Exposure of Loggerhead Sea Turtle Nests to Waves in the Florida Panhandle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Nest Monitoring, and the Effects of In Situ Wave Exposure
2.2. Digital Elevation Model and Wave Runup Modeling
2.3. Extent of Wave Exposure
2.4. Identification of Priority Nesting Beaches for Future Efforts Regarding Wave Exposure Impacts
3. Results
3.1. Loggerhead Turtle Nesting, Nest Productivity, and the Effects of In Situ Wave Wash-Over
3.2. Modeled Spatial Extent of Wave Exposure
3.3. Identification of Priority Nesting Beaches Based on Exposure to Waves
4. Discussion
- At what frequency or duration of exposure does wave wash-over cause significant harm to a developing sea turtle embryo?
- Do these exposure thresholds vary with the developmental stage of the embryo?
- How does this tolerance, or lack thereof, vary across species and populations?
- What are the benefits on non-lethal levels of wave exposure (e.g., reduced incubating temperature, increased male production, larger body size, faster crawling speeds)?
- Would relocating the nest introduce other threats which may cause as much or greater impacts than wave exposure in the nest’s current location (e.g., warmer incubating temperature leading to feminization or hyperthermia, reduced sand moisture leading to desiccation, increased predation or disorientation, movement-related mortality)?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bustard, H.R.; Greenham, P. Physical and chemical factors affecting hatching in the green sea turtle, Chelonia mydas (L.). Ecology 1968, 49, 269–276. [Google Scholar] [CrossRef]
- Mrosovsky, N.; Yntema, C.L. Temperature dependece of sexual differentiation in sea turtles: Implications for conservation practices. Biol. Conserv. 1980, 18, 271–280. [Google Scholar] [CrossRef]
- McGehee, M.A. Effects of moisture on eggs and hatchlings of loggerhead sea turtles (Caretta caretta). Herpetologica 1990, 46, 251–258. [Google Scholar]
- Limpus, C.J.; Miller, J.D.; Pfaller, J.B. Flooding-induced mortality of loggerhead sea turtle eggs. Wildl. Res. 2020, 48, 142–151. [Google Scholar] [CrossRef]
- Foley, A.M.; Peck, S.A.; Harman, G.R. Effects of sand characteristics and inundation on the hatching success of loggerhead sea turtle (Caretta caretta) clutches on low-relief mangrove islands in southwest Florida. Chelonian Conserv. Biol. 2006, 5, 32–41. [Google Scholar] [CrossRef]
- Lolavar, A.; Wyneken, J. Effect of rainfall on loggerhead turtle nest temperatures, sand temperatures and hatchling sex. Endanger. Species Res. 2015, 28, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Erb, V.; Lolavar, A.; Wyneken, J. The role of sand moisture in shaping loggerhead sea turtle (Caretta caretta) neonate growth in southeast Florida. Chelonian Conserv. Biol. 2018, 17, 245–251. [Google Scholar] [CrossRef]
- Houghton, J.D.R.; Myers, A.E.; Lloyd, C.; King, R.S.; Isaacs, C.; Hays, G.C. Protracted rainfall decreases temperature within leatherback turtle (Dermochelys coriacea) clutches in Grenada, West Indies: Ecological implications for a species displaying temperature dependent sex determination. J. Exp. Mar. Bio. Ecol. 2007, 345, 71–77. [Google Scholar] [CrossRef]
- Pike, D.A.; Roznik, E.A.; Bell, I.P. Nest inundation from sea-level rise threatens sea turtle population viability. R. Soc. Open Sci. 2015, 2, 150127. [Google Scholar] [CrossRef] [Green Version]
- Darsan, J.; Jehu, A.; Asmath, H.; Singh, A.; Wilson, M. The influence of fluvial dynamics and North Atlantic swells on the beach habitat of leatherback turtles at Grande Riviere Trinidad. J. Environ. Manag. 2016, 180, 111–122. [Google Scholar] [CrossRef]
- Sherwood, C.R.; Long, J.W.; Dickhudt, P.J.; Dalyander, P.S.; Thompson, D.M.; Plant, N.G. Inundation of a barrier island (Chandeleur Islands, Louisiana, USA) during a hurricane: Observed water-level gradients and modeled seaward sand transport. J. Geophys. Res. Earth Surf. 2014, 119, 1498–1515. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.H.; Anderson, S.J.; Sutton, P.C. Measuring the effects of morphological changes to sea turtle nesting beaches over time with LiDAR data. J. Sea Res. 2015, 104, 9–15. [Google Scholar] [CrossRef]
- Rivas, M.L.; Tomillo, P.S.; Diéguez-Uribeondo, J.; Marco, A. Potential effects of dune scarps caused by beach erosion on the nesting behavior of leatherback turtles. Mar. Ecol. Prog. Ser. 2016, 551, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Wood, D.W.; Bjorndal, K.A. Relation of temperature, moisture, salinity, and slope to nest site selection in loggerhead sea turtles. Copeia 2000, 1, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Ávila-Aguilar, A. Nest site selection of Lepidochelys olivacea (Testudines: Cheloniidae) in the South Pacific region of Costa Rica. Rev. Biol. Trop. 2015, 63, 375–381. [Google Scholar] [CrossRef]
- Whitmore, C.P.; Dutton, P.H. Infertility, embryonic mortality and nest-site selection in leatherback and green sea turtles in Suriname. Biol. Conserv. 1985, 34, 251–272. [Google Scholar] [CrossRef]
