Shortcut Faults and Lateral Spreading Activated in a Pull-Apart Basin by the 2018 Palu Earthquake, Central Sulawesi, Indonesia
Abstract
:1. Introduction
2. The 2018 Palu Earthquake
3. Methods
4. Results
4.1. Fluvial Terraces and Fans
4.2. Tectonic Geomorphology
4.3. Optical Correlation and Vector Field Results
5. Discussion
5.1. Comparison of Optical Correlation Results and Tectonic Geomorphology
5.2. Lateral Spreading Phenomena Occurring at the Pull-Apart Basin
5.3. Lessons from the 2018 Palu Earthquake
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burchfiel, B.C.; Stewart, J.H. “pull-apart” origin of the central segment of Death Valley, California. Bull. Geol. Soc. Am. 1966, 77, 439–442. [Google Scholar] [CrossRef]
- Crowell, J.C. Sedimentation along the San Andreas Fault, California. In Modern and Ancient Geosynclinal Sedimentation; Society for Sedimentary Geology: Tulsa, OK, USA, 1974; pp. 292–303. [Google Scholar]
- Garfunkel, Z. Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 1981, 80, 81–108. [Google Scholar] [CrossRef]
- Aydin, A.; Nur, A. Evolution of pull-apart basins and their scale independence. Tectonics 1982, 1, 91–105. [Google Scholar] [CrossRef]
- Mann, P.; Hempton, M.R.; Bradley, D.C.; Burke, K. Development of pull-apart basins. J. Geol. 1983, 91, 529–554. [Google Scholar] [CrossRef]
- Zhang, P.; Burchfiel, B.C.; Chen, S.; Deng, Q. Extinction of pull-apart basins. Geology 1989, 17, 814–817. [Google Scholar] [CrossRef]
- McClay, K.; Dooley, T. Analogue models of pull-apart basins. Geology 1995, 23, 711–714. [Google Scholar] [CrossRef]
- Wu, J.E.; McClay, K.; Whitehouse, P.; Dooley, T. 4D analogue modelling of transtensional pull-apart basins. Mar. Pet. Geol. 2009, 26, 1608–1623. [Google Scholar] [CrossRef]
- Dooley, T.; McClay, K. Analog modeling of pull-apart Basins. Am. Assoc. Pet. Geol. Bull. 1997, 81, 1804–1826. [Google Scholar] [CrossRef]
- Rahe, B.; Ferrill, D.A.; Morris, A.P. Physical analog modeling of pull-apart basin evolution. Tectonophysics 1998, 285, 21–40. [Google Scholar] [CrossRef]
- Sims, D.; Ferrill, D.A.; Stamatakos, J.A. Role of a ductile decollement in the development of pull-apart basins: Experimental results and natural examples. J. Struct. Geol. 1999, 21, 533–554. [Google Scholar] [CrossRef]
- Dooley, T.P.; Schreurs, G. Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results. Tectonophysics 2012, 574–575, 1–71. [Google Scholar] [CrossRef]
- Sugan, M.; Wu, J.E.L.; McClay, K. 3D analogue modelling of transtensional pull-apart basins: Comparison with the Cinarcik basin, Sea of Marmara, Turkey. Boll. Geofis. Teor. Appl. 2014, 55, 699–716. [Google Scholar] [CrossRef]
- Corti, G.; Nencini, R.; Skyttä, P. Modelling the influence of pre-existing brittle fabrics on the development and architecture pull-apart basins. J. Struct. Geol. 2020, 131. [Google Scholar] [CrossRef]
- Rodgers, D.A. Analysis of Pull-Apart Basin Development Produced by En Echelon Strike-Slip Faults. In Sedimentation in Oblique-Slip Mobile Zones; Wiley: Hoboken, NJ, USA, 2009; pp. 27–41. ISBN 9781444303735. [Google Scholar]
- Katzman, R.; Ten Brink, U.S.; Lin, J. Three-dimensional modeling of pull-apart basins: Implications for the tectonics of the Dead Sea Basin. J. Geophys. Res. 1995, 100, 6295–6312. [Google Scholar] [CrossRef] [Green Version]
- Kusumoto, S.; Fukuda, Y.; Takemura, K.; Takemoto, S. Forming Mechanism of the Sedimentary Basin at the Termination of the Right-lateral Left-stepping Faults and Tectonics around Osaka Bay. J. Geogr. Chigaku Zasshi 2001, 110, 32–43. [Google Scholar] [CrossRef]
