Tests with SAR Images of the PAZ Platform Applied to the Archaeological Site of Clunia (Burgos, Spain)
Abstract
:1. Introduction
2. Materials and Methods Used
2.1. SAR Sources, Techniques Used
2.2. LiDAR Sources: Techniques Used
2.3. TripleSat Sources
3. Results
3.1. Areas Explored in the Results
3.2. The Area of the Forum
3.3. The Theatre/Forum/Cuevas Ciegas Area
3.4. The Cuevas Ciegas Area
3.5. The Burial Area, Los Rodeles II
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cuesta, R.; Fiz, I.; Subías, E.; Tuset, F.; Iglesia, M.A. Hydraulic and urban management during Roman times based on GIS and remote sensing analysis (Clunia, Spain). Rev. Arqueol. Ponent 2019, 29, 123–146. [Google Scholar] [CrossRef]
- McCauley, J.F.; Breed, C.S.; Schaber, G.G.; McHugh, W.P.; Issawi, B.; Haynes, C.V.; Grolier, M.J.; Kilani, A.E. Paleodrainages of the Eastern Sahara. The Radar Rivers revisited. IEE Trans. Geosci. Remote Sens 1986, 24, 624–647. [Google Scholar]
- McCauley, J.F.; Schaber, G.G.; Breed, C.S.; Grolier, M.J.; Haynes, C.; Issawi, B.; Elachi, C.; Blom, R. Subsurface Valleys and Geoarchaeology of the Eastern Sahara Revealed by Shuttle Radar. Science 1982, 218, 1004–1020. [Google Scholar] [CrossRef]
- Blom, R.; Crippen, R.; Elachi, C.; Zarins, J.; Clapp, N.; Ledges, G. Space Technology and the discovery of the lost city of Ubar. In Proceedings of the IEEE Conference: Aerospace Conference, Snowmass, CO, USA, 13 February 1997; Volume 1. [Google Scholar]
- Adams, R. Swamps, Canals and the Locations of Ancient Maya Cities. Antiquity 1980, 54, 206–214. [Google Scholar] [CrossRef]
- Sever, T.L.; Irwin, D.E. Remote sensing investigation of the Ancient Maya in the Peten Rainforest of Northern Guatemala. Anc. Mesoam. 2003, 14, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Lasaponara, R.; Massini, N. Satellite Synthetic Aperture Radar in Archaeology and Cultural Landscape: An Overview. Archaeol. Prospect. 2013, 20, 71–78. [Google Scholar] [CrossRef]
- Monterroso, A.; Martinez, T. COSMO SkyMed X-Band SAR application—Combined with thermal and RGB images—in the archaeological landscape of Roman Mellaria (Fuente Obejuna-Córdoba, Spain). Archaeol. Prospect. 2018, 25, 301–314. [Google Scholar] [CrossRef]
- Hisdesat, PAZ Image Product Guide, PAZ-HDS-GUI-001. 2019. Available online: https://www.hisdesat.es/wp-content/uploads/2019/10/PAZ-HDS-GUI-001-PAZ-Image-Product-Guide-issue-1.1-.pdf (accessed on 1 April 2021).
- Cerra, D.; Agapiou, A.; Cavalli, R.M.; Sarris, A. An Objective Assessment of Hyperspectral Indicators for the Detection of Buried Archaeological Relics. Remote. Sens. 2018, 10, 500. [Google Scholar] [CrossRef]
- Pydyn, A.; Popek, M.; Kubacka, M.; Janowski, L. Exploration and reconstruction of a medieval harbour using hydroacoustics, 3-D shallow seismic and underwater photogrammetry: A case study from Puck, southern Baltic Sea. Archaeol. Prospect. 2021, 28, 527–542. [Google Scholar]
- Subias, E.; Fiz, I.; Cuesta, R. The Middle Nile Valley: Elements in an approach to the structuring of the landscape from the Greco-Roman era to the nineteenth century. Quat. Int. 2013, 312, 27–44. [Google Scholar] [CrossRef]
- Roca, M.; Fiz, I. Reconstrucción, a partir de fotografía aérea, de la topografía de la colonia de Cosa (Ansedonia, Italia) in Roca. In Proyecto Cosa: Intervenciones Arqueológicas de la Universidad de Barcelona en la Ciudad Romana; Madrid, M., Celis, R., Eds.; Universidad de Barcelona: Barcelona, Spain, 2013; pp. 69–89. Available online: http://diposit.ub.edu/dspace/bitstream/2445/99120/6/Proyecto_Cosa_optimitzat.pdf (accessed on 1 April 2021).
