Global Analysis of Coastal Gradients of Sea Surface Salinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. In Situ Data
2.1.2. Satellites SSS Products
SMOS Satellite Products
SMAP Satellite Products
2.1.3. Reanalysis Product
2.2. Methods
2.2.1. SSS Gradient Calculation from TSG Data
2.2.2. SSS Gradient Calculation from Gridded Products
2.2.3. Global Statistics on Coastal SSS and SSS Gradient
3. Results
3.1. Comparison of SSS from TSG Measurement and Satellites and Reanalysis Products
3.1.1. Global Statistics in Coastal SSS
3.1.2. Regions of Interest
Amazon River Plume
Northeast Brazil
Bay of Bengal
California Upwelling System
Great Australian Bight
3.2. Comparison of SSS Gradient from TSG Measurement and Satellites and Reanalysis Products
3.2.1. Global Distribution of SSS Gradients
3.2.2. Global Statistics of SSS Gradients Comparison
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durack, P.J. Ocean salinity and the global water cycle. Oceanography 2015, 28, 20–31. [Google Scholar] [CrossRef][Green Version]
- Gordon, A.L.; Giulivi, C.F.; Busecke, J.; Bingham, F.M. Differences among subtropical surface salinity patterns. Oceanography 2015, 28, 32–39. [Google Scholar] [CrossRef][Green Version]
- Delcroix, T.; Hénin, C. Seasonal and interannual variations of sea surface salinity in the tropical Pacific Ocean. J. Geophys. Res. 1991, 96, 22135. [Google Scholar] [CrossRef][Green Version]
- Alexander Haumann, F.; Gruber, N.; Münnich, M.; Frenger, I.; Kern, S. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 2016, 537, 89–92. [Google Scholar] [CrossRef]
- Hénin, C.; Du Penhoat, Y.; Ioualalen, M. Observations of sea surface salinity in the western Pacific fresh pool: Large-scale changes in 1992–1995. J. Geophys. Res. C Ocean. 1998, 103, 7523–7536. [Google Scholar] [CrossRef]
- Hanawa, K.; Talley, L.D. Mode waters BT—Ocean circulation and Climate. Ocean Circ. Clim. 2001, 77, 373–386. [Google Scholar]
- Lukas, R.; Lindstrom, E. The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res. 1991, 96, 3343. [Google Scholar] [CrossRef]
- Pailler, K.; Bourlès, B.; Gouriou, Y. The barrier layer in the western tropical Atlantic ocean. Geophys. Res. Lett. 1999, 26, 2069–2072. [Google Scholar] [CrossRef]
- Delcroix, T.; McPhaden, M. Interannual sea surface salinity and temperature changes in the western Pacific warm pool during 1992–2000. J. Geophys. Res. Ocean. 2002, 107, SRF 3-1. [Google Scholar] [CrossRef]
- Foltz, G.R.; McPhaden, M.J. Impact of barrier layer thickness on SST in the central tropical North Atlantic. J. Clim. 2009, 22, 285–299. [Google Scholar] [CrossRef][Green Version]
- Hopkins, J.; Lucas, M.; Dufau, C.; Sutton, M.; Stum, J.; Lauret, O.; Channelliere, C. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level. Remote Sens. Environ. 2013, 139, 365–385. [Google Scholar] [CrossRef]
- Myers, R.A.; Akenhead, S.A.; Drinkwater, K. The influence of Hudson bay runoff and ice-melt on the salinity of the inner newfoundland shelf. Atmos. Ocean 1990, 28, 241–256. [Google Scholar] [CrossRef][Green Version]
- Ogino, S.Y.; Yamanaka, M.D.; Mori, S.; Matsumoto, J. Tropical Coastal Dehydrator in Global Atmospheric Water Circulation. Geophys. Res. Lett. 2017, 44, 11636–11643. [Google Scholar] [CrossRef]