- Van Wijk, J.; Axen, G.; Abera, R. Initiation, evolution and extinction of pull-apart basins: Implications for opening of the Gulf of California. Tectonophysics 2017, 719–720, 37–50. [Google Scholar] [CrossRef]
- Liu, Y.; Konietzky, H. Particle-Based Modeling of Pull-Apart Basin Development. Tectonics 2018, 37, 343–358. [Google Scholar] [CrossRef]
- Schattner, U.; Weinberger, R. A mid-Pleistocene deformation transition in the Hula basin, northern Israel: Implications for the tectonic evolution of the Dead Sea Fault. Geochem. Geophys. Geosystems 2008, 9. [Google Scholar] [CrossRef]
- Quennell, A.M. The structural and geomorphic evolution of the dead sea rift. Q. J. Geol. Soc. Lond. 1958, 114, 1–24. [Google Scholar] [CrossRef]
- Freund, R.; Garfunkel, Z.; Zak, I.; Goldberg, M.; Weissbrod, T.; Derin, B.; Bender, F.; Wellings, F.E.; Girdler, R.W. The Shear along the Dead Sea Rift [and Discussion]. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 1970, 267, 107–130. [Google Scholar]
- Aragón-Arreola, M.; Morandi, M.; Martín-Barajas, A.; Delgado-Argote, L.; González-Fernández, A. Structure of the rift basins in the central Gulf of California: Kinematic implications for oblique rifting. Tectonophysics 2005, 409, 19–38. [Google Scholar] [CrossRef]
- Aragón-Arreola, M.; Martin-Barajas, A. Westward migration of extension in the northern Gulf of California, Mexico. Geology 2007, 35, 571–574. [Google Scholar] [CrossRef]
- Seiler, C.; Fletcher, J.M.; Quigley, M.C.; Gleadow, A.J.W.; Kohn, B.P. Neogene structural evolution of the Sierra San Felipe, Baja California: Evidence for proto-gulf transtension in the Gulf Extensional Province? Tectonophysics 2010, 488, 87–109. [Google Scholar] [CrossRef]
- Armijo, R.; Pondard, N.; Meyer, B.; Ucarkus, G.; De Lépinay, B.M.; Malavieille, J.; Dominguez, S.; Gustcher, M.A.; Schmidt, S.; Beck, C.; et al. Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian Fault): Implications for seismic hazard in Istanbul. Geochem. Geophys. Geosyst. 2005, 6, 6009. [Google Scholar] [CrossRef] [Green Version]
- Pondard, N.; Armijo, R.; King, G.C.P.; Meyer, B.; Flerit, F. Fault interactions in the Sea of Marmara pull-apart (North Anatolian Fault): Earthquake clustering and propagating earthquake sequences. Geophys. J. Int. 2007, 171, 1185–1197. [Google Scholar] [CrossRef] [Green Version]
- Kuşçu, I. Cross-basin faulting and extinction of pull-apart basins in the sea of Marmara, NW Turkey. Turkish J. Earth Sci. 2009, 18, 331–349. [Google Scholar] [CrossRef]
- Ribot, M.; Klinger, Y.; Jónsson, S.; Avsar, U.; Pons-Branchu, E.; Matrau, R.; Mallon, F.L. Active Faults’ Geometry in the Gulf of Aqaba, Southern Dead Sea Fault, Illuminated by Multibeam Bathymetric Data. Tectonics 2021, 40, e2020TC006443. [Google Scholar] [CrossRef]
- Bradley, K.; Mallick, R.; Andikagumi, H.; Hubbard, J.; Meilianda, E.; Switzer, A.; Du, N.; Brocard, G.; Alfian, D.; Benazir, B.; et al. Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation. Nat. Geosci. 2019, 12, 935–939. [Google Scholar] [CrossRef]
- Watkinson, I.M.; Hall, R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides. Nat. Geosci. 2019, 12, 940–945. [Google Scholar] [CrossRef]
- Mason, H.B.; Montgomery, J.; Gallant, A.P.; Hutabarat, D.; Reed, A.N.; Wartman, J.; Irsyam, M.; Simatupang, P.T.; Alatas, I.M.; Prakoso, W.A.; et al. East Palu Valley flowslides induced by the 2018 MW 7.5 Palu-Donggala earthquake. Geomorphology 2021, 373. [Google Scholar] [CrossRef]