- Wen, Q.; Hea, J.; Guana, S.; Chena, T.; Hua, Y.; Wua, W.; Liua, F.; Qiaoa, Y.; Kokb, S.; Yeong, S. The TripleSat constellation: A new geospatial data service model. Geo. Spat. Inf. Sci. 2017, 20. [Google Scholar] [CrossRef] [Green Version]
- Kokalj, Z.; Hesse, R. Airborne Laser Scanning Raster Data Visualization: A Guide to Good Practice; Založba ZRC: Ljubljana, Slovakia, 2017. [Google Scholar]
- Masini, N.; Gizzi, F.T.; Biscione, M.; Fundone, V.; Sedile, M.; Sileo, M.; Pecci, A.; Lacovara, B.; Lasaponara, R. Medieval Archaeology under the Canopy with LiDAR. The (Re)Discovery of a Medieval Fortified Settlement in Southern Italy. Remote Sens. 2018, 10, 1598. [Google Scholar] [CrossRef] [Green Version]
- Garcia Sanchez, J. Archaeological LiDAR in Italy: Enhancing research with publicly accessible data. Antiquity 2018, 92, 1–10. [Google Scholar]
- Roman, A.; Ursu, T.; Lăzărescu, V.; Opreanu, C.H. Multi-sensor surveys for the interdisciplinary landscape analysis and archaeological feature detection at Porolissum in Coriolan. In Landscape Archaeology on the Northern Frontier of the Roman Empire at Porolissum an Interdisciplinary Research Project; Opreanu, H., Lăzărescu, V.A., Eds.; Mega Publishing House: Cluj-Napoca, Romania, 2016; pp. 237–262. [Google Scholar]
- Meyer, F. Spaceborne Synthetic Aperture Radar: Principles, Data Access, and Basic Processing Techniques in Ixmucane. In The Synthetic Aperture Radar (SAR) Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation; Flores-Anderson., A.E., Herndon., K., Bahadur Thapa, R., Cherrington., E., Eds.; SERVIR Global Science Coordination Office: Huntsville, AL, USA, 2019. [Google Scholar]
- Bruniquel, J.; Lopes, A. Multi-variate optimal speckle reduction in SAR imagery. Int. J. Remote Sens. 1997, 18, 603–606. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Huang, S.-Q.; Liu, D.-Z.; Gao, G.-Q.; Guo, X.-J. A novel method for speckle noise reduction and ship target detection in SAR images. Pattern Recognit. 2009, 42, 1533–1542. [Google Scholar] [CrossRef]
- Lee, J.-S.; Grunes, M.; Mango, S. Speckle reduction in multipolarization, multifrequency SAR imagery. IEEE Trans. Geosci. Remote Sens. 1991, 29, 535–544. [Google Scholar] [CrossRef]
- Lee, J.-S.; Jurkevich, L.; Dewaele, P.; Wambacq, P.; Oosterlinck. A.Speckle fltering of synthetic aperture radar images: A review. Remote Sens. Rev. 1994, 8, 313–340. [Google Scholar] [CrossRef]
- Lopez-Martinez, C.; Pottier, E. On the Extension of Multidimensional Speckle Noise Model from Single-look to Multilook SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2007, 45, 305–320. [Google Scholar] [CrossRef]
- Novak, L.M.; Burl, M.C. Optimal speckle reduction in polarimetric SAR imagery: Aerospace and Electronic Systems. IEEE Trans. Geosci. Remote Sens. 1990, 26, 293–305. [Google Scholar]
