Assessment of Poplar Looper (Apocheima cinerarius Erschoff) Infestation on Euphrates (Populus euphratica) Using Time-Series MODIS NDVI Data Based on the Wavelet Transform and Discriminant Analysis
Abstract
:1. Introduction
- (1)
- Proposing a method of decomposition of mixed signals from the NDVI time series to isolate and enhance the pest infestation signals; and
- (2)
- Building a predictive model for identifying severity levels and dates of pest outbreaks.
2. Materials and Methods
2.1. Study Area
2.2. Life Cycle of Poplar Looper
2.3. Data Acquisition
2.3.1. Field Sampling
2.3.2. Satellite Data
2.4. Poplar Canopy NDVI Time Series
2.5. Methodology
- (1)
- decompose the NDVI time series into approximation (low-frequency) components representing trends and detail (high-frequency) components representing localised changes or details at multiple temporal scales;
- (2)
- de-noise the NDVI time series using the decomposed time series components from 1) to remove all sorts of noises and create a new NDVI time series representing the intra- and inter-annual variations in the NDVI for healthy poplar tree canopy;
- (3)
- compare and match the field observed leaf phenology of desert poplars with the de-noised or smoothed time series derived from (2) to identify the overall trend, seasonality and periodicity of the NDVI of poplar tree canopy;
- (4)
- compare and match the field observed poplar looper infestation dynamics with the decomposed time series components derived from (1) and information from (3) to extract signals of defoliation (abrupt changes in the NDVI) caused by the pest infestation;
- (5)
- reconstruct the NDVI time series by blending the extracted insect infestation signals from (4) to the de-noised NDVI time series from (2), which preserves the signals of the insect infestation, but removes other noises;
- (6)
- decompose the reconstructed NDVI time series from (5) to enhance the signals of the pest infestation;
- (7)
- build a predictive model via discriminant analysis using the information generated from (6) to detect pest infestation and classify the level of severity of infestation;
- (8)
- assess the detection and severity classification accuracy.
2.5.1. Wavelet Transforms
2.5.2. De-Noising of the NDVI Time Series
2.5.3. Detection of the Pest Infestation Signals
2.5.4. Discriminant Analysis and Accuracy Assessment
3. Results
3.1. Trend and Seasonality of Poplar Canopy NDVI
3.2. Poplar Forest Defoliation Caused by Poplar Loopers
3.3. Prediction Model of Infestation Severity
3.4. Insect Outbreak Date Prediction
4. Discussion
4.1. Poplar Looper Pest Monitoring
4.2. Identification of Outbreaks of Pests
4.3. Wavelet Analysis
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, S.J. The status, conservation and recovery of global resources of Populus euphradica. World For. Res. 1996, 6, 38–45. [Google Scholar]
- Chen, C.Q. Discussion on populus evolution and ecological protection countermeasures of Yeerqiang River Watershed. Environ. Prot. Xinjiang 2011, 33, 41–44. [Google Scholar] [CrossRef]
- Bai, B.; Chen, S.J.; Geng, Q.L.; Zeng, Y.J. A study on the relationships between the spatial distribution of Apocheima cinerarius Erschoff and its living environment. Acta Agric. Jiangxi 2008, 20, 56–58. [Google Scholar]
- Li, F. Occurrence and control of Poplar looper. Mod. Agric. Technol. 2013, 4, 152. [Google Scholar]
- Liu, S.; Jiang, N.; Xue, D.; Cheng, R.; Qu, Y.; Li, X.; Lei, F.; Han, H. Evolutionary history of Apocheima cinerarius (Lepidoptera: Geometridae), a female flightless moth in northern China. Zool. Scr. 2016, 45, 160–174. [Google Scholar] [CrossRef]