- Jaya, A.; Nishikawa, O.; Jumadil, S. Distribution and morphology of the surface ruptures of the 2018 Donggala–Palu earthquake, Central Sulawesi, Indonesia. Earth Planets Sp. 2019, 71. [Google Scholar] [CrossRef] [Green Version]
- Patria, A.; Putra, P.S. Development of the Palu–Koro Fault in NW Palu Valley, Indonesia. Geosci. Lett. 2020, 7. [Google Scholar] [CrossRef]
- Wu, D.; Ren, Z.; Liu, J.; Chen, J.; Guo, P.; Yin, G.; Ran, H.; Li, C.; Yang, X. Coseismic Surface Rupture During the 2018 Mw 7.5 Palu Earthquake, Sulawesi Island, Indonesia. Bull. Geol. Soc. Am. 2021, 133, 1157–1166. [Google Scholar] [CrossRef]
- Natawidjaja, D.H.; Daryono, M.R.; Prasetya, G.; Udrekh; Liu, P.L.F.; Hananto, N.D.; Kongko, W.; Triyoso, W.; Puji, A.R.; Meilano, I.; et al. The 2018 Mw7.5 Palu “supershear” earthquake ruptures geological fault’s multisegment separated by large bends: Results from integrating field measurements, LiDAR, swath bathymetry and seismic-reflection data. Geophys. J. Int. 2020, 224, 985–1002. [Google Scholar] [CrossRef]
- Bao, H.; Ampuero, J.P.; Meng, L.; Fielding, E.J.; Liang, C.; Milliner, C.W.D.; Feng, T.; Huang, H. Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nat. Geosci. 2019, 12, 200–205. [Google Scholar] [CrossRef]
- Socquet, A.; Hollingsworth, J.; Pathier, E.; Bouchon, M. Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nat. Geosci. 2019, 12, 192–199. [Google Scholar] [CrossRef]
- Fang, J.; Xu, C.; Wen, Y.; Wang, S.; Xu, G.; Zhao, Y.; Yi, L. The 2018 Mw 7.5 Palu earthquake: A supershear rupture event constrained by InSAR and broadband regional seismograms. Remote Sens. 2019, 11, 1330. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Zhang, Y.; Shan, X.; Liu, Y.; Gong, W.; Qu, C. Geodetic Observations of the 2018 Mw 7.5 Sulawesi Earthquake and Its Implications for the Kinematics of the Palu Fault. Geophys. Res. Lett. 2019, 46, 4212–4220. [Google Scholar] [CrossRef]
- He, L.; Feng, G.; Li, Z.; Feng, Z.; Gao, H.; Wu, X. Source parameters and slip distribution of the 2018 Mw 7.5 Palu, Indonesia earthquake estimated from space-based geodesy. Tectonophysics 2019, 772. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, W.; Chen, K.; Samsonov, S. Source characteristics of the 28 September 2018 Mw 7.4 Palu, Indonesia, earthquake derived from the advanced land observation satellite 2 data. Remote Sens. 2019, 11, 1999. [Google Scholar] [CrossRef] [Green Version]
- Bacques, G.; de Michele, M.; Foumelis, M.; Raucoules, D.; Lemoine, A.; Briole, P. Sentinel optical and SAR data highlights multi-segment faulting during the 2018 Palu-Sulawesi earthquake (Mw 7.5). Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Li, C.; Zhang, G.; Shan, X.; Zhao, D.; Song, X. Geometric variation in the surface rupture of the 2018 mw7.5 palu earthquake from subpixel optical image correlation. Remote Sens. 2020, 12, 3436. [Google Scholar] [CrossRef]
- Okuwaki, R.; Hirano, S.; Yagi, Y.; Shimizu, K. Inchworm-like source evolution through a geometrically complex fault fueled persistent supershear rupture during the 2018 Palu Indonesia earthquake. Earth Planet. Sci. Lett. 2020, 547. [Google Scholar] [CrossRef]
- Bellier, O.; Sébrier, M.; Seward, D.; Beaudouin, T.; Villeneuve, M.; Putranto, E. Fission track and fault kinematics analyses for new insight into the Late Cenozoic tectonic regime changes in West-Central Sulawesi (Indonesia). Tectonophysics 2006, 413, 201–220. [Google Scholar] [CrossRef]