- Coles, V.J.; Brooks, M.T.; Hopkins, J.; Stukel, M.R.; Yager, P.L.; Hood, R.R. The pathways and properties of the Amazon river plume in the tropical North Atlantic Ocean. J. Geophys. Res. Ocean. 2013, 118, 6894–6913. [Google Scholar] [CrossRef]
- Chaitanya, A.V.S.; Lengaigne, M.; Vialard, J.; Gopalakrishna, V.V.; Durand, F.; Kranthikumar, C.; Amritash, S.; Suneel, V.; Papa, F.; Ravichandran, M. Salinity measurements collected by fishermen reveal a ‘river in the sea’ flowing along the eastern coast of India. Bull. Am. Meteorol. Soc. 2014, 95, 1897–1908. [Google Scholar] [CrossRef]
- Chelton, D.B.; Deszoeke, R.A.; Schlax, M.G.; El Naggar, K.; Siwertz, N. Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr. 1998, 28, 433–460. [Google Scholar] [CrossRef]
- Alory, G.; Delcroix, T.; Téchiné, P.; Diverrès, D.; Varillon, D.; Cravatte, S.; Gouriou, Y.; Grelet, J.; Jacquin, S.; Kestenare, E.; et al. The French contribution to the voluntary observing ships network of sea surface salinity. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 105, 1–18. [Google Scholar] [CrossRef]
- Smith, S.R.; Alory, G.; Andersson, A.; Asher, W.; Baker, A.; Berry, D.I.; Drushka, K.; Figurskey, D.; Freeman, E.; Holthus, P.; et al. Ship-based contributions to global ocean, weather, and climate observing systems. Front. Mar. Sci. 2019, 6, 434. [Google Scholar] [CrossRef][Green Version]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS L: New tool for monitoring key elements ofthe global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef][Green Version]
- Le Vine, D.M.; Lagerloef, G.S.E.; Colomb, F.R.; Yueh, S.H.; Pellerano, F.A. Aquarius: An instrument to monitor sea surface salinity from space. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2040–2050. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F.; Han, W. Interannual sea surface salinity variations observed in the tropical North Pacific Ocean. Geophys. Res. Lett. 2013, 40, 2194–2199. [Google Scholar] [CrossRef]
- Delcroix, T.; Cravatte, S.; McPhaden, M.J. Decadal variations and trends in tropical Pacific sea surface salinity since 1970. J. Geophys. Res. Ocean. 2007, 112, 1–15. [Google Scholar] [CrossRef]
- Foltz, G.R.; McPhaden, M.J. Seasonal mixed layer salinity balance of the tropical North Atlantic Ocean. J. Geophys. Res. Ocean. 2008, 113, 1–14. [Google Scholar] [CrossRef][Green Version]
- Foltz, G.R.; Grodsky, S.A.; Carton, J.A.; McPhaden, M.J. Seasonal salt budget of the northwestern tropical Atlantic Ocean along 38° W. J. Geophys. Res. C Ocean. 2004, 109, 1–13. [Google Scholar] [CrossRef][Green Version]
- Camara, I.; Kolodziejczyk, N.; Mignot, J.; Lazar, A.; Gaye, A.T. On the seasonal variations of salinity of the tropical Atlantic mixed layer. J. Geophys. Res. Oceans 2015, 120, 4441–4462. [Google Scholar] [CrossRef][Green Version]
- Du, Y.; Zhang, Y. Satellite and Argo observed surface salinity variations in the tropical Indian Ocean and their association with the Indian ocean dipole mode. J. Clim. 2015, 28, 695–713. [Google Scholar] [CrossRef][Green Version]