- Chu, H.F. Geometridae. Iconogr. Heterocerorum Sin. 1981, 1, 112–131. [Google Scholar]
- Feng, H.Z.; Wang, L.; Hu, W.J.; Wei, H.B.; Song, L.X. Occurrence and aerial control of Apocheima cinerarius in the natural Euphrates poplar forests in Shaya county. For. Pest Dis. 2005, 24, 22–24. [Google Scholar]
- Luo, L.; Wang, L.; Gao, Y.; Liu, Z.; Liu, P. Spatial distribution and emergence regularity of Apocheima cinerarius overwintering pupa. For. Pest Dis. 2016, 35, 17–20. [Google Scholar]
- Sattler, K. A review of wing reduction in Lepidoptera. Bulletin of the British Museum, Natural History. Entomology 1991, 60, 243–288. [Google Scholar]
- Yu, H.; Shao, Q.; Bing, W.Y.; Wang, D.Y. Analysis on the dynamics of spatial pattern of Apocheima cinerarius Erschoff population in Hetian, Xinjiang. Chin. Agric. Sci. Bull. 2005, 21, 334–338. [Google Scholar]
- Yu, H.; Wang, D.Y.; Wang, Y.B.; Lu, W.Y. Geostatistical analysis of the spatial pattern of Apocheima cinerarius Erschoff. J. Yunnan Agric. Univ. 2006, 21, 303–306.319. [Google Scholar] [CrossRef]
- Chen, M.; Jia, X.; Chen, S.; Hou, B.; Liu, Y.; Huang, T.; Yan, Z. The prediction of the occurrence period of Populus euphratica Apocheima cinerius Erschoff in the Yarkant River Basin based on remote sensing. Ecol. Sci. 2020, 39, 145–156. [Google Scholar]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Abd El-Ghany, N.M.; Abd El-Aziz, S.E.; Marei, S.S. A review: Application of remote sensing as a promising strategy for insect pests and diseases management. Environ. Sci. Pollut. Res. 2020, 27, 33503–33515. [Google Scholar] [CrossRef]
- Huo, L.; Persson, H.J.; Lindberg, E. Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS). Remote Sens. Environ. 2021, 255, 112240. [Google Scholar] [CrossRef]
- Donovan, S.D.; MacLean, D.A.; Zhang, Y.; Lavigne, M.B.; Kershaw, J.A. Evaluating annual spruce budworm defoliation using change detection of vegetation indices calculated from satellite hyperspectral imagery. Remote Sens. Environ. 2021, 253, 112204. [Google Scholar] [CrossRef]
- Duarte, A.; Acevedo-Munoz, L.; Goncalves, C.I.; Mota, L.; Sarmento, A.; Silva, M.; Fabres, S.; Borralho, N.; Valente, C. Detection of Longhorned Borer Attack and Assessment in Eucalyptus Plantations Using UAV Imagery. Remote Sens. Basel 2020, 12, 3153. [Google Scholar] [CrossRef]
- Fernandez-Carrillo, A.; Patocka, Z.; Dobrovolny, L.; Franco-Nieto, A.; Revilla-Romero, B. Monitoring Bark Beetle Forest Damage in Central Europe. A Remote Sensing Approach Validated with Field Data. Remote Sens. Basel 2020, 12, 3634. [Google Scholar] [CrossRef]
- Minarik, R.; Langhammer, J.; Lendzioch, T. Automatic Tree Crown Extraction from UAS Multispectral Imagery for the Detection of Bark Beetle Disturbance in Mixed Forests. Remote Sens. Basel 2020, 12, 4081. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R.; Hostert, P. Remote sensing of forest insect disturbances: Current state and future directions. Int. J. Appl. Earth Obs. 2017, 60, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Wang, X.; Xue, J.H.; Li, Y.; Xu, Y.N.; Wu, Y.B. A rapid assessment method for forest disaster based on MODIS/NDVI time series: A case study from Guizhou province. Acta Ecol. Sin. 2012, 32, 3359–3367. [Google Scholar] [CrossRef] [Green Version]
- Spruce, J.P.; Sader, S.; Ryan, R.E.; Smoot, J.; Kuper, P.; Ross, K.; Prados, D.; Russell, J.; Gasser, G.; McKellip, R. Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks. Remote Sens. Environ. 2011, 115, 427–437. [Google Scholar] [CrossRef]