- Socquet, A.; Simons, W.; Vigny, C.; McCaffrey, R.; Subarya, C.; Sarsito, D.; Ambrosius, B.; Spakman, W. Microblock rotations and fault coupling in the SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data. J. Geophys. Res. Solid Earth 2006, 111, 8409. [Google Scholar] [CrossRef] [Green Version]
- Hall, R. The Eurasian SE Asian margin as a modern example of an accretionary orogen. Geol. Soc. Spec. Publ. 2009, 318, 351–372. [Google Scholar] [CrossRef] [Green Version]
- Hall, R. Australia-SE Asia collision: Plate tectonics and crustal flow. Geol. Soc. Spec. Publ. 2011, 355, 75–109. [Google Scholar] [CrossRef] [Green Version]
- Hall, R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 2012, 570–571, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.; Sevastjanova, I. Australian crust in Indonesia. Aust. J. Earth Sci. 2012, 59, 827–844. [Google Scholar] [CrossRef]
- Advokaat, E.L.; Hall, R.; White, L.T.; Watkinson, I.M.; Rudyawan, A.; BouDagher-Fadel, M.K. Miocene to recent extension in NW Sulawesi, Indonesia. J. Asian Earth Sci. 2017, 147, 378–401. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.; Wilson, M.E.J. Neogene sutures in eastern Indonesia. J. Asian Earth Sci. 2000, 18, 781–808. [Google Scholar] [CrossRef]
- Kadarusman, A.; Miyashita, S.; Maruyama, S.; Parkinson, C.D.; Ishikawa, A. Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia. Tectonophysics 2004, 392, 55–83. [Google Scholar] [CrossRef]
- White, L.T.; Hall, R.; Armstrong, R.A.; Barber, A.J.; BouDagher Fadel, M.; Baxter, A.; Wakita, K.; Manning, C.; Soesilo, J. The geological history of the Latimojong region of western Sulawesi, Indonesia. J. Asian Earth Sci. 2017, 138, 72–91. [Google Scholar] [CrossRef]
- Watkinson, I.M.; Hall, R. Fault systems of the eastern Indonesian triple junction: Evaluation of Quaternary activity and implications for seismic hazards. Geol. Soc. Spec. Publ. 2017, 441, 71–120. [Google Scholar] [CrossRef]
- Bellier, O.; Beaudouin, T.; Sebrier, M.; Villeneuve, M.; Bahar, I.; Putranto, E.; Pratomo, I.; Massault, M.; Seward, D. Active Faulting in Central Sulawesi (Eastern Indonesia). In The Geodynamics of S and SE Asia (GEODYSSEA) Project Final Report; Wilson, P., Michel, G.M., Eds.; GFZ Public: Postdam, Germany, 1998. [Google Scholar]
- Bellier, O.; Bourles, D.L.; Beaudouin, T.; Braucher, R. Cosmic Ray Exposure (CRE) dating in a wet tropical domain: Late Quaternary fan emplacements in central Sulawesi (Indonesia). Terra Nov. 1999, 11, 174–180. [Google Scholar] [CrossRef]
- Bellier, O.; Siame, L.; Beaudouin, T.; Villeneuve, M.; Braucher, R. High slip rate for a low seismicity along the Palu-Koro active fault in Central Sulawesi. Terra Nov. 2001, 13, 463–470. [Google Scholar] [CrossRef]
- Walpersdorf, A.; Vigny, C.; Subarya, C.; Manurung, P. Monitoring of the Palu-Koro Fault (Sulawesi) by GPS. Geophys. Res. Lett. 1998, 25, 2313–2316. [Google Scholar] [CrossRef] [Green Version]
- Stevens, C.; McCaffrey, R.; Bock, Y.; Genrich, J.; Endang; Subarya, C.; Puntodewo, S.S.O.; Fauzi; Vigny, C. Rapid rotations about a vertical axis in a collisional setting revealed by the Palu fault, Sulawesi, Indonesia. Geophys. Res. Lett. 1999, 26, 2677–2680. [Google Scholar] [CrossRef]
- Vigny, C.; Perfettini, H.; Walpersdorf, A.; Lemoine, A.; Simons, W.; van Loon, D.; Ambrosius, B.; Stevens, C.; McCaffrey, R.; Morgan, P.; et al. Migration of seismicity and earthquake interactions monitored by GPS in SE Asia triple junction: Sulawesi, Indonesia. J. Geophys. Res. Solid Earth 2002, 107, ETG 7-1–ETG 7-11. [Google Scholar] [CrossRef]