- Ratnawati, H.I.; Aldrian, E.; Soepardjo, A.H. Variability of evaporation-precipitation (E-P) and sea surface salinity (SSS) over Indonesian maritime continent seas. AIP Conf. Proc. 2018, 2023. [Google Scholar] [CrossRef]
- Da-Allada, C.Y.; Gaillard, F.; Kolodziejczyk, N. Mixed-layer salinity budget in the tropical Indian Ocean: Seasonal cycle based only on observations. Ocean Dyn. 2015, 65, 845–857. [Google Scholar] [CrossRef][Green Version]
- Delcroix, T.; Alory, G.; Cravatte, S.; Corrège, T.; McPhaden, M.J. A gridded sea surface salinity data set for the tropical Pacific with sample applications (1950–2008). Deep. Res. Part I Oceanogr. Res. Pap. 2011, 58, 38–48. [Google Scholar] [CrossRef]
- Hasson, A.E.A.; Delcroix, T.; Dussin, R. An assessment of the mixed layer salinity budget in the tropical Pacific Ocean. Observations and modelling (1990–2009). Ocean Dyn. 2013, 63, 179–194. [Google Scholar] [CrossRef]
- Alory, G.; Maes, C.; Delcroix, T.; Reul, N.; Illig, S. Seasonal dynamics of sea surface salinity off Panama: The far eastern Pacific Fresh Pool. J. Geophys. Res. Oceans 2012, 117, 1–13. [Google Scholar] [CrossRef][Green Version]
- Dandapat, S.; Gnanaseelan, C.; Parekh, A. Impact of excess and deficit river runoff on Bay of Bengal upper ocean characteristics using an ocean general circulation model. Deep. Res. Part II Top. Stud. Oceanogr. 2020, 172, 104714. [Google Scholar] [CrossRef]
- Kolodziejczyk, N.; Boutin, J.; Vergely, J.-L.; Marchand, S.; Martin, N.; Reverdin, G. Mitigation of systematic errors in SMOS sea surface salinity. Remote Sens. Environ. 2016, 180, 164–177. [Google Scholar] [CrossRef]
- Boutin, J.; Martin, N.; Kolodziejczyk, N.; Reverdin, G. Interannual anomalies of SMOS sea surface salinity. Remote Sens. Environ. 2016, 180, 128–136. [Google Scholar] [CrossRef]
- Boutin, J.; Vergely, J.L.; Marchand, S.; D’Amico, F.; Hasson, A.; Kolodziejczyk, N.; Reul, N.; Reverdin, G.; Vialard, J. New SMOS Sea Surface Salinity with reduced systematic errors and improved variability. Remote Sens. Environ. 2018, 214, 115–134. [Google Scholar] [CrossRef][Green Version]
- Meissner, T.; Wentz, F.J.; Le Vine, D.M. The salinity retrieval algorithms for the NASA aquarius version 5 and SMAP version 3 releases. Remote Sens. 2018, 10, 1121. [Google Scholar] [CrossRef][Green Version]
- Gaillard, F.; Diverres, D.; Jacquin, S.; Gouriou, Y.; Grelet, J.; Le Menn, M.; Tassel, J.; Reverdin, G. Sea surface temperature and salinity from French research vessels, 2001–2013. Sci. Data 2015, 2, 150054. [Google Scholar] [CrossRef][Green Version]
- Reynaud, T.; Kolodziejczyk, N.; Maes, C.; Gaillard, F.; Reverdin, G.; Desprez De Gesincourt, F.; Le Goff, H. Sea Surface Salinity from Sailing ships: Delayed mode dataset, annual release. Seanoe 2015. [Google Scholar] [CrossRef]
- Alory, G.; Téchiné, P.; Delcroix, T.; Disverrès, D.; Varillon, D.; Donguy, J.R.; Reverdin, G.; Morow, R.; Grelet, J.; Gouriou, Y. Le Service national d’observation de la salinité de surface de la mer: 50 ans de mesures océaniques globales. Météorologie 2020, 109, 29–39. [Google Scholar] [CrossRef]