- Olsson, P.; Lindström, J.; Eklundh, L. Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI. Remote Sens. Environ. 2016, 181, 42–53. [Google Scholar] [CrossRef]
- Eklundh, L.; Johansson, T.; Solberg, S. Mapping insect defoliation in Scots pine with MODIS time-series data. Remote Sens. Environ. 2009, 113, 1566–1573. [Google Scholar] [CrossRef]
- Anees, A.; Aryal, J. Near-real time detection of beetle infestation in pine forests using MODIS data. IEEE J. Stars 2014, 7, 3713–3723. [Google Scholar] [CrossRef]
- Olsson, P.; Kantola, T.; Lyytikäinen-Saarenmaa, P.; Jönsson, A.M.; Eklundh, L. Development of a method for monitoring of insect induced forest defoliation-limitation of MODIS data in Fennoscandian forest landscapes. Silva Fenn. 2016, 50, 1495. [Google Scholar] [CrossRef] [Green Version]
- Rullan-Silva, C.D.; Olthoff, A.E.; Delgado De La Mata, J.A.; Pajares-Alonso, J.A. Remote monitoring of forest insect defoliation. A review. For. Syst. 2013, 22, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Huang, W.; Cui, X.; Shi, Y.; Liu, L. New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery. Sensors Basel 2018, 18, 868. [Google Scholar] [CrossRef] [Green Version]
- Rahimzadeh-Bajgiran, P.; Weiskittel, A.R.; Kneeshaw, D.; MacLean, D.A. Detection of Annual Spruce Budworm Defoliation and Severity Classification Using Landsat Imagery. Forests 2018, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, R.; Rahimzadeh-Bajgiran, P.; Weiskittel, A.; MacLean, D.A. Sentinel-2 based prediction of spruce budworm defoliation using red-edge spectral vegetation indices. Remote Sens. Lett. 2020, 11, 777–786. [Google Scholar] [CrossRef]
- Otsu, K.; Pla, M.; Vayreda, J.; Brotons, L. Calibrating the Severity of Forest Defoliation by Pine Processionary Moth with Landsat and UAV Imagery. Sensors Basel 2018, 18, 3278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.C. Assessment of Poplar Looper (Apocheima cinerarius Erschoff) Infestation on Euphrates (Populus euphratica) in the Tarim River Basin in Xinjiang. Master’s Thesis, Xinjiang Normal University, Urumqi, China, 2012. [Google Scholar]
- Abdullah, H.; Skidmore, A.K.; Darvishzadeh, R.; Heurich, M. Sentinel-2 accurately maps green-attack stage of European spruce bark beetle (Ips typographus, L.) compared with Landsat-8. Remote Sens. Ecol. Conserv. 2019, 5, 87–106. [Google Scholar] [CrossRef] [Green Version]
- Hornero, A.; Hernandez-Clemente, R.; North, P.R.J.; Beck, P.S.A.; Boscia, D.; Navas-Cortes, J.A.; Zarco-Tejada, P.J. Monitoring the incidence of Xylella fastidiosa infection in olive orchards using ground-based evaluations, airborne imaging spectroscopy and Sentinel-2 time series through 3-D radiative transfer modelling. Remote Sens. Environ. 2020, 236, 111480. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT: A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Chen, S.; Yin, X.; Chen, M.; Huang, T.; Yan, Z. Simulation of the propagation process of mulberry looper Apocheima cinerarius based on the CLUE-S model. J. Plant Prot. 2019, 46, 1018–1028. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, X.; Chen, S.; Yin, X.; Jia, X.; Chen, M. An analysis on the driving factors of Apochemia cineraius Erschoft spread of Populus euphratica forest in the middle and lower Yeerqiang River Basin. J. Yunnan Univ. Nat. Sci. Ed. 2020, 42, 352–363. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Z.; Wang, Y.; He, G.; Wang, J.; Zhang, Z.; Yin, R.; Zhao, J. A Method for Detecting the Damage of Apocheima CinerariusErschoff based on MODIS Time Series: Case Studies in Bachu Populus Euphratica Forest of Xinjiang Province. Remote Sens. Technol. Appl. 2018, 33, 686–695. [Google Scholar] [CrossRef]
