments that were smaller than 500 pixels
or 3 m2. Identified treetops that were delineated as only a few pixels during the MCWS
were registered as trees with a minimum dbh of 36.057 cm using Equation (1). This caused
the initial estimates of total stand basal area and BA/ha to be two to three times higher.
Finally, we considered the influence of the stand size of these inventory characteristics.
Most of the stands that are shown as outliers in Figure 4 are smaller than 10 ha in size.
For example, a stand at the Dudley study area that was 5.77 ha in size resulted in the
greatest overestimation of BA/ha with a calculation of 748.05% of the field-based value.
This translated into an overestimation of QMD and SDI of 401.2% and 374.5% respectively.
Stand size can present a considerable source of variability in the estimation of forest
characteristics, with stability not being reached for some remote sensing data sources until
the stand size is 10 to 20 ha or larger [109]. When comparing only stands larger than 9 ha
(n = 19), the overestimation of BA/ha reduced from 42.181% to 14.629%, with a subsequent
boost to the precision of these estimations. This resulting overestimation of 14.6% for
BA/ha at the stand level more closely coincides with the results of other studies using
photogrammetric measurements [110].

Exploring the results of our second objective, an evaluation of large tree mapping, we
set a 40 cm dbh size threshold as the definition of large trees. Large trees represent a key
ecosystem component, even in low densities [111–113]. Our random forest classification
performed slightly better than the estimated dbh regression model for crown radius.
These inflated overall accuracies of 85% and 84% for the random forest and regression
classifications would likely decrease with the availability of a larger sample size of small
trees, as the classification accuracy of both models for this class was less than 10%. Previous
studies have acknowledged the difficulty in surveying or tracking changes in large tree
presence in the field [30,114]. While many recent studies have investigated the function
of large trees in various habitats, few reflect on the accuracy or cost of estimating their
presence and distribution [35,115]. As discussed above, more research is also needed to
adopt these methods for the assessment of small or non-dominant trees in dense canopy



Remote Sens. 2021, 13, 2971 16 of 22

stands [59]. These trees, located lower in the forest canopy, represent a considerable source
of uncertainty when employing photogrammetric methods (citation).

While the quality of the segmentation results, i.e., individual tree delineation, is a
primary source of uncertainty for these applications, the challenge of defining a standard
segmentation practice for specific forest cover types is not easily overcome [57,102]. Future
research should look at the benefits of multi-temporal workflows or the fusion of natural
color sensors with lidar point clouds or hyperspectral imagery. This addition of data
sources, however, brings to question the feasibility of not only collecting but understanding
and processing such products in a way that would be adaptable for managing local-scale
forests. The flexibility and efficiency of UAS-photogrammetry using SfM and modern
individual tree crown delineation methods makes it a fundamental target for updating
and extending forest inventories [12,79,116]. These methods must remain as an approach
for local scale management in order to remain applicable to a significant percentage of
woodlands throughout this region [49,117].

5. Conclusions

Today’s forests require detailed and up-to-date information to support local-scale
management. Our research investigated the proficiency for UAS natural color imagery,
integrating refined Structure from Motion (SfM), and advanced segmentation algorithms
for the estimation of individual tree and stand level characteristics. In our first objective,
we estimated individual tree diameters within complex forests using their segmented
crown radius. This resulted in an average error of 19.7% to 33.7%. At the stand level, this
regression model resulted in overestimations of basal area per hectare, quadratic mean
diameter, and the stand density index, while the trees per hectare was underestimated. The
results of this stand level assessment were improved when considering only stands larger
than 9 ha, bringing the accuracy of our UAS methods closer to other studies conducted
using photogrammetry and to those that used lidar sensors. For the second objective,
our assessment of large trees presented a high overall accuracy for both the crown radius
regression model and random forest classification, 84% and 85%, respectively. This clas-
sification, however, further highlighted the inability of UAS photogrammetry to identify
and delineate small or suppressed trees, with this class receiving an accuracy of less than
10% for both methodologies. A major principal of this research was the accuracy of the
individual tree detection and delineation, which is rapidly progressing. The results of this
study provide an additional exploration of complex forest photogrammetry using modern
software and hardware technology as well as a relatively accessible framework for local
scale management, which will lead to a greater understanding of our forested landscape.
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Appendix A

Stand Level Classification

• White Pine—any forested land surface dominated by tree species comprising an
overstory canopy with greater than 70% basal area per unit area eastern white pine
(Pinus strobus).