- Daryono, M.R.; Natawidjaja, D.H. Surface Rupture of the 1909 Event (M7) on Palukoro Fault in Tropical Forest of Central Sulawesi, Indonesia. In Proceedings of the Joint Convention Yogyakarta 2019, Yogyakarta, Indonesia, 25–29 November 2019. JCY_0087. [Google Scholar]
- Kaneda, H.; Chiba, T. Stereopaired morphometric protection index red relief image maps (Stereo MPI-RRIMs): Effective visualization of high-resolution digital elevation models for interpreting and mapping small tectonic geomorphic features. Bull. Seismol. Soc. Am. 2019, 109, 99–109. [Google Scholar] [CrossRef]
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.P. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, F.; Leprince, S.; Avouac, J.P. Co-registration and correlation of aerial photographs for ground deformation measurements. ISPRS J. Photogramm. Remote Sens. 2009, 64, 551–560. [Google Scholar] [CrossRef]
- Avouac, J.P.; Ayoub, F.; Leprince, S.; Konca, O.; Helmberger, D.V. The 2005, Mw 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth Planet. Sci. Lett. 2006, 249, 514–528. [Google Scholar] [CrossRef] [Green Version]
- Leprince, S.; Musé, P.; Avouac, J.P. In-flight CCD distortion calibration for pushbroom satellites based on subpixel correlation. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2675–2683. [Google Scholar] [CrossRef]
- Bridges, N.T.; Ayoub, F.; Avouac, J.P.; Leprince, S.; Lucas, A.; Mattson, S. Earth-like sand fluxes on Mars. Nature 2012, 485, 339–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollingsworth, J.; Leprince, S.; Ayoub, F.; Avouac, J.P. Deformation during the 1975-1984 Krafla rifting crisis, NE Iceland, measured from historical optical imagery. J. Geophys. Res. B Solid Earth 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Milliner, C.W.D.; Dolan, J.F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.; Sammis, C.G. Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 Landers earthquake. Geochem. Geophys. Geosyst. 2015, 16, 1577–1598. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.; Lucieer, A.; de Jong, S.M. Time series analysis of landslide dynamics using an Unmanned Aerial Vehicle (UAV). Remote Sens. 2015, 7, 1736–1757. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, F.; Leprince, S.; Keene, L. User’s Guide to COSI-CORR Co-registration of Optically Sensed Images and Correlation. Calif. Inst. Technol. 2009, 1–38. [Google Scholar]
- Meygret, A.; Baillarin, S.; Gascon, F.; Hillairet, E.; Dechoz, C.; Lacherade, S.; Martimort, P.; Spoto, F.; Henry, P.; Duca, R. SENTINEL-2 image quality and level 1 processing. In Proceedings of the Earth Observing Systems XIV, San Diego, CA, USA, 21 August 2009; Volume 7452, p. 74520D. [Google Scholar]
- Chen, W.S.; Yang, C.Y.; Chen, S.T.; Huang, Y.C. New insights into Holocene marine terrace development caused by seismic and aseismic faulting in the Coastal Range, eastern Taiwan. Quat. Sci. Rev. 2020, 240. [Google Scholar] [CrossRef]
- Broecker, W.S.; Andree, M.; Wolfli, W.; Oeschger, H.; Bonani, G.; Kennett, J.; Peteet, D. The chronology of the last Deglaciation: Implications to the cause of the Younger Dryas Event. Paleoceanography 1988, 3, 1–19. [Google Scholar] [CrossRef]