- Horrocks, J.A.; Scott, N.M. Nest site location and nest success in the hawksbill turtle Eretmochelys imbricata in Barbados West Indies. Mar. Ecol. Prog. Ser. 1991, 69, 1–8. [Google Scholar] [CrossRef]
- Lamont, M.M.; Houser, C. Spatial distribution of loggerhead turtle (Caretta caretta) emergences along a highly dynamic beach in the northern Gulf of Mexico. J. Exp. Mar. Bio. Ecol. 2014, 453, 98–107. [Google Scholar] [CrossRef]
- Pike, D.A.; Stiner, J.C. Fluctuating reproductive output and environmental stochasticity: Do years with more reproducing females result in more offspring? Can. J. Zool. 2007, 85, 737–742. [Google Scholar] [CrossRef]
- Kamel, S.J.; Mrosovsky, N. Repeatability of nesting preferences in the hawksbill sea turtle, Eretmochelys imbricata, and their fitness consequences. Anim. Behav. 2005, 70, 819–828. [Google Scholar] [CrossRef]
- Eckert, K.L. Environmental unpredictability and leatherback sea turtle (Dermochelys coriacea) nest loss. Herpetologica 1987, 43, 315–323. [Google Scholar]
- Lindborg, R.; Neidhardt, E.; Witherington, B.E.; Smith, J.R.; Savage, A. Factors influencing loggerhead (Caretta caretta) and green turtle (Chelonia mydas) reproductive success on a mixed use beach in Florida. Chelonian Conserv. Biol. 2016, 15, 238–248. [Google Scholar] [CrossRef]
- Milton, S.L.; Leone-Kabler, S.L.; Schulman, A.A.; Lutz, P.L. Effects of Hurricane Andrew on the sea turtle nesting beaches of south Florida. Bull. Mar. Sci. 1994, 54, 974–981. [Google Scholar]
- Fuentes, M.M.P.B.; Bateman, B.L.; Hamann, M. Relationship between tropical cyclones and the distribution of sea turtle nesting grounds. J. Biogeogr. 2011, 38, 1886–1896. [Google Scholar] [CrossRef]
- Van Houtan, K.S.; Bass, O.L. Stormy oceans are associated with sea turtle hatching declines. Curr. Biol. 2007, 17, 590–591. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, M.M.P.B.; Godfrey, M.H.; Shaver, D.; Ceriani, S.A.; Gredzens, C.; Boettcher, R.; Ingram, D.; Ware, M.; Wildermann, N. Exposure of marine turtle nesting grounds to named storms along the continental USA. Remote Sens. 2019, 11, 2996. [Google Scholar] [CrossRef] [Green Version]
- Varela, M.R.; Patrício, A.R.; Anderson, K.; Broderick, A.C.; DeBell, L.; Hawkes, L.A.; Tilley, D.; Snape, R.T.E.; Westoby, M.J.; Godley, B.J. Assessing climate change associated sea level rise impacts on sea turtle nesting beaches using drones, photogrammetry and a novel GPS system. Glob. Chang. Biol. 2018, 25, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Fish, M.R.; Côté, I.M.; Gill, J.A.; Jones, A.P.; Renshoff, S.; Watkinson, A.R. Predicting the impact of sea-level rise on Caribbean sea turtle nesting habitat. Conserv. Biol. 2005, 19, 482–491. [Google Scholar] [CrossRef]
- Ranasinghe, R. Assessing climate change impacts on open sandy coasts: A review. Earth-Science Rev. 2016, 160, 320–332. [Google Scholar] [CrossRef] [Green Version]
- Bacmeister, J.T.; Reed, K.A.; Hannay, C.; Lawrence, P.; Bates, S.; Truesdale, J.E.; Rosenbloom, N.; Levy, M. Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Clim. Chang. 2018, 146, 547–560. [Google Scholar] [CrossRef]
- Fuentes, M.M.P.B.; Abbs, D. Effects of projected changes in tropical cyclone frequency on sea turtles. Mar. Ecol. Prog. Ser. 2010, 412, 283–292. [Google Scholar] [CrossRef]
- Dugan, J.E.; Hubbard, D.M.; Rodil, I.F.; Revell, D.L.; Schroeter, S. Ecological effects of coastal armoring on sandy beaches. Mar. Ecol. 2008, 29, 160–170. [Google Scholar] [CrossRef]
- Defeo, O.; McLachlan, A.; Schoeman, D.S.; Schlacher, T.A.; Dugan, J.E.; Jones, A.R.; Lastra, M.; Scapini, F. Threats to sandy beach ecosystems: A review. Estuar. Coast. Shelf Sci. 2009, 81, 1–12. [Google Scholar] [CrossRef]
- Nelson Sella, K.A.; Fuentes, M.M.P.B. Exposure of marine turtle nesting grounds to coastal modifications: Implications for management. Ocean Coast. Manag. 2019, 169, 182–190. [Google Scholar] [CrossRef]
- Mazaris, A.D.; Matsinos, Y.G.; Pantis, J.D. Evaluating the impacts of coastal squeeze on sea turtle nesting. Ocean Coast. Manag. 2009, 52, 139–145. [Google Scholar] [CrossRef]
- Rizkalla, C.E.; Savage, A. Impact of seawalls on loggerhead sea turtle (Caretta caretta) nesting and hatching success. J. Coast. Res. 2011, 27, 166–173. [Google Scholar] [CrossRef]
- Fuentes, M.M.P.B.; Allstadt, A.J.; Ceriani, S.A.; Godfrey, M.H.; Gredzens, C.; Helmers, D.; Ingram, D.; Pate, M.; Radeloff, V.C.; Shaver, D.J.; et al. Potential adaptability of marine turtles to climate change may be hindered by coastal development in the USA. Reg. Environ. Chang. 2020, 20, 104. [Google Scholar] [CrossRef]
- National Marine Fisheries Service; U. S. Fish and Wildlife Service. Recovery Plan for the Northwest Atlantic Population of the Loggerhead Sea Turtle (Caretta Caretta), 2nd revision; Silver Spring: Montgomery, MD, USA, 2008. [Google Scholar]