- Smith, S.R.; Briggs, K.; Bourassa, M.A.; Elya, J.; Paver, C.R. Shipboard automated meteorological and oceanographic system data archive: 2005–2017. Geosci. Data J. 2018, 5, 73–86. [Google Scholar] [CrossRef][Green Version]
- Olmedo, E.; Martínez, J.; Turiel, A.; Ballabrera-Poy, J.; Portabella, M. Debiased non-Bayesian retrieval: A novel approach to SMOS Sea Surface Salinity. Remote Sens. Environ. 2017, 193, 103–126. [Google Scholar] [CrossRef]
- Fore, A.; Yueh, S.; Tang, W.; Stiles, B.; Hayashi, A. Combined active/passive retrievals of ocean vector winds and salinities from SMAP. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2253–2256. [Google Scholar] [CrossRef]
- Ferry, N.; Parent, L.; Garric, G.; Barnier, B.; Jourdain, N.C. Mercator global Eddy permitting ocean reanalysis GLORYS1V1: Description and results. Mercator Ocean Q. Newsl. 2010, 36, 15–27. [Google Scholar]
- Cabanes, C.; Grouazel, A.; Von Schuckmann, K.; Hamon, M.; Turpin, V.; Coatanoan, C.; Paris, F.; Guinehut, S.; Boone, C.; Ferry, N.; et al. The CORA dataset: Validation and diagnostics of in-situ ocean temperature and salinity measurements. Ocean Sci. 2013, 9, 1–18. [Google Scholar] [CrossRef][Green Version]
- Dai, A.; Trenberth, K.E. Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations. J. Hydrometeorol. 2002, 3, 660–687. [Google Scholar] [CrossRef][Green Version]
- Molleri, G.S.F.; Novo, E.M.L.d.M.; Kampel, M. Space-time variability of the Amazon River plume based on satellite ocean color. Cont. Shelf Res. 2010, 30, 342–352. [Google Scholar] [CrossRef]
- Dagg, M.; Benner, R.; Lohrenz, S.; Lawrence, D. Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: Plume processes. Cont. Shelf Res. 2004, 24, 833–858. [Google Scholar] [CrossRef]
- Johns, W.E.; Lee, T.N.; Schott, F.A.; Zantopp, R.J.; Evans, R.H. The North Brazil Current retroflection: Seasonal structure and eddy variability. J. Geophys. Res. 1990, 95, 22103. [Google Scholar] [CrossRef]
- Ffield, A. North Brazil current rings viewed by TRMM Microwave Imager SST and the influence of the Amazon Plume. Deep. Res. Part I Oceanogr. Res. Pap. 2005, 52, 137–160. [Google Scholar] [CrossRef]
- Silva, A.; Araujo, M.; Medeiros, C.; Silva, M.; Bourles, B. Seasonal Changes in the Mixed and Barrier Layers in the Western Equatorial Atlantic. Braz. J. Oceanogr. 2005, 53, 83–98. [Google Scholar] [CrossRef][Green Version]
- Silva, A.C.; Bourles, B.; Araujo, M. Circulation of the thermocline salinity maximum waters off the Northern Brazil as inferred from in situ measurements and numerical results. Ann. Geophys. 2009, 27, 1861–1873. [Google Scholar] [CrossRef][Green Version]
- Johns, W.E.; Lee, T.N.; Beardsley, R.C.; Candela, J.; Limeburner, R.; Castro, B. Annual Cycle and Variability of the North Brazil Current. J. Phys. Oceanogr. 1998, 28, 103–128. [Google Scholar] [CrossRef]
- Fratantoni, D.M.; Johns, W.E.; Townsend, T.L. Rings of the North Brazil Current: Their structure and behavior inferred from observations and a numerical simulation. J. Geophys. Res. 1995, 100, 10633. [Google Scholar] [CrossRef]
