Review on the Role of GNSS Meteorology in Monitoring Water Vapor for Atmospheric Physics
Abstract
:1. Introduction
2. GNSS Methodologies
2.1. Conversion of Tropospheric Delays to Water Vapor
2.2. Error Analysis
2.3. Tomography
2.4. Combining with Other Measurements
3. Inter-Comparisons with Other Techniques
3.1. Validations of GNSS Water Vapor with Other Techniques as Reference
3.2. Validations of NWP with GNSS Water Vapor as Reference
3.3. Validation of Satellite Measurements with GNSS as Reference
4. Spatio-Temporal Analysis
4.1. Asia
Work | Year | N | Start | End | Region | Type | Value |
---|---|---|---|---|---|---|---|
[94] | 2001 | 5 | 1999-07 | 1999-08 | Japan | Diurnal | max: 1900 |
[99] | 2002 | 54 | 1996-01 | 2000-12 | North America (US) | Diurnal | max: 1000–1400 (winter) and midafternoon-midnight (summer) |
[100] | 17 | 1993-08 | Scandinavia (Sweden) | Trends | 0.15 | ||
[101] | 2007 | 2 | 1998-01 | 2006-12 | Africa (South Africa) | Trends | non-significant |
[95] | 2008 | 6 | 2000-08 | 2000-08 | Japan | Diurnal | max: 1900, min: noon |
[102] | 2009 | 32 | 1996-01 | 2005-12 | Baltic (Finland, Latvia, Sweden) | Diurnal | - |
[103] | 9 | 2003-01 | Antarctic | Seasonal | |||
Diurnal | max: 0600–0900 UTC, min: 1800–2100 UT | ||||||
[98] | 2010 | 5 | 2000-01 | 2009-12 | SouthKorea | Trends | 0.11 |
[104] | 2011 | 10 | 2002-01 | 2011-12 | Iberian P. (Spain) | Diurnal | min: 0430–0530 UTC, Afternoon |
[105] | 2015 | 4 | 2009-01 | 2012-12 | Europe | Seasonal | |
Diurnal | - | ||||||
[106] | 2017 | 113 | 1996-01 | 2015-12 | Europe (Germany) | Trends | −0.15–0.23 |
[107] | 5 | 2004-01 | 2012-12 | Northeast India (India) | Seasonal | max: summer, min: winter | |
Northeast India (India) | Diurnal | max: 1000–1300 UTC | |||||
[108] | 2018 | 2 | 2006-01 | 2018-01 | Central France (France) | Diurnal | - |
Central France (France) | Trends | non-significant | |||||
[97] | 2019 | 24 | 2005-01 | 2008-12 | Sumatra | Diurnal | max: 1900 (land); 1300 and 0100 (offshore) |
[109] | 192 | 2004-01 | 2017-12 | Global | Seasonal | ||
Trends | - | ||||||
[110] | 2020 | 35 | 2000-01 | 2018-12 | Europe (Switzerland) | Trends | 0.001–0.109 |
[111] | 8 | 2018-06 | 2020-03 | SW Indian Ocean | Diurnal | - | |
[112] | 12 | 2009-01 | 2019-12 | Indian Ocean | Seasonal | max: austral summer | |
Diurnal | max: late afternoon/evening (land); night (ocean); early morning (coastal), min: morning (land); mid-day (ocean); late afternoon (coastal) | ||||||
[113] | 11 | 2007-01 | 2015-12 | Thailand | Seasonal | max: mid-May–end-October | |
Trends | - | ||||||
[92] | 18 | 2015-01 | 2018-12 | Poyang Lake (China) | Diurnal | max: 1600 |
4.2. Europe
4.3. Africa
4.4. America
4.5. Antarctic Region
4.6. Global
5. Impact of Water Vapor Variability on Meteorology and Climate
5.1. Assimilation
5.2. Circulation
5.3. Radiative Transfer Studies
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AIRS | Atmospheric Infrared sounder |
AMSU-B | Advanced Microwave Sounding Unit |
APC | Antenna Phase Center |
AR | atmospheric river |
BALTEX | Baltic Sea Experiment |
BDS | BeiDou Navigation Satellite System (Chinese GNSS) |
CORS | Continuously Operating Reference Stations |
COST | Cooperation in Science and Technology |
ECMWF | European Centre for Medium-Range Weather Forecasts |
FTIR | Fourier-transform infrared spectroscopy |
FY-3A/MERSI | Fengyun-3A Medium resolution spectral imager |
GASP | Atmosphere Sounding Project |
GLONASS | Globalnaya navigatsionnaya sputnikovaya sistema (Russian GNSS) |
GNSS | Global Navigation Satellite Systems |
GOME-2 | Global Ozone Monitoring Experiment 2 |
GPS | Global Positioning System |
GPT | Global Pressure and Temperature |
HIRLAM | High Resolution Limited Area Model |
IGS | International GNSS Service |
InSAR | Interferometric synthetic-aperture radar |
IPWV | Integrated precipitable water vapor |
ITU-R | International Telecommunication Union - Radiocommunications |
IWV | Integrated water vapor |
JRA-55 | Japanese 55-year Reanalysis |
MERIS | MEdium Resolution Imaging Spectrometer |
MERRA-2 | Modern-Era Retrospective analysis for Research and Applications Version 2 |