- Sveinsson, J.R.; Benediktsson, J.A. Almost translation invariant wavelet transformations for speckle reduction of SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2404–2408. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. COSMO-SkyMed SAR for Detection and Monitoring of Archaeological and Cultural Heritage Sites. Remote Sens. 2019, 11, 1326. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C. Detection of Archaeological Residues in Vegetated Areas Using Satellite Synthetic Aperture Radar. Remote Sens. 2017, 9, 118. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.; Oren, E.; Cohen-Sasson, E. Satellite Remote Sensing Analysis of the Qasrawet Archaeological Site in North Sinai. Remote Sens. 2018, 10, 1090. [Google Scholar] [CrossRef] [Green Version]
- Selige, T.; Böhner, J.; Ringeler, A. Processing of SRTM X- SAR data to correct interferometric elevation models for land surface process applications. Göttinger Geogr. Abh. 2006, 115, 97–104. [Google Scholar]
- Lorite, S.; Ojeda, J.C.; Rodríguez-Cuenca, B.; González Cristóbal, E.; Muñoz, P. Procesado y distribución de nubes de puntos en el proyecto PNOA-LiDAR. In Nuevas Plataformas y Sensores de Teledetección, Proceedings of the Actas del XVII Congreso de la Asociación Española de Teledetección, Murcia, Spain, 3–7 October 2017; Ruiz, L.A., Estornell, J., Erena, M., Eds.; Universidad de Valencia: Valencia, Spania, 2017; pp. 329–332. Available online: https://n9.cl/2y9yf (accessed on 14 June 2021).
- Zhao, G.; Maclean, A.L. A comparison of canonical discriminant analysis and principal component analysis for spectral transformation. Photogramm. Eng. Remote Sens. 2020, 66, 841–847. [Google Scholar]
- Aqdus, S.; Hanson, W.B.; Drummond, J. The potential of hyperspectral and multi-spectral imagery to enhance archaeological cropmark detection: A comparative study. J. Archaeol. Sci. 2012, 39, 1915–1924. [Google Scholar] [CrossRef]
- Eastman, J.R. IDRISI for Windows: Guide to GIS and Image Processing Version 32.20, 2001; Clark University: Worcester, MA, USA, 2001; Volume 2. [Google Scholar]
- Verrelst, J.; Koetz, B.; Kneubühler, M.; Schaepman, M. Directional sensitivity analysis of vegetation indices from multiangular CHRIS/PROBA data. In Proceedings of the ISPRS Commission VII Mid-term Symposium Remote Sensing: From Pixels to Processes, Enschede, The Netherlands, 8–11 May 2006. [Google Scholar]
- Lasaponara, R.; Masini, N.; Scardozzi, G. Immagini satellitari ad alta risoluzione e ricerca archeologica: Applicazioni e casi di studio con riprese pancromatiche e multispettrali di Quickbird. Archeol. Calc. 2007, 18, 187–227. [Google Scholar]
- Camacho, G. El territorio de Clunia y su evolución entre los siglos I a. C. y X d. C.: Perspectivas arqueológica e histórica. Tesis Doctoral, Universidad de Barcelona, Barcelona, Spain. Available online: https://www.tdx.cat/bitstream/handle/10803/666964/GCV_TESIS.pdf?sequence=1 (accessed on 1 April 2021).
- Camacho, G. Clunia: Una perspectiva arqueológica. CLIO. Hist. Hist. Teach. 2014, 40, 17–42. [Google Scholar]
- Camacho, G. Aproximación descriptiva a las vías y accesos de la Colonia Clunia Sulpicia (Peñalba de Castro-Burgos). Hisp. Antiqva 2013, 37, 249–270. Available online: https://dialnet.unirioja.es/descarga/articulo/5075608.pdf (accessed on 1 April 2021).