• Hemlock—any forested land surface dominated by tree species comprising an overstory
canopy with greater than 70% basal area per unit area eastern hemlock (Tsuga canadensis).

• Mixed Conifer—any forested land area dominated by trees species comprising an
overstory canopy with greater than 66% mixture of coniferous species but less than
70% of white pine or eastern hemlock independently.

• Mixed Forests—any forested land surface dominated by tree species comprising a
heterogenous mixture of deciduous and coniferous species each comprising greater
than 20% basal area per unit area composition. Important species associations include
eastern white pine and northern red oak (Quercus rubra), red maple (Acer rubrum),
white ash (Fraxinus americana), eastern hemlock, and birches (Betula spp.).

• Red Maple—any forested land surface dominated by tree species comprising an
overstory canopy with a greater than 50% basal area per unit area of red maple.

• Oak—any forested land surface dominated by tree species comprising an overstory
canopy with a greater than 50% basal area per unit area of white oak (Quercus alba),
black oak (Quercus velutina), northern red oak (Quercus rubra), or a mixture of each.

• American Beech—any forested land surface dominated by tree species comprising
an overstory canopy with a greater than 25% basal area per unit area American
beech (Fagus grandifolia) composition. This unique class takes precedence over other
mentioned hardwood classes if present.

• Mixed Hardwoods—any forested land surface dominated by tree species comprising
other deciduous species besides red maple, oak, or American beech that comprises a
greater than 66% basal area per unit area of the overstory canopy.

• Other Forest—any forested land surface dominated by tree species comprising an
overstory composition that is highly distinct and subject to different management
or use and not previously mentioned. This class includes areas dominated by early
successional species such as paper birch (Betula papyrifera) or aspen (Populus spp.).

Tree Level Classification

• White Pine—Any woody vegetation taller than 3 m and larger than 12.7 cm in diameter,
representing the species white pine (Pinus strobus).

• Eastern Hemlock—Any woody vegetation taller than 3 m and larger than 12.7 cm in
diameter, representing the species eastern hemlock (Tsuga canadensis).

• Other Conifer—Any woody vegetation taller than 3 m and larger than 12.7 cm in
diameter, representing coniferous species other than white pine or eastern hemlock.
Such species include red pine (Pinus resinosa), basal fir (Abies balsamea), and eastern
red cedar (Juniperus virginiana).

• Oak—Any woody vegetation taller than 3 m and larger than 12.7 cm in diameter,
representing species of the oak (Quercus spp.) family. Such species include northern
red oak (Quercus rubra), black oak (Quercus velutina), and white oak (Quercus alba).

• Red Maple—Any woody vegetation taller than 3 m and larger than 12.7 cm in diameter,
representing the species red maple (Acer rubrum).

• American Beech—Any woody vegetation taller than 3 m and larger than 12.7 cm in
diameter, representing the species American beech (Fagus grandifolia).

• Other Hardwood—Any woody vegetation taller than 3 m and larger than 12.7 cm in
diameter, representing non-early successional deciduous species other than oaks, red
maple, or american Beech. Such species include shagbark hickory (Carya ovata), sugar
maple (Acer saccharum), and basswood (Tilia americana).
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• Other Forest—Any woody vegetation taller than 3 m and larger than 12.7 cm in
diameter, representing early successional species such as birches (Betula spp.), aspen
(Populus spp.), or ash (Fraxinus spp.).

• Snags—Any woody vegetation larger than 12.7 cm in diameter, representing any tree
species that is clearly identified as dead but still has a stem taller than 3 m.
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