- Daubechies, I. Ten Lectures on Wavelets; SIAM: Philadelphia, PA, USA, 1992. [Google Scholar]
- Adachi, K. Matrix-Based Introduction to Multivariate Data Analysis; Springer: Singapore, 2016. [Google Scholar]
- Lin, J.; Huang, T.; Lai, F.; CHen, M.; Chen, S.; Jia, X. The height-diameter coefficient of Populus euphratica and its indicative significance to the habitat in the middle reaches of the Tarim River. Acta Ecol. Sin. 2017, 37, 3355–3364. [Google Scholar]
- Wang, S.; Chen, B.; Li, H. Populus euphratica; China Environmental Science Press: Beijing, China, 1995. [Google Scholar]
- Running, S.W.; Nemani, R.R. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sens. Environ. 1988, 24, 347–367. [Google Scholar] [CrossRef]
- Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 2008, 112, 576–587. [Google Scholar] [CrossRef]
- Shao, X.; Xu, Y.; Yan, C. Wavelet analysis of rainfall variation in the Yellow River Basin. Acta Sci. Nat. Univ. Pekin. 2006, 42, 503–509. [Google Scholar]
- Steel, E.A.; Lange, I.A. Using wavelet analysis to detect changes in water temperature regimes at multiple scales: Effects of multi-purpose dams in the Willamette River basin. River Res. Appl. 2007, 23, 351–359. [Google Scholar] [CrossRef]
- Jiang, Y.X.; Liu, S.H.; Ma, M.M.; Zhang, J.; Song, J. A wavelet analysis of the precipitation time series in Northeast China during the last 100 years. Geogr. Res. 2009, 28, 354–362. [Google Scholar]
- Martínez, B.; Gilabert, M.A. Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sens. Environ. 2009, 113, 1823–1842. [Google Scholar] [CrossRef]
- Chen, J.; Deng, M.; Xiao, P.; Yang, M.; Mei, X.; Liu, H. Multi-scale watershed segmentation of high-resolution multi-spectral remote sensing image using wavelet transform. J. Remote Sens. 2011, 15, 908–926. [Google Scholar]
- Li, M.; Xia, J.; Chen, S.M.; Meng, D.J. Wavelet analysis on annual precipitation around 300 years in Beijing Area. J. Nat. Resour. 2011, 26, 1001–1011. [Google Scholar] [CrossRef]
- Liu, Y.F.; Sun, H.; Yuan, Z.H. Multi-time scale features of runoff and sediment discharge on wavelet analysis at Hejin Station of Fenhe River Basin. Sci. Geogr. Sin. 2012, 32, 764–770. [Google Scholar]
- Mather, P.M. Computer Processing of Remotely-Sensed Images; John Wiley & Sons: Chichester, UK, 2004. [Google Scholar]
- Percival, D.B.; Walden, A.T. Wavelet Methods for Time Series Analysis; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Burrus, C.S.; Gopinath, R.A.; Guo, H.T. Introduction to Wavelets and Wavelet Transforms; A Primer; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Guo, G.; Wang, H.; Bell, D. Data Reduction and Noise Filtering for Predicting Times Series. In Proceedings of the International Conference on Web-Age Information Management, Beijing, China, 11–13 August 2002; Springer: Berlin/Heidelberg, Germany; pp. 421–429. [Google Scholar]
- Gu, J.; Li, X.; Huang, C.; Okin, G.S. A simplified data assimilation method for reconstructing time-series MODIS NDVI data. Adv. Space Res. 2009, 44, 501–509. [Google Scholar] [CrossRef]
- Li, H.Y. Study on the Reconstruction of Time-Series NDVI Data Set. Master’s Thesis, Lanzhou University, Lanzhou, China, 2010. [Google Scholar]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Geng, L.Y.; Ma, M.G. Advance in method comparison of reconstructing remote sensing time series data sets. Remote Sens. Technol. Appl. 2014, 29, 362–368. [Google Scholar]