- Del Olmo, J. Arqueología aérea en Clunia. Rev. de Arqueol. 2001, 244, 6–9. [Google Scholar]
- Walther, D.; Shabaani, S. Large scale monitoring of rangelands vegetation using NOAA/AVHRR LAC data: Application to the rainy seasons 1989/90 in northern Kenya. In Range Management Handbook of Kenya; Ministry of Livestock Development: Nairobi, Kenya, 1991. [Google Scholar]
- Dore, N.; Patruno, J.; Pottier., E.; Crespi, M. New Research in Polarimetric SAR Technique for Archaeological Purposes using ALOS PALSAR Data. Archaeol. Prospect. 2013, 20, 79–87. [Google Scholar] [CrossRef]
- Stewart, C.; di Iorio, A.; Schiavon, G. Analysis of the utility of Cosmo Skymed strip map to detect buried archaeological features in the region of Rome. Experimental component of WHERE project. In Towards Horizon 2020: Earth Observation and Social Perspectives, Proceedings of the 33rd EARSeL Symposium Matera, Italy, 3–6 June 2013; Lasaponara, R., Masini, N., Biscione, M., Eds.; European Association of Remote Sensing Laboratories (EARSeL): Matera, Italy; pp. 203–212.
- Stewart, C.; Lasaponara., R.; Schiavon., G. Multi-frequency, polarimetric SAR analysis for archaeological prospection. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 211–219. [Google Scholar] [CrossRef]
Source | Dates | Resolution | Description |
---|---|---|---|
PAZ Spotlight | 29 August 2019; 09 September 2019; 20 September 2019; 01 October 2019; 13 July 2020 26 August 2020 | Range asc: 1.25 m/pixel | Polarization: HH Ascending |
Triple SAT 2 | 18 Jun 2016; 08 October 2017 | PAN 0.8 m/pixel MS 3.2 m/pixel | PAN: 450/650 nm Blue: 440/510 nm Green: 510/590 nm Red: 600/670 nm NIR: 760/910 nm |
LiDAR IRRB | 10 September 2010; | 0.25 pixel/m2 0.5 point/m2 | First coverage. Altimetric accuracy cm: RMSE Z <=20 IR, R, B bands |
PNOA NIRGB | PNOA 2007 (22 April–28 July); PNOA 2009 (03 July–13 July); PNOA 2011 (14 Jun–31 July) | GSD: 50 cm 25 cm 50 cm | NIR, G, B bands |
Month/Year | T (Average) Max | T (Mean) Min | T. Average | Prec (mm) | Images PAZ Involved |
---|---|---|---|---|---|
Aug 2019 | 29.6 °C | 14.4 °C | 22 °C | 3.6 | 1 |
Sep 2019 | 24 °C | 9.9 °C | 17 °C | 72 | 2 |
Oct 2019 | 18.9 °C | 8 °C | 13.5 °C | 35.8 | 1 |
Jul 2020 | 31.6 °C | 14.3 °C | 22.9 °C | 16.8 | 1 |
Aug 2020 | 28.6 °C | 13.5 °C | 21.1 °C | 15 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiz, I.; Cuesta, R.; Subias, E.; Martin, P.M. Tests with SAR Images of the PAZ Platform Applied to the Archaeological Site of Clunia (Burgos, Spain). Remote Sens. 2021, 13, 2344. https://doi.org/10.3390/rs13122344
Fiz I, Cuesta R, Subias E, Martin PM. Tests with SAR Images of the PAZ Platform Applied to the Archaeological Site of Clunia (Burgos, Spain). Remote Sensing. 2021; 13(12):2344. https://doi.org/10.3390/rs13122344
Chicago/Turabian StyleFiz, Ignacio, Rosa Cuesta, Eva Subias, and Pere Manel Martin. 2021. "Tests with SAR Images of the PAZ Platform Applied to the Archaeological Site of Clunia (Burgos, Spain)" Remote Sensing 13, no. 12: 2344. https://doi.org/10.3390/rs13122344
APA StyleFiz, I., Cuesta, R., Subias, E., & Martin, P. M. (2021). Tests with SAR Images of the PAZ Platform Applied to the Archaeological Site of Clunia (Burgos, Spain). Remote Sensing, 13(12), 2344. https://doi.org/10.3390/rs13122344