- Brost, B.; Witherington, B.E.; Meylan, A.B.; Leone, E.; Ehrhart, L.M.; Bagley, D.A. Sea turtle hatchling production from Florida (USA) beaches, 2002–2012, with recommendations for analyzing hatching success. Endanger. Species Res. 2015, 27, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Richards, P.M.; Epperly, S.P.; Heppell, S.S.; King, R.T.; Sasso, C.R.; Moncada, F.; Nodarse, G.; Shaver, D.J.; Medina, Y.; Zurita, J.C. Sea turtle population estimates incorporating uncertainty: A new approach applied to western North Atlantic loggerheads Caretta caretta. Endanger. Species Res. 2011, 15, 151–158. [Google Scholar] [CrossRef]
- Ceriani, S.A.; Casale, P.; Brost, M.; Leone, E.H.; Witherington, B.E. Conservation implications of sea turtle nesting trends: Elusive recovery of a globally important loggerhead population. Ecosphere 2019, 10, e02936. [Google Scholar] [CrossRef] [Green Version]
- Drobes, E.M.; Ware, M.; Beckwith, V.K.; Fuentes, M.M.P.B. Beach Crabbing as a Possible Hindrance to Loggerhead Marine Turtle Nesting Success. Mar. Turt. Newsl. 2019, 159, 1–4. [Google Scholar]
- Fuentes, M.M.P.B.; Gredzens, C.; Bateman, B.L.; Boettcher, R.; Ceriani, S.A.; Godfrey, M.H.; Helmers, D.; Ingram, D.K.; Kamrowski, R.L.; Pate, M.; et al. Conservation hotspots for marine turtle nesting in the United States based on coastal development. Ecol. Appl. 2016, 26, 2706–2717. [Google Scholar] [CrossRef]
- Garrison, S.R.; Fuentes, M.M.P.B. Marine debris at nesting grounds used by the Northern Gulf of Mexico loggerhead recovery unit. Mar. Pollut. Bull. 2019, 139, 59–64. [Google Scholar] [CrossRef]
- Silver-Gorges, I.; Ceriani, S.A.; Ware, M.; Lamb, M.; Lamont, M.M.; Becker, J.; Carthy, R.R.; Matechik, C.; Mitchell, J.; Pruner, R.; et al. Using systems thinking to inform management of imperiled species: A case study with sea turtles. Biol. Conserv. 2021, 260, 109201. [Google Scholar] [CrossRef]
- Katselidis, K.A.; Schofield, G.; Stamou, G.; Dimopoulos, P.; Pantis, J.D. Employing sea-level rise scenarios to strategically select sea turtle nesting habitat important for long-term management at a temperate breeding area. J. Exp. Mar. Bio. Ecol. 2014, 450, 47–54. [Google Scholar] [CrossRef]
- Weishampel, Z.A.; Cheng, W.-H.; Weishampel, J.F. Sea turtle nesting patterns in Florida vis-à-vis satellite-derived measures of artificial lighting. Remote Sens. Ecol. Conserv. 2016, 2, 59–72. [Google Scholar] [CrossRef]
- Yamamoto, K.H.; Powell, R.L.; Anderson, S.; Sutton, P.C. Using LiDAR to quantify topographic and bathymetric details for sea turtle nesting beaches in Florida. Remote Sens. Environ. 2012, 125, 125–133. [Google Scholar] [CrossRef]
- Casale, P.; Ceriani, S.A. Satellite surveys: A novel approach for assessing sea turtle nesting activity and distribution. Mar. Biol. 2019, 166, 47. [Google Scholar] [CrossRef]
- Gonçalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Calvillo García, Y.; Ramírez-Herrera, M.T.; Delgado-Trejo, C.; Legorreta-Paulin, G.; Corona, N. Modeling sea-level change, inundation scenarios, and their effect on the Colola Beach Reserve—A nesting-habitat of the black sea turtle, Michoacán, Mexico. Geofis. Int. 2015, 54, 179–190. [Google Scholar]
- Osorio, A.F.A.; Peláez-Zapata, D.S.; Guerrero-Gallego, J.; Álvarez-Silva, O.; Osorio-Cano, J.D.; Toro, F.M.; Giraldo, A. Hydrodynamics applied to the management and conservation of marine and coastal ecosystems: Gorgona Island, Colombian Pacific Ocean. Rev. Biol. Trop. 2014, 62, 133–147. [Google Scholar]
- Ware, M.; Long, J.W.; Fuentes, M.M.P.B. Using wave runup modeling to inform coastal species management: An example application for sea turtle nest relocation. Ocean Coast. Manag. 2019, 173, 17–25. [Google Scholar] [CrossRef]
- Ware, M.; Fuentes, M.M.P.B. Assessment of Inundation Threat to Sea Turtle Nests to Improve Management Practices in Alabama; Florida State University: Tallahassee, FL, USA, 2018. [Google Scholar]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H. Empirical parameterization of setup, swash, and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Nelson Sella, K.A.; Sicius, L.; Fuentes, M.M.P.B. Using expert elicitation to determine the relative impact of coastal modifications on marine turtle nesting grounds. Coast. Manag. 2019, 47, 492–506. [Google Scholar] [CrossRef]
- Passeri, D.L.; Dalyander, P.S.; Long, J.W.; Mickey, R.C.; Jenkins, R.L.; Thompson, D.M.; Plant, N.G.; Godsey, E.S.; Gonzalez, V.M. The roles of storminess and sea level rise in decadal barrier island evolution. Geophys. Res. Lett. 2020, 47, e2020GL089370. [Google Scholar] [CrossRef]
- National Marine Fisheries Service; U.S. Fish and Wildlife Service; Mexican Secretariat of Environmental and Natural Resources. Bi-National Recovery Plan for the KEMP’S Ridley Sea Turtle (Lepidochelys kempii); 2nd revision; Silver Spring: Montgomery, MD, USA, 2011. [Google Scholar]
- Florida Fish and Wildlife Conservation Commission Marine Turtle Conservation Handbook; Florida Fish and Wildlife Conservation Commission: Tallahassee, FL, USA, 2016.