- Maryamgul, A.; Alishir, K.; Adil, A.; Rahmitulla, A.; Duan, H.; Abdimijit, A.; Umut, H. Study on Phenological Characters of Populus euphratica Oliv. in the Lower Reaches of the Tarin River. Arid Zone Res. 2008, 25, 525–530. [Google Scholar]
- McLachlan, G.J. Discriminant Analysis and Statistical Pattern Recognition; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Liu, T.L.; Yang, Q.; Qin, R.; He, Y.P.; Liu, R. Climate change towards warming-wetting trend and its effects on runoff at the headwater region of the Yarkant River in Xinjiang. J. Arid Land Resour. Environ. 2008, 22, 49–53. [Google Scholar]
- Liu, X.M.; Min, J.Z.; Liu, T.L. Wavelet analysis of temperature and precipitation variation in the Yarkant River Basin, Xinjiang. J. Desert Res. 2009, 29, 566–570. [Google Scholar]
- You, Y. Forecast and Control of Fruit Tree Diseases and Insect Pests; China Agriculture Press: Beijing, China, 1996. [Google Scholar]
- Ali, M.M.; Bachik, N.A.; Muhadi, N.A.; Tuan Yusof, T.N.; Gomes, C. Non-destructive techniques of detecting plant diseases: A review. Physiol. Mol. Plant P. 2019, 108, 101426. [Google Scholar] [CrossRef]
- Gärtner, P.; Förster, M.; Kleinschmit, B. The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring. Remote Sens. Environ. 2016, 177, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Qiu, L.; Wang, L.; Luo, L.; Zheng, J. Study of Remote Sensing Monitoring for the Damage of Apocheima cinerarius on Tugai forest in Middle Reaches Area of the Tarim River Based on Time Series. Xinjiang Agric. Sci. 2018, 55, 518–527. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, X.; Hou, B.; Chen, S.; Huang, T.; Lai, F. The response of developmental rhythm of Populus euphratica Apocheima Cinerius. Ecol. Sci. 2019, 38, 119–129. [Google Scholar]
- Chávez, R.; Rocco, R.; Gutiérrez, Á.; Dörner, M.; Estay, S. A Self-Calibrated Non-Parametric Time Series Analysis Approach for Assessing Insect Defoliation of Broad-Leaved Deciduous Nothofagus pumilio Forests. Remote Sens. Basel 2019, 11, 204. [Google Scholar] [CrossRef] [Green Version]
- Basilede, L.; Navarro, F.; Olivier, B.; Basilede, L.; Navarro, F.; Olivier, B. Data-driven thresholding in denoising with Spectral Graph Wavelet Transform. J. Comput. Appl. Math. 2021, 389, 250–255. [Google Scholar] [CrossRef]
- Khan, M.M.H.; Muhammad, N.S.; El-Shafie, A. Wavelet based hybrid ANN-ARIMA models for meteorological drought forecasting. J. Hydrol. 2020, 590, 125380. [Google Scholar] [CrossRef]
- Drago, A.F.; Boxall, S.R. Use of the wavelet transform on hydro-meteorological data. Phys. Chem. Earth A/B/C 2002, 27, 1387–1399. [Google Scholar] [CrossRef]
- Adarsh, S.; Reddy, M.J. Trend analysis of rainfall in four meteorological subdivisions of southern India using nonparametric methods and discrete wavelet transforms. Int. J. Climatol. 2015, 35, 1107–1124. [Google Scholar] [CrossRef]
- Sang, Y. A review on the applications of wavelet transform in hydrology time series analysis. Atmos. Res. 2013, 122, 8–15. [Google Scholar] [CrossRef]
- Labat, D.; Ronchail, J.; Callede, J.; Guyot, J.L.; De Oliveira, E.; Guimaraes, W. Wavelet analysis of Amazon hydrological regime variability. Geophys. Res. Lett. 2004, 31, 2. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Yadav, A.K. Contrast Image Enhancement Using Luminance Component based on wavelet transform. International J. Recent Trends Eng. Res. 2020, 6, 22–29. [Google Scholar] [CrossRef]