- Reul, N.; Fournier, S.; Boutin, J.; Hernandez, O.; Maes, C.; Chapron, B.; Alory, G.; Quilfen, Y.; Tenerelli, J.; Morisset, S.; et al. Sea Surface Salinity Observations from Space with the SMOS Satellite: A New Means to Monitor the Marine Branch of the Water Cycle. Surv. Geophys. 2014, 35, 681–722. [Google Scholar] [CrossRef][Green Version]
- Reverdin, G.; Olivier, L.; Foltz, G.R.; Speich, S.; Karstensen, J.; Horstmann, J.; Boutin, J. Formation and evolution of a freshwater plume in the northwestern tropical Atlantic in February 2020. J. Geophys. Res. Ocean. 2021, 126, e2020JC016981. [Google Scholar] [CrossRef]
- Grodsky, S.A.; Reul, N.; Lagerloef, G.; Reverdin, G.; Carton, J.A.; Chapron, B.; Quilfen, Y.; Kudryavtsev, V.N.; Kao, H.Y. Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophys. Res. Lett. 2012, 39, 4–11. [Google Scholar] [CrossRef][Green Version]
- Da Silveira, I.C.A.; de Miranda, L.B.; Brown, W.S. On the origins of the North Brazil Current. J. Geophys. Res. 1994, 99, 22501. [Google Scholar] [CrossRef]
- Dossa, A.N.; Silva, A.C.; Chaigneau, A.; Eldin, G.; Araujo, M.; Bertrand, A. Near-surface western boundary circulation off Northeast Brazil. Prog. Oceanogr. 2021, 190, 102475. [Google Scholar] [CrossRef]
- Aubone, N.; Palma, E.D.; Piola, A.R. The surface salinity maximum of the South Atlantic. Prog. Oceanogr. 2021, 191, 102499. [Google Scholar] [CrossRef]
- Stramma, L.; Fischer, J.; Reppin, J. The North Brazil Undercurrent. Deep. Res. Part I 1995, 42, 773–795. [Google Scholar] [CrossRef][Green Version]
- Assunção, R.V.; Silva, A.C.; Roy, A.; Bourlès, B.; Silva, C.H.S.; Ternon, J.F.; Araujo, M.; Bertrand, A. 3D characterisation of the thermohaline structure in the southwestern tropical Atlantic derived from functional data analysis of in situ profiles. Prog. Oceanogr. 2020, 187, 102399. [Google Scholar] [CrossRef]
- Danabasoglu, G.; Yeager, S.G.; Bailey, D.; Behrens, E.; Bentsen, M.; Bi, D.; Biastoch, A.; Böning, C.; Bozec, A.; Canuto, V.M.; et al. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Model. 2014, 73, 76–107. [Google Scholar] [CrossRef][Green Version]
- Prasanna Kumar, S.; Narvekar, J.; Kumar, A.; Shaji, C.; Anand, P.; Sabu, P.; Rijomon, G.; Josia, J.; Jayaraj, K.A.; Radhika, A.; et al. Intrusion of the Bay of Bengal water into the Arabian Sea during winter monsoon and associated chemical and biological response. Geophys. Res. Lett. 2004, 31, 4–7. [Google Scholar] [CrossRef]
- Papa, F.; Bala, S.K.; Pandey, R.K.; Durand, F.; Gopalakrishna, V.V.; Rahman, A.; Rossow, W.B. Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal. J. Geophys. Res. Ocean. 2012, 117, 1–13. [Google Scholar] [CrossRef][Green Version]
- Durand, F.; Shankar, D.; Birol, F.; Shenoi, S.S.C. Spatiotemporal structure of the East India Coastal Current from satellite altimetry. J. Geophys. Res. Ocean. 2009, 114, 1–18. [Google Scholar] [CrossRef][Green Version]
- Fournier, S.; Vialard, J.; Lengaigne, M.; Lee, T.; Gierach, M.M.; Chaitanya, A.V.S. Modulation of the Ganges-Brahmaputra River Plume by the Indian Ocean Dipole and Eddies Inferred From Satellite Observations. J. Geophys. Res. Ocean. 2017, 122, 9591–9604. [Google Scholar] [CrossRef][Green Version]