- Ceriani, S.A.; Brost, B.; Meylan, A.B.; Meylan, P.A.; Casale, P. Bias in sea turtle productivity estimates: Error and factors involved. Mar. Biol. 2021, 168, 41. [Google Scholar] [CrossRef]
- Doran, K.S.; Long, J.W.; Overbeck, J.R. A Method for Determining Average Beach Slope and Beach Slope Variability for U.S. Sandy Coastlines; U.S. Geological Survey: Reston, VA, USA, 2015. [Google Scholar]
- Colling, A.; Park, D.; Wright, J. Waves, Tides, and Shallow-Water Processes; Butterworth Heinemann: Oxford, UK, 1999. [Google Scholar]
- Sorensen, R.M. Two-dimensional wave equations and wave Characteristics. In Basic Coastal Engineering; Springer: Boston, MA, USA, 2006; pp. 9–52. ISBN 9780387233338. [Google Scholar]
- Caut, S.; Guirlet, E.; Girondot, M. Effect of tidal overwash on the embryonic development of leatherback turtles in French Guiana. Mar. Environ. Res. 2010, 69, 254–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ware, M.; Fuentes, M.M.P.B. A comparison of methods used to monitor groundwater inundation of sea turtle nests. J. Exp. Mar. Bio. Ecol. 2018, 503, 1–7. [Google Scholar] [CrossRef]
- Kraemer, J.E.; Bell, R. Rain-induced mortality of eggs and hatchlings of loggerhead sea turtles (Caretta caretta) on the Georgia coast. Herpetologica 1980, 36, 72–77. [Google Scholar]
- Matsuzawa, Y.; Sato, K.; Sakamoto, W.; Bjorndal, K.A. Seasonal fluctuations in sand temperature: Effects on the incubation period and mortality of loggerhead sea turtle (Caretta caretta) pre-emergent hatchlings in Minabe, Japan. Mar. Biol. 2002, 140, 639–646. [Google Scholar]
- Rangel-Buitrago, N.; Neal, W.J.; de Jonge, V.N. Risk assessment as tool for coastal erosion management. Ocean Coast. Manag. 2020, 186, 105099. [Google Scholar] [CrossRef]
- Fernández-Montblanc, T.; Duo, E.; Ciavola, P. Dune reconstruction and revegetation as a potential measure to decrease coastal erosion and flooding under extreme storm conditions. Ocean Coast. Manag. 2020, 188, 105075. [Google Scholar] [CrossRef]
- Sahin, O.; Stewart, R.A.; Faivre, G.; Ware, D.; Tomlinson, R.; Mackey, B. Spatial Bayesian network for predicting sea level rise induced coastal erosion in a small Pacific Island. J. Environ. Manag. 2019, 238, 341–351. [Google Scholar] [CrossRef]
- Wahl, T.; Plant, N.G.; Long, J.W. Probabilistic assessment of erosion and flooding risk in the northern Gulf of Mexico. J. Geophys. Res. Ocean. 2016, 121, 3029–3043. [Google Scholar] [CrossRef] [Green Version]
- Aretxabaleta, A.L.; Doran, K.S.; Long, J.W.; Erikson, L.H.; Storlazzi, C.D. Toward a national coastal hazard forecast of total water levels. In Proceedings of the Coastal Sediments 2019: Proceedings of the 9th International Conference, Tampa/St. Petersburg, FL, USA, 27–31 May 2019; Wang, P., Rosati, J.D., Vallee, M., Eds.; World Scientific: Tampa/St. Petersburg, FL, USA, 2019; pp. 1373–1384. [Google Scholar]
- Mickey, R.; Long, J.; Dalyander, P.S.; Plant, N.; Thompson, D. A framework for modeling scenario-based barrier island storm impacts. Coast. Eng. 2018, 138, 98–112. [Google Scholar] [CrossRef]
- Splinter, K.D.; Kearney, E.T.; Turner, I.L. Drivers of alongshore variable dune erosion during a storm event: Observations and modelling. Coast. Eng. 2018, 131, 31–41. [Google Scholar] [CrossRef]
- Gallien, T.W.; Sanders, B.F.; Flick, R.E. Urban coastal flood prediction: Integrating wave overtopping, flood defenses and drainage. Coast. Eng. 2014, 91, 18–28. [Google Scholar] [CrossRef]
- Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Comparison of storm cluster vs isolated event impacts on beach/dune morphodynamics. Estuar. Coast. Shelf Sci. 2015, 164, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Cohn, N.; Ruggiero, P. The influence of seasonal to interannual nearshore profile variability on extreme water levels: Modeling wave runup on dissipative beaches. Coast. Eng. 2015, 115, 79–92. [Google Scholar] [CrossRef]