- Philip, H.; Rogozhin, E.; Cisternas, A.; Bousquet, J.C.; Borisov, B.; Karakhanian, A. The Armenian earthquake of 1988 December 7: Faulting and folding, neotectonics and palaeoseismicity. Geophys. J. Int. 1992, 110, 141–158. [Google Scholar] [CrossRef] [Green Version]
- Yeats, R.S.; Sieh, K.; Allen, C.R. The Geology of Earthquakes; Oxford University Press: New York, NY, USA, 1997; p. 568. ISBN 9780195078275. [Google Scholar]
- Price, E.J.; Sandwell, D.T. Small-scale deformations associated with the 1992 Landers, California, earthquake mapped by synthetic aperture radar interferometry phase gradients. J. Geophys. Res. Solid Earth 1998, 103, 27001–27016. [Google Scholar] [CrossRef]
- Fialko, Y.; Sandwell, D.; Agnew, D.; Simons, M.; Shearer, P.; Minster, B. Deformation on nearby faults induced by the 1999 Hector Mine earthquake. Science 2002, 297, 1858–1862. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, S.; Yarai, H.; Kobayashi, T.; Morishita, Y.; Nakano, T.; Miyahara, B.; Nakai, H.; Miura, Y.; Ueshiba, H.; Kakiage, Y.; et al. Small-displacement linear surface ruptures of the 2016 Kumamoto earthquake sequence detected by ALOS-2 SAR interferometry. Earth Planets Space 2016, 68, 160. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, S.; Nakano, T.; Morishita, Y. Detection of triggered shallow slips caused by large earthquakes using L-band SAR interferometry. Earth Planets Space 2020, 72, 1–23. [Google Scholar] [CrossRef]
- Tsuji, T.; Ishibashi, J.; Ishitsuka, K.; Kamata, R. Horizontal sliding of kilometre-scale hot spring area during the 2016 Kumamoto earthquake. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujiwara, S.; Morishita, Y.; Nakano, T.; Kobayashi, T.; Yarai, H. Non-tectonic liquefaction-induced large surface displacements in the Aso Valley, Japan, caused by the 2016 Kumamoto earthquake, revealed by ALOS-2 SAR. Earth Planet. Sci. Lett. 2017, 474, 457–465. [Google Scholar] [CrossRef]
- Lin, A.; Chen, P.; Sado, K. Recurrent large earthquakes related with an active fault-volcano system, southwest Japan. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Supendi, P.; Nugraha, A.D.; Widiyantoro, S.; Pesicek, J.D.; Thurber, C.H.; Abdullah, C.I.; Daryono, D.; Wiyono, S.H.; Shiddiqi, H.A.; Rosalia, S. Relocated aftershocks and background seismicity in eastern Indonesia shed light on the 2018 Lombok and Palu earthquake sequences. Geophys. J. Int. 2020, 221, 1845–1855. [Google Scholar] [CrossRef]
- Ben-Avraham, Z.; Almagor, G.; Garfunkel, Z. Sediments and structure of the Gulf of Elat (Aqaba)-Northern Red Sea. Sediment. Geol. 1979, 23, 239–267. [Google Scholar] [CrossRef]
- Ben-Avraham, Z. Structural framework of the Gulf of Elat (Aqaba), northern Red Sea. J. Geophys. Res. 1985, 90, 703–726. [Google Scholar] [CrossRef]
- Garfunkel, Z.; Ben-Avraham, Z. The structure of the Dead Sea basin. Tectonophysics 1996, 266, 155–176. [Google Scholar] [CrossRef]
- Ehrhardt, A.; Hübscher, C.; Ben-Avraham, Z.; Gajewski, D. Seismic study of pull-apart-induced sedimentation and deformation in the Northern Gulf of Aqaba (Elat). Tectonophysics 2005, 396, 59–79. [Google Scholar] [CrossRef]
- Earthquake Research Committee, Headquarters for Earthquake Research Promotion. In Long-Term Evaluation of Seismic Risk in the Itoigawa-Shizuoka Tectonic Line Fault Zone, 2nd ed. Available online: https://www.jishin.go.jp/main/chousa/katsudansou_pdf/41_42_44_itoigawa-shizuoka_2.pdf (accessed on 8 July 2021). (In Japanese)
- Fujimori, T. Active faults in the Suwa Basin, and its evolution as a pull-apart basin on the Itoigawa-Shizuoka Tectonic Line, central Japan. Geogr. Rev. Jpn. Ser. A 1991, 64, 665–696, (In Japanese with English abstract). [Google Scholar] [CrossRef] [Green Version]