- Akhil, V.P.; Lengaigne, M.; Durand, F.; Vialard, J.; Chaitanya, A.V.S.; Keerthi, M.G.; Gopalakrishna, V.V.; Boutin, J.; de Boyer Montégut, C. Assessment of seasonal and year-to-year surface salinity signals retrieved from SMOS and Aquarius missions in the Bay of Bengal. Int. J. Remote Sens. 2016, 37, 1089–1114. [Google Scholar] [CrossRef][Green Version]
- Akhil, V.P.; Vialard, J.; Lengaigne, M.; Keerthi, M.G.; Boutin, J.; Vergely, J.L.; Papa, F. Bay of Bengal Sea surface salinity variability using a decade of improved SMOS re-processing. Remote Sens. Environ. 2020, 248, 111964. [Google Scholar] [CrossRef]
- Suneel, V.; Alex, M.J.; Antony, T.P.; Gurumoorthi, K.; Trinadha Rao, V.; Harikrishnan, S.; Gopalakrishna, V.V.; Rama Rao, E.P. Impact of Remote Equatorial Winds and Local Mesoscale Eddies on the Existence of “River in the Sea” Along the East Coast of India Inferred From Satellite SMAP. J. Geophys. Res. Ocean. 2020, 125, e2020JC016866. [Google Scholar] [CrossRef]
- Huyer, A.; Kosro, P.M. Mesoscale surveys over the shelf and slope in the upwelling region near point arena, California. J. Geophys. Res. Ocean. 1987, 92, 1655–1681. [Google Scholar] [CrossRef][Green Version]
- Huyer, A. Coastal upwelling in the California current system. Prog. Oceanogr. 1983, 12, 259–284. [Google Scholar] [CrossRef]
- Schwing, F.B. Increased coastal upwelling in the California Current System. J. Geophys. Res. C Ocean. 1997, 102, 3421–3438. [Google Scholar] [CrossRef]
- Lynn, R.J.; Bograd, S.J.; Chereskin, T.K.; Huyer, A. Seasonal renewal of the California Current: The spring transition off California. J. Geophys. Res. Ocean. 2003, 108, 1–11. [Google Scholar] [CrossRef]
- Vazquez-Cuervo, J.; Gomez-Valdes, J. SMAP and CalCOFI observe freshening during the 2014-2016 Northeast Pacific Warm Anomaly. Remote Sens. 2018, 10, 1716. [Google Scholar] [CrossRef][Green Version]
- Alory, G.; Da-Allada, C.Y.; Djakouré, S.; Dadou, I.; Jouanno, J.; Loemba, D.P. Coastal Upwelling Limitation by Onshore Geostrophic Flow in the Gulf of Guinea Around the Niger River Plume. Front. Mar. Sci. 2021, 7, 607216. [Google Scholar] [CrossRef]
- Alory, G.; Vega, A.; Ganachaud, A.; Despinoy, M. Influence of upwelling, subsurface stratification, and heat fluxes on coastal sea surface temperature off southwestern New Caledonia. J. Geophys. Res. Ocean. 2006, 111, 1–9. [Google Scholar] [CrossRef]
- Blanco, J.L.; Thomas, A.C.; Carr, M.; Strub, P.T. Seasonal climatology of hydrographic conditions in the upwelling region off northern Chile variance of Marine Sciences, of Maine, Current system, which supports one of the most. J. Geophys. Res. 2001, 106, 11451–11467. [Google Scholar] [CrossRef][Green Version]
- Chavez, F.P.; Messié, M. A comparison of Eastern Boundary Upwelling Ecosystems. Prog. Oceanogr. 2009, 83, 80–96. [Google Scholar] [CrossRef]
- Duncombe Rae, C.M. A demonstration of the hydrographic partition of the Benguela upwelling ecosystem at 26°40′ S. Afr. J. Mar. Sci. 2005, 27, 617–628. [Google Scholar] [CrossRef]
- Checkley, D.M.; Barth, J.A. Patterns and processes in the California Current System. Prog. Oceanogr. 2009, 83, 49–64. [Google Scholar] [CrossRef]