- Gieder, K.D.; Karpanty, S.M.; Fraser, J.D.; Catlin, D.H.; Gutierrez, B.T.; Plant, N.G.; Turecek, A.M.; Robert Thieler, E. A Bayesian network approach to predicting nest presence of the federally-threatened piping plover (Charadrius melodus) using barrier island features. Ecol. Modell. 2014, 276, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Plant, N.G.; Stockdon, H.F. Probabilistic prediction of barrier-island response to hurricanes. J. Geophys. Res. Earth Surf. 2012, 117, 1–17. [Google Scholar] [CrossRef]
- Murdukhayeva, A.; August, P.; Bradley, M.; LaBash, C.; Shaw, N. Assessment of inundation risk from sea level rise and storm surge in northeastern coastal national parks. J. Coast. Res. 2013, 29, 1–16. [Google Scholar] [CrossRef]
- Bacino, G.L.; Dragani, W.C.; Codignotto, J.O. Changes in wave climate and its impact on the coastal erosion in Samborombon Bay, Rio de la Plata estuary, Argentina. Estuar. Coast. Shelf Sci. 2019, 219, 71–80. [Google Scholar] [CrossRef]
- Khoury, A.; Jarno, A.; Marin, F. Experimental study of runup for sandy beaches under waves and tide. Coast. Eng. 2019, 144, 33–46. [Google Scholar] [CrossRef]
- Pike, D.A. The benefits of nest relocation extend far beyond recruitment: A rejoinder to Mrosovsky. Environ. Manag. 2008, 41, 461–464. [Google Scholar] [CrossRef]
- Patrício, A.R.; Hawkes, L.A.; Monsinjon, J.; Godley, B.J.; Fuentes, M.M.P.B. Climate change and marine turtles: Recent advances and future directions. Endanger. Species Res. 2021, in press. [Google Scholar] [CrossRef]
- Ware, M.; Fuentes, M.M.P.B. Potential for relocation to alter the incubation environment and productivity of sea turtle nests in the northern Gulf of Mexico. Chelonian Conserv. Biol. 2018, 17, 252–262. [Google Scholar] [CrossRef]
- Patrício, A.R.; Varela, M.R.; Barbosa, C.; Broderick, A.C.; Catry, P.; Hawkes, L.A.; Regalla, A.; Godley, B.J. Climate change resilience of a globally important sea turtle nesting population. Glob. Chang. Biol. 2019, 25, 522–535. [Google Scholar] [CrossRef] [PubMed]
- Sonmez, B.; Ozdilek, S.Y. Conservation technique of the green turtle (Chelonia mydas L. 1758) nests under the risk of tidal inundation with hatcheries, on Samandag Beach, Turkey. Russ. J. Herpetol. 2013, 20, 19–26. [Google Scholar]
- Mrosovsky, N. Distorting gene pools by conservation: Assessing the case of doomed turtle eggs. Environ. Manag. 2006, 38, 523–531. [Google Scholar] [CrossRef]
- Mrosovsky, N. Against oversimplifying the issues on relocating turtle eggs. Environ. Manag. 2008, 41, 465–467. [Google Scholar] [CrossRef]
- Fuentes, M.M.P.B.; Fish, M.R.; Maynard, J.A. Management strategies to mitigate the impacts of climate change on sea turtle’s terrestrial reproductive phase. Mitig. Adapt. Strateg. Glob. Chang. 2012, 17, 51–63. [Google Scholar] [CrossRef]
- Boulon, R.H. Reducing threats to eggs and hatchlings: In situ protection. In Research and Management Techniques for the Conservation of Sea Turtles; Eckert, K.L., Bjorndal, K.A., Abreu-Grobois, F.A., Donnelly, M., Eds.; IUCN/SSC Marine Turtle Specialist Group Publication 4: Washington, DC, USA, 1999; pp. 169–174. [Google Scholar]
- Abella, E.; Marco, A.; Lopez-Jurado, L.F. Success of delayed translocation of loggerhead turtle nests. J. Wildl. Manag. 2007, 71, 2290. [Google Scholar] [CrossRef] [Green Version]
- McElroy, M.L.; Dodd, M.G.; Castleberry, S.B. Effects of common loggerhead sea turtle nest management methods on hatching and emergence success at Sapelo Island, Georgia, USA. Chelonian Conserv. Biol. 2015, 14, 49–55. [Google Scholar] [CrossRef]