- Fujimori, T.; Ota, Y. Strip map of active faults on the Suwa Basin, Central Japan. Act. Fault Res. 1992, 27–39, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Imaizumi, T.; Togo, M.; Sawa, H.; Ikeda, Y.; Matsuta, N. 1:25,000 Active Fault Map, Itoigawa-Shizuoka Tectonic Line and Its Vicinity “Suwa”; D1-No.368; Geospatial Information Authority of Japan: Tsukuba, Japan, 1998; Volume 56. (In Japanese) [Google Scholar]
- Sawa, H.; Togo, M.; Imaizumi, T.; Ikeda, Y. 1:25,000 Active Fault Map, Itoigawa-Shizuoka Tectonic Line and Its Vicinity “Chino”; D1-No.355; Geospatial Information Authority of Japan: Tsukuba, Japan, 1997; Volume 46. (In Japanese) [Google Scholar]
- Sugito, N.; Sawa, H.; Taniguchi, K.; Sato, Y.; Watanabe, M.; Suzuki, Y. Evolution of Riedel-shear pop-up structures during cumulative strike-slip faulting: A case study in the Misayama-Godo area, Fujimi Town, central Japan. Geomorphology 2019, 327, 446–455. [Google Scholar] [CrossRef]
- Miyakoshi, K.; Ueta, K.; Hataya, R.; Abe, S.; Miura, D.; Hamada, Y.; Aoyagi, Y.; Inoue, D. A proposal of surveying and evaluating system of active faults for earthquake assessment. Denryoku Chuo Kenkyusho Hokoku 2004, U46, 1–8. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:36014835 (accessed on 8 July 2021).
Pair No. | Timing | Date | Pass Direction | Resolution | Filename |
---|---|---|---|---|---|
1 | Pre-earthquake | 27 September 2018 | Descending | 10 m | S2B_MSIL1C_20180927T022319_N0206_R103_T50MRD_20180927T055542 |
Post-earthquake | 2 October 2018 | Descending | 10 m | S2A_MSIL1C_20181002T022321_N0206_R103_T50MRD_20181002T054141 | |
2 | Pre-earthquake | 27 September 2018 | Descending | 10 m | S2B_MSIL1C_20180927T022319_N0206_R103_T50MRE_20180927T055542 |
Post-earthquake | 2 October 2018 | Descending | 10 m | S2A_MSIL1C_20181002T022321_N0206_R103_T50MRE_20181002T054141 | |
3 | Pre-earthquake | 17 September 2018 | Descending | 10 m | S2B_MSIL1C_20180917T022319_N0206_R103_T50MRE_20180917T054239 |
Post-earthquake | 22 October 2018 | Descending | 10 m | S2A_MSIL1C_20181022T022321_N0206_R103_T50MRE_20181022T063218 |
Pair No. | Timing | Date | Resolution | Filename |
---|---|---|---|---|
4 | Pre-earthquake | 16 May 2017 | 1.5 m | DS_SPOT6_201705160155554_FR1_FR_1_SV1_E120S01_06499 |
Post-earthquake | 18 October 2018 | 1.5 m | DS_SPOT6_201810180156380_JS3_JS3_JS2_JS2_E120S01_02845 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komura, K.; Sugimoto, J. Shortcut Faults and Lateral Spreading Activated in a Pull-Apart Basin by the 2018 Palu Earthquake, Central Sulawesi, Indonesia. Remote Sens. 2021, 13, 2939. https://doi.org/10.3390/rs13152939
Komura K, Sugimoto J. Shortcut Faults and Lateral Spreading Activated in a Pull-Apart Basin by the 2018 Palu Earthquake, Central Sulawesi, Indonesia. Remote Sensing. 2021; 13(15):2939. https://doi.org/10.3390/rs13152939
Chicago/Turabian StyleKomura, Keitaro, and Jun Sugimoto. 2021. "Shortcut Faults and Lateral Spreading Activated in a Pull-Apart Basin by the 2018 Palu Earthquake, Central Sulawesi, Indonesia" Remote Sensing 13, no. 15: 2939. https://doi.org/10.3390/rs13152939
APA StyleKomura, K., & Sugimoto, J. (2021). Shortcut Faults and Lateral Spreading Activated in a Pull-Apart Basin by the 2018 Palu Earthquake, Central Sulawesi, Indonesia. Remote Sensing, 13(15), 2939. https://doi.org/10.3390/rs13152939