- Takesue, R.K.; van Geen, A.; Carriquiry, J.D.; Ortiz, E.; Godínez-Orta, L.; Granados, I.; Saldívar, M.; Ortlieb, L.; Escribano, R.; Guzman, N.; et al. Influence of coastal upwelling and El Niño-Southern Oscillation on nearshore water along Baja California and Chile: Shore-based monitoring during 1997–2000. J. Geophys. Res. Ocean. 2004, 109, 1–14. [Google Scholar] [CrossRef][Green Version]
- Nunes Vaz, R.A.; Lennon, G.W.; Bowers, D.G. Physical behaviour of a large, negative or inverse estuary. Cont. Shelf Res. 1990, 10, 277–304. [Google Scholar] [CrossRef]
- Simier, M.; Blanc, L.; Aliaume, C.; Diouf, P.S.; Albaret, J.J. Spatial and temporal structure of fish assemblages in an ‘inverse estuary’, the Sine Saloum system (Senegal). Estuar. Coast. Shelf Sci. 2004, 59, 69–86. [Google Scholar] [CrossRef]
- Winant, C.D.; De Velasco, G.G. Tidal dynamics and residual circulation in a well-mixed inverse estuary. J. Phys. Oceanogr. 2003, 33, 1365–1379. [Google Scholar] [CrossRef]
- Sadrinasab, M.; Kämpf, J. Three-dimensional flushing times of the Persian Gulf. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef][Green Version]
- Lennon, G.W.; Bowers, D.G.; Nunes, R.A.; Scott, B.D.; Ali, M.; Boyle, J.; Wenju, C.; Herzfeld, M.; Johansson, G.; Nield, S.; et al. Gravity currents and the release of salt from an inverse estuary. Nature 1987, 327, 695–697. [Google Scholar] [CrossRef]
- Middleton, J.F.; Bye, J.A.T. A review of the shelf-slope circulation along Australia’s southern shelves: Cape Leeuwin to Portland. Prog. Oceanogr. 2007, 75, 1–41. [Google Scholar] [CrossRef]
- Petrusevics, P.; Bye, J.A.T.; Fahlbusch, V.; Hammat, J.; Tippins, D.R.; van Wijk, E. High salinity winter outflow from a mega inverse-estuary-the Great Australian Bight. Cont. Shelf Res. 2009, 29, 371–380. [Google Scholar] [CrossRef]
- Drushka, K.; Asher, W.E.; Sprintall, J.; Gille, S.T.; Hoang, C. Global patterns of submesoscale surface salinity variability. J. Phys. Oceanogr. 2019, 49, 1669–1685. [Google Scholar] [CrossRef]
- Dossa, A.; Da-Allada, C.; Herbert, G.; Bourlès, B. Seasonal cycle of the salinity barrier layer revealed in the northeastern Gulf of Guinea. Afr. J. Mar. Sci. 2019, 41, 163–175. [Google Scholar] [CrossRef][Green Version]
- Houndegnonto, O.J.; Kolodziejczyk, N.; Maes, C.; Bourlès, B.; Da-Allada, C.Y.; Reul, N. Seasonal Variability of Freshwater Plumes in the Eastern Gulf of Guinea as Inferred From Satellite Measurements. J. Geophys. Res. Ocean. 2021, 126, e2020JC017041. [Google Scholar] [CrossRef]
- Drushka, K.; Asher, W.E.; Ward, B.; Walesby, K. Understanding the formation and evolution of rain-formed fresh lenses at the ocean surface. J. Geophys. Res. Ocean. 2016, 121, 2673–2689. [Google Scholar] [CrossRef][Green Version]
- Oliva, R.; Daganzo-Eusebio, E.; Kerr, Y.H.; Mecklenburg, S.; Nieto, S.; Richaume, P.; Gruhier, C. SMOS radio frequency interference scenario: Status and actions taken to improve the RFI environment in the 1400–1427-MHZ passive band. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1427–1439. [Google Scholar] [CrossRef][Green Version]
- Dai, A.; Qian, T.; Trenberth, K.E.; Milliman, J.D. Changes in continental freshwater discharge from 1948 to 2004. J. Clim. 2009, 22, 2773–2792. [Google Scholar] [CrossRef]