- Ahles, N.M.; Milton, S.L. Mid-incubation relocation and embryonic survival in loggerhead sea turtle eggs. J. Wildl. Manag. 2016, 80, 430–437. [Google Scholar] [CrossRef]
- Tuttle, J.; Rostal, D.C. Effects of nest relocation on nest temperature and embryonic development of loggerhead sea turtles (Caretta caretta). Chelonian Conserv. Biol. 2010, 9, 1–7. [Google Scholar] [CrossRef]
- Hopkins-Murphy, S.R.; Seithel, J.S. Documenting the value of volunteer effort for sea turtle conservation in South Carolina. Chelonian Conserv. Biol. 2005, 4, 930–934. [Google Scholar]
- Eckert, K.L.; Eckert, S.A. Embryo mortality and hatch success in in situ and translocated leatherback sea turtle Dermochelys coriacea eggs. Biol. Conserv. 1990, 53, 37–46. [Google Scholar] [CrossRef]
- Pfaller, J.B.; Limpus, C.J.; Bjorndal, K.A. Nest-site selection in individual loggerhead turtles and consequences for doomed-egg relocation. Conserv. Biol. 2009, 23, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Limpus, C.J.; Baker, V.; Miller, J.D. Movement induced mortality of loggerhead eggs. Herpetologica 1979, 35, 335–338. [Google Scholar]
- Parmenter, C.J. Incubation of the eggs of the green sea turtle, Chelonia mydas, in Torres Straight, Australia: The effect of movement on hatchability. Aust. Wildl. Res. 1980, 7, 487–491. [Google Scholar] [CrossRef]
- Grand, J.; Beissinger, S.R. When relocation of loggerhead sea turtle (Caretta caretta) nests becomes a useful strategy. J. Herpetol. 1997, 31, 428–434. [Google Scholar] [CrossRef]
- Fowler, L.E. Hatching success and nest predation in the green sea turtle, Chelonia mydas, at Tortuguero, Costa Rica. Ecology 1979, 60, 946–955. [Google Scholar] [CrossRef]
- Abella-Perez, E.; Marco, A.; Martins, S.; Hawkes, L.A. Is this what a climate change-resilient population of marine turtles looks like? Biol. Conserv. 2016, 193, 124–132. [Google Scholar] [CrossRef]
Beach Name | Figure 1 Code | Lat (°) | Long (°) | Beach Length (km) | Nesting Area (km2) | Beach Slope (°) | Nests y−1 | Nearest Wave Buoy | Nearest Tide Station |
---|---|---|---|---|---|---|---|---|---|
Perdido Key | A | 30.2836 | −87.5002 | 7.08 | 0.47 | 2.56 (±0.39, n = 36) | 12.67 (±6.35) | Orange Beach | Pensacola |
Perdido Key State Park | B | 30.2902 | −87.4665 | 2.65 | 0.18 | 2.62 (±0.28, n = 13) | 7 (±3.46) | Orange Beach | Pensacola |
GINS—Perdido Key | C | 30.3154 | −87.3388 | 11.78 | 1.25 | 1.69 (±0.66, n = 60) | 33.5 (±28.76) | Orange Beach | Pensacola |
GINS—Fort Pickens | D | 30.3180 | −87.2418 | 12.57 | 1.08 | 1.37 (±0.62, n = 64) | 25.25 (±3.3) | Orange Beach | Pensacola |
Pensacola Beach | E | 30.3350 | −87.1171 | 12.58 | 0.87 | 2.18 (±0.25, n = 63) | 28.75 (±6.95) | Orange Beach | Pensacola |
GINS—Santa Rosa | F | 30.3592 | −86.9880 | 13.19 | 0.99 | 2.31 (±0.81, n = 66) | 21 (±5.6) | Orange Beach | Pensacola |
Navarre Beach | G | 30.3763 | −86.8843 | 6.73 | 0.41 | 2.12 (±0.87, n = 34) | 9 (±5.83) | Orange Beach | Pensacola |
Eglin Air Force Base | H | 30.3845 | −86.8235 | 4.87 | 0.33 | 2.11 (±0.4, n = 24) | 24.25 (±31.4) | Orange Beach | Pensacola |
Eglin AFB West | I | 30.3946 | −86.7164 | 16.04 | 1.19 | 2.4 (±1.16, n = 80) | 27.33 (±6.66) | Orange Beach | Pensacola |
Okaloosa West | J | 30.3954 | −86.6080 | 4.86 | 0.33 | 3.02 (±0.78, n = 25) | 4.67 (±1.15) | Orange Beach | Pensacola |
Eglin AFB East | K | 30.3883 | −86.5313 | 7.33 | 0.59 | 2.66 (±2.03, n = 37) | 19 (±5.2) | Orange Beach | Pensacola |
Okaloosa Mid | L | 30.3831 | −86.4939 | 5.75 | 0.34 | 3.96 (±1.99, n = 29) | 6.5 (±1.73) | Pensacola | Panama City Beach |
Henderson Beach State Park | M | 30.3830 | −86.4436 | 2.03 | 0.12 | 3.67 (±1.37, n = 10) | 3 (±1.73) | Pensacola | Panama City Beach |