- Yehia, A.; Safy, M.; Amein, A.S. Fusion of High-Resolution SAR and Optical Imageries Based on a Wavelet Transform and IHS Integrated Algorithm. Int. J. Eng. Res. Afr. 2021, 52, 62–72. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Vescovo, L.; Gianelle, D. The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas. Remote Sens. Environ. 2009, 113, 2345–2355. [Google Scholar] [CrossRef]
- Zhang, J.Y.L.W. Spectroscopic Leaf Level Detection of Powdery Mildew for Winter Wheat Using Continuous Wavelet Analysis. J. Integr. Agric. 2012, 11, 1474–1484. [Google Scholar] [CrossRef]
- Cheng, T.; Rivard, B.; Sanchez-Azofeifa, G.A.; Feng, J.; Calvo-Polanco, M. Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation. Remote Sens. Environ. 2010, 114, 899–910. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, W.; Ye, H.; Dong, T.; Shi, Y.; Chen, S. Using continous wavelet analysis for monitoring wheat yellow rust in different infestation stages based on unmanned aerial vehicle hyperspectral images. Appl. Opt. 2020, 59, 8003–8013. [Google Scholar] [CrossRef]
Damage Degree | Population Density (Insects/50 cm Standard Branch) | Leaf Loss Rate (%) | Severity |
---|---|---|---|
0 | <2 | <5 | no infestation |
1 | 2–4 | 5–30 | light infestation |
2 | 5–8 | 31–50 | moderate infestation |
3 | >9 | >50 | severe infestation |
Classification | Average | Standard Deviation | Valid N (list Status) | |
---|---|---|---|---|
Unweighted | Weighted | |||
0 | 0.0096 | 0.0052 | 22 | 22.00 |
1 | 0.0221 | 0.0052 | 9 | 9.00 |
2 | 0.0416 | 0.0053 | 3 | 3.00 |
3 | 0.0553 | 0.0000 | 2 | 2.00 |
Total | 0.0179 | 0.0141 | 36 | 36.00 |
Observed | Predicted | |||
---|---|---|---|---|
0 | 1 | 2 | 3 | |
0 | 20 | 2 | 0 | 0 |
1 | 1 | 8 | 0 | 0 |
2 | 0 | 0 | 3 | 0 |
3 | 0 | 0 | 0 | 2 |
Observed | Predicted | |||
---|---|---|---|---|
0 | 1 | 2 | 3 | |
0 | 12 | 3 | 1 | |
1 | 2 | 11 | ||
2 | 2 | 4 | ||
3 | 0 | 0 | 0 | 2 |
Observed | Predicted | ||||
---|---|---|---|---|---|
No Insect Infestation | Early March | Late March | Early April | Late April | |
no insect infestation | 35 | 0 | 0 | 0 | 3 |
early March | 0 | 16 | 0 | 1 | 0 |
late March | 0 | 0 | 0 | 0 | 0 |
early April | 0 | 0 | 0 | 13 | 0 |
late April | 0 | 0 | 0 | 0 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.; Ding, X.; Zhu, X.; Chen, S.; Chen, M.; Jia, X.; Lai, F.; Zhang, X. Assessment of Poplar Looper (Apocheima cinerarius Erschoff) Infestation on Euphrates (Populus euphratica) Using Time-Series MODIS NDVI Data Based on the Wavelet Transform and Discriminant Analysis. Remote Sens. 2021, 13, 2345. https://doi.org/10.3390/rs13122345
Huang T, Ding X, Zhu X, Chen S, Chen M, Jia X, Lai F, Zhang X. Assessment of Poplar Looper (Apocheima cinerarius Erschoff) Infestation on Euphrates (Populus euphratica) Using Time-Series MODIS NDVI Data Based on the Wavelet Transform and Discriminant Analysis. Remote Sensing. 2021; 13(12):2345. https://doi.org/10.3390/rs13122345
Chicago/Turabian StyleHuang, Tiecheng, Xiaojuan Ding, Xuan Zhu, Shujiang Chen, Mengyu Chen, Xiang Jia, Fengbing Lai, and Xiaoli Zhang. 2021. "Assessment of Poplar Looper (Apocheima cinerarius Erschoff) Infestation on Euphrates (Populus euphratica) Using Time-Series MODIS NDVI Data Based on the Wavelet Transform and Discriminant Analysis" Remote Sensing 13, no. 12: 2345. https://doi.org/10.3390/rs13122345
APA StyleHuang, T., Ding, X., Zhu, X., Chen, S., Chen, M., Jia, X., Lai, F., & Zhang, X. (2021). Assessment of Poplar Looper (Apocheima cinerarius Erschoff) Infestation on Euphrates (Populus euphratica) Using Time-Series MODIS NDVI Data Based on the Wavelet Transform and Discriminant Analysis. Remote Sensing, 13(12), 2345. https://doi.org/10.3390/rs13122345