- Behara, A.; Vinayachandran, P.N.; Shankar, D. Influence of Rainfall Over Eastern Arabian Sea on Its Salinity. J. Geophys. Res. Ocean. 2019, 124, 5003–5020. [Google Scholar] [CrossRef]
- Gouveia, N.A.; Gherardi, D.F.M.; Wagner, F.H.; Paes, E.T.; Coles, V.J.; Aragão, L.E.O.C. The Salinity Structure of the Amazon River Plume Drives Spatiotemporal Variation of Oceanic Primary Productivity. J. Geophys. Res. Biogeosci. 2019, 124, 147–165. [Google Scholar] [CrossRef][Green Version]
- Fournier, S.; Lee, T. Seasonal and interannual variability of sea surface salinity near major river mouths of the world ocean inferred from gridded satellite and in-situ salinity products. Remote Sens. 2021, 13, 728. [Google Scholar] [CrossRef]
- Feng, M.; Meyers, G.; Pearce, A.; Wijffels, S. Annual and interannual variations of the Leeuwin Current at 32° S. J. Geophys. Res. Oceans 2003, 108. [Google Scholar] [CrossRef][Green Version]
- Grumbine, R.W. A model of the formation of high-salinity shelf water on polar continental shelves. J. Geophys. Res. 1991, 96, 22049. [Google Scholar] [CrossRef]
- Morrow, R.; Fu, L.L.; Ardhuin, F.; Benkiran, M.; Chapron, B.; Cosme, E.; D’Ovidio, F.; Farrar, J.T.; Gille, S.T.; Lapeyre, G.; et al. Global observations of fine-scale ocean surface topography with the Surface Water and Ocean Topography (SWOT) Mission. Front. Mar. Sci. 2019, 6, 232. [Google Scholar] [CrossRef]
- Guichoux, Y.; Lennon, M.; Thomas, N. Sea surface currents calculation using vessel tracking data. In Proceedings of the Maritime Knowledge Discovery and Anomaly Detection Workshop; Joint Research Centre: Ispra, Italy, 2016. [Google Scholar]
- Rodriguez-Fernandez, N.J.; Mialon, A.; Merlin, O.; Suere, C.; Cabot, F.; Khazaal, A.; Costeraste, J.; Palacin, B.; Rodriguez-Suquet, R.; Tournier, T.; et al. SMOS-HR: A High Resolution L-Band Passive Radiometer for Earth Science and Applications. In Proceedings of the IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 8392–8395. [Google Scholar] [CrossRef]
Regions Name | Amazon River Plume (AMZ) | Northeast Brazil (NEB) | Bay of Bengal (BOB) | California Upwelling System (CAL) | Great Australian Bight (GAB) |
---|---|---|---|---|---|
Regions’ location | 64–35°W; 4–24°N | 37–31.5°W; 9.2–3°S | 78–86.5°E; 10–16.5°N | 123.5–119.5°W; 25–37°N | 140–122°E; 40–30°S |
Data period | 6–9 March 2017 | 28 September–21 October 2015 | 23–24 October 2015 | 17–25 June 2019 | 28 Oct–27 Nov 2015 |
Ship name | Toucan | RV Antea | Onyx | RV Bell Shimada | RV Investigator |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dossa, A.N.; Alory, G.; da Silva, A.C.; Dahunsi, A.M.; Bertrand, A. Global Analysis of Coastal Gradients of Sea Surface Salinity. Remote Sens. 2021, 13, 2507. https://doi.org/10.3390/rs13132507
Dossa AN, Alory G, da Silva AC, Dahunsi AM, Bertrand A. Global Analysis of Coastal Gradients of Sea Surface Salinity. Remote Sensing. 2021; 13(13):2507. https://doi.org/10.3390/rs13132507
Chicago/Turabian StyleDossa, Alina N., Gaël Alory, Alex Costa da Silva, Adeola M. Dahunsi, and Arnaud Bertrand. 2021. "Global Analysis of Coastal Gradients of Sea Surface Salinity" Remote Sensing 13, no. 13: 2507. https://doi.org/10.3390/rs13132507