Okaloosa East | N | 30.3807 | −86.4150 | 3.41 | 0.18 | 5.26 (±2.82, n = 17) | 4 (±1.63) | Pensacola | Panama City Beach |
Miramar Beach | O | 30.3736 | −86.3573 | 7.82 | 0.45 | 4.17 (±1.96, n = 40) | 10.33 (±5.03) | Pensacola | Panama City Beach |
Topsail Hill State Park | P | 30.3616 | −86.2908 | 5.22 | 0.33 | 4.58 (±3.1, n = 26) | 10.5 (±2.65) | Pensacola | Panama City Beach |
Walton West | Q | 30.3433 | −86.2208 | 8.55 | 0.48 | 4.5 (±2.38, n = 43) | 16 (±10.03) | Pensacola | Panama City Beach |
Grayton Beach State Park | R | 30.3268 | −86.1631 | 3.44 | 0.25 | 3.16 (±1.74, n = 17) | 7 (±2.94) | Pensacola | Panama City Beach |
Walton Mid | S | 30.3115 | −86.1143 | 6.28 | 0.38 | 3.66 (±1.2, n = 31) | 13.25 (±5.44) | Pensacola | Panama City Beach |
Deer Lake State Park | T | 30.3009 | −86.0812 | 0.79 | 0.05 | 2.25 (±0.95, n = 4) | 1.25 (±0.5) | Pensacola | Panama City Beach |
Walton East | U | 30.2847 | −86.0366 | 8.50 | 0.49 | 3.21 (±0.85, n = 43) | 28.75 (±11.9) | Pensacola | Panama City Beach |
Camp Helen State Park | V | 30.2678 | −85.9920 | 0.55 | 0.05 | 0.86 (±0.58, n = 3) | 2.5 (±0.71) | Pensacola | Panama City Beach |
Panama City Beach | W | 30.1755 | −85.8068 | 28.00 | 1.97 | 2.56 (±0.53, n = 140) | 47.25 (±6.55) | Pensacola | Panama City Beach/Panama City |
Saint Andrews State Park | X | 30.1045 | −85.7084 | 8.56 | 0.69 | 2.22 (±1.23, n = 44) | 15.75 (±5.91) | Pensacola | Panama City |
Tyndall Air Force Base | Y | 30.0589 | −85.6116 | 28.67 | 3.46 | 1.17 (±0.67, n = 145) | 89.75 (±7.8) | Pensacola | Panama City |
Mexico Beach | Z | 29.9508 | −85.4342 | 6.84 | 0.57 | 2.47 (±1.77, n = 34) | 20 (±3.56) | Pensacola | Panama City |
Saint Joseph Peninsula State Park | AA | 29.8721 | −85.4008 | 15.29 | 1.84 | 2.18 (±0.93, n = 77) | 178.75 (±24.9) | Pensacola | Panama City |
Saint Joseph Peninsula | BB | 29.7099 | −85.3839 | 10.52 | 0.77 | 3.29 (±1.01, n = 53) | 200.75 (±54.91) | Pensacola | Panama City |
Saint Joe Beach | CC | 29.8928 | −85.3596 | 10.66 | 0.82 | 2.94 (±1.01, n = 54) | 19.75 (±6.4) | Pensacola | Panama City |
Cape San Blas AFB | DD | 29.6656 | −85.3485 | 3.95 | 0.72 | 0.79 (±0.58, n = 20) | 71.25 (±37.56) | Pensacola | Panama City/Apalachicola |
Cape San Blas | EE | 29.6838 | −85.2779 | 11.57 | 1.36 | 1.67 (±1.23, n = 58) | 65.5 (±18.3) | Pensacola | Apalachicola |
Saint Vincent NWR | FF | 29.6491 | −85.1588 | 16.26 | 2.24 | 1.87 (±1.6, n = 82) | 92.75 (±44.01) | Pensacola | Apalachicola |
Cape Saint George Island | GG | 29.6011 | −85.0638 | 17.51 | 1.86 | 1.81 (±0.68, n = 88) | 251.25 (±96.11) | Pensacola/ West Tampa | Apalachicola |
Saint George Island | HH | 29.6553 | −84.8779 | 17.78 | 1.36 | 2.81 (±0.47, n = 89) | 389.5 (±115.83) | West Tampa | Apalachicola |
Saint George Island State Park | II | 29.7187 | −84.7438 | 15.22 | 1.34 | 1.95 (±0.49, n = 77) | 84 (±42.37) | West Tampa | Apalachicola |
Carrabelle | KK | 29.8272 | −84.6963 | 10.41 | 0.42 | 4.03 (±2.04, n = 52) | NA | West Tampa | Apalachicola |
Dog Island | JJ | 29.7828 | −84.6488 | 14.56 | 1.40 | 2.25 (±1.74, n = 74) | NA | West Tampa | Apalachicola |
Phipps Preserve Beach | LL | 29.9087 | −84.4331 | 2.51 | 0.23 | 1.24 (±0.67, n = 13) | NA | West Tampa | Apalachicola |
Alligator Point | MM | 29.8949 | −84.3839 | 8.18 | 0.47 | 3.73 (±2.7, n = 40) | NA | West Tampa | Apalachicola |
Bald Point State Park | NN | 29.9145 | −84.3361 | 5.88 | 0.30 | 3.59 (±2.06, n = 30) | 3.25 (±1.5) | West Tampa | Apalachicola |
Number of Nests | Hatching Success (%, Mean ± SD) | Emergence Success (%, Mean ± SD) | |
---|---|---|---|
Undisturbed | 2104 | 78.1 ± 29.7 | 76.3 ± 30.2 |
Washed Over | 1665 | 27.3 ± 36.8 | 25.0 ± 35.4 |
Partial Wash-Out | 79 | NA | NA |
Complete Wash-Out | 1121 | 0 | 0 |
Beach Name | Figure 1 Code | Mean Nest Frequency (n yr−1) | Nest Frequency Category | Proportion Area Exposed | Proportion Nesting Exposed | Wave Exposure Category | Mean Nests at Risk (n yr−1) | Priority Category |
---|---|---|---|---|---|---|---|---|
* Saint Joseph Peninsula State Park | BB | 158.5 | Very High | 0.527 | 0.541 | Very High | 85.75 | Very High |
Saint Joseph Peninsula | CC | 194.25 | Very High | 0.532 | 0.404 | High | 78.48 | Very High |
† Saint George Island | HH | 372.75 | Very High | 0.39 | 0.141 | Low | 52.56 | Very High |
* Cape San Blas | EE | 64 | Very High | 0.588 | 0.773 | Very High | 49.47 | Very High |
† Cape Saint George Island | GG | 248 | Very High | 0.452 | 0.146 | Low | 36.21 | Very High |
Tyndall Air Force Base | Y | 80.75 | Very High | 0.656 | 0.443 | High | 35.77 | Very High |
* Cape San Blas AFB | DD | 67.75 | Very High | 0.611 | 0.517 | Very High | 35.03 | Very High |
Saint Vincent NWR | FF | 91.75 | Very High | 0.562 | 0.351 | High | 32.20 | Very High |
Saint George Island State Park | II | 81.75 | Very High | 0.5 | 0.306 | High | 25.02 | Very High |
Panama City Beach | W | 46.75 | High | 0.426 | 0.497 | High | 23.23 | High |
Pensacola Beach | E | 27.25 | High | 0.483 | 0.358 | High | 9.76 | High |
Mexico Beach | Z | 16 | Moderate | 0.474 | 0.547 | Very High | 8.75 | High |
Eglin AFB East | K | 19 | High | 0.424 | 0.421 | High | 8.00 | High |
Perdido Key | A | 11.67 | Moderate | 0.426 | 0.657 | Very High | 7.67 | High |
GINS—Fort Pickens | D | 24.75 | High | 0.546 | 0.222 | Low | 5.49 | High |
GINS—Santa Rosa | F | 21 | High | 0.424 | 0.25 | Moderate | 5.25 | High |
Walton East | U | 23.5 | High | 0.571 | 0.223 | Moderate | 5.24 | High |
Saint Joe Beach | AA | 14.25 | Moderate | 0.463 | 0.333 | High | 4.75 | Moderate |
Miramar Beach | O | 8.33 | Moderate | 0.556 | 0.52 | Very High | 4.33 | Moderate |
GINS - Perdido Key | C | 33 | High | 0.456 | 0.129 | Low | 4.26 | Moderate |
Eglin AFB West | I | 25.67 | High | 0.42 | 0.156 | Low | 4.00 | Moderate |
Navarre Beach | G | 5 | Low | 0.659 | 0.667 | Very High | 3.34 | Moderate |
Saint Andrews State Park | X | 13.5 | Moderate | 0.551 | 0.241 | Moderate | 3.25 | Moderate |
Walton West | Q | 10.75 | Moderate | 0.563 | 0.302 | Moderate | 3.25 | Moderate |
Eglin Air Force Base | H | 11 | Moderate | 0.515 | 0.273 | Moderate | 3.00 | Moderate |
Grayton Beach State Park | R | 4.75 | Low | 0.48 | 0.526 | Very High | 2.50 | Moderate |
Walton Mid | S | 9 | Moderate | 0.553 | 0.25 | Moderate | 2.25 | Low |
Okaloosa Mid | L | 5.75 | Low | 0.441 | 0.261 | Moderate | 1.50 | Low |
Okaloosa East | N | 3 | Low | 0.556 | 0.5 | Very High | 1.50 | Low |
Topsail Hill State Park | P | 10 | Moderate | 0.515 | 0.133 | Low | 1.33 | Low |
Perdido Key State Park | B | 5 | Low | 0.389 | 0.2 | Low | 1.00 | Low |
Okaloosa West | J | 4 | Low | 0.364 | 0.167 | Low | 0.67 | Low |
Henderson Beach State Park | M | 2.67 | Low | 0.5 | 0.25 | Moderate | 0.67 | Low |
Deer Lake State Park | T | 1.33 | Low | 0.6 | 0.25 | Moderate | 0.33 | Low |
Bald Point State Park | NN | 1.5 | Low | 0.467 | 0 | Low | 0.00 | Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ware, M.; Ceriani, S.A.; Long, J.W.; Fuentes, M.M.P.B. Exposure of Loggerhead Sea Turtle Nests to Waves in the Florida Panhandle. Remote Sens. 2021, 13, 2654. https://doi.org/10.3390/rs13142654
Ware M, Ceriani SA, Long JW, Fuentes MMPB. Exposure of Loggerhead Sea Turtle Nests to Waves in the Florida Panhandle. Remote Sensing. 2021; 13(14):2654. https://doi.org/10.3390/rs13142654
Chicago/Turabian StyleWare, Matthew, Simona A. Ceriani, Joseph W. Long, and Mariana M.P.B. Fuentes. 2021. "Exposure of Loggerhead Sea Turtle Nests to Waves in the Florida Panhandle" Remote Sensing 13, no. 14: 2654. https://doi.org/10.3390/rs13142654