MFRSR | Multifilter rotating shadowband radiometer |
MGEX | Multi-GNSS Experiment |
MJO | Madden–Julian oscillation |
MM5 | Fifth-Generation Penn State/NCAR Mesoscale Model |
NWP | Numerical weather models |
OMI | Ozone Monitoring Instrument |
POLDER | POLarization and Directionality of the Earth’s Reflectances |
PW | Precipitable water |
PWV | Precipitable water vapor |
RAMS | Regional Atmospheric Modeling System |
RH | Relative humidity |
RMSE | Root mean square error |
SBDART | Santa Barbara’s dissort radiative transfer model |
SCIAMACHY | SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY |
SD | Standard deviation |
SEVIRI | Spinning Enhanced Visible and Infrared Imager |
SSM/I | Special Sensor Microwave/Imager |
SSMI/S | Special Sensor Microwave Imager/Sounder |
STD | Slant tropospheric delay |
SWD | Slant wet delay |
Tm | Weighted mean temperature of the atmosphere |
Ts | Surface temperature |
VMF1 | Vienna Mapping Functions 1 |
WVR | Water vapor radiometer |
ZHD | Zenith hydrostatic delay |
ZTD | Zenith tropospheric delay |
ZWD | Zenith wet delay |
References
- Colman, R. A Comparison of Climate Feedbacks in General Circulation Models. Clim. Dyn. 2003, 20, 865–873. [Google Scholar] [CrossRef]
- Colman, R.A. Climate Radiative Feedbacks and Adjustments at the Earth’s Surface. J. Geophys. Res. Atmos. 2015, 120, 3173–3182. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Bréon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambrdige University Press: Cambridge, UK, 2013; pp. 659–740. [Google Scholar]
- Bonafoni, S.; Biondi, R.; Brenot, H.; Anthes, R. Radio Occultation and Ground-Based GNSS Products for Observing, Understanding and Predicting Extreme Events: A Review. Atmos. Res. 2019, 230, 104624. [Google Scholar] [CrossRef]
- Liu, C.; Kirchengast, G.; Syndergaard, S.; Kursinski, E.; Sun, Y.; Bai, W.; Du, Q. A Review of Low Earth Orbit Occultation Using Microwave and Infrared-Laser Signals for Monitoring the Atmosphere and Climate. Adv. Space Res. 2017, 60, 2776–2811. [Google Scholar] [CrossRef]
- Wickert, J.; Michalak, G.; Schmidt, T.; Beyerle, G.; Cheng, C.Z.; Healy, S.B.; Heise, S.; Huang, C.Y.; Jakowski, N.; Köhler, W.; et al. GPS Radio Occultation: Results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terr. Atmos. Ocean. Sci. 2009, 20, 35. [Google Scholar] [CrossRef] [Green Version]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. J. Geophys. Res. 1992, 97, 15787. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. J. Appl. Meteorol. Climatol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Dabberdt, W.F.; Schlatter, T.W. Research Opportunities from Emerging Atmospheric Observing and Modeling Capabilities. Bull. Am. Meteorol. Soc. 1996, 77, 305–323. [Google Scholar] [CrossRef] [Green Version]
- Dow, J.; Neilan, R.; Gendt, G. The International GPS Service: Celebrating the 10th Anniversary and Looking to the next Decade. Adv. Space Res. 2005, 36, 320–326. [Google Scholar] [CrossRef]
- Dach, R.; Dietrich, R. Influence of the Ocean Loading Effect on GPS Derived Precipitable Water Vapor. Geophys. Res. Lett. 2000, 27, 2953–2956. [Google Scholar] [CrossRef]
- Dick, G.; Gendt, G.; Reigber, C. First Experience with near Real-Time Water Vapor Estimation in a German GPS Network. J. Atmos. Sol. Terr. Phys. 2001, 63, 1295–1304. [Google Scholar] [CrossRef]
- MacDonald, A.E.; Xie, Y.; Ware, R.H. Diagnosis of Three-Dimensional Water Vapor Using a GPS Network. Mon. Weather Rev. 2002, 130, 386–397. [Google Scholar] [CrossRef]
- Flores, A.; Ruffini, G.; Rius, A. 4D Tropospheric Tomography Using GPS Slant Wet Delays. Ann. Geophys. 2000, 18, 0223–0234. [Google Scholar] [CrossRef]
- Morland, J.; Deuber, B.; Feist, D.G.; Martin, L.; Nyeki, S.; Kämpfer, N.; Mätzler, C.; Jeannet, P.; Vuilleumier, L. The STARTWAVE Atmospheric Water Database. Atmos. Chem. Phys. 2006, 6, 2039–2056. [Google Scholar] [CrossRef] [Green Version]
- Bender, M.; Raabe, A. Preconditions to Ground Based GPS Water Vapour Tomography. Ann. Geophys. 2007, 25, 1727–1734. [Google Scholar] [CrossRef]
- Li, X.; Dick, G.; Lu, C.; Ge, M.; Nilsson, T.; Ning, T.; Wickert, J.; Schuh, H. Multi-GNSS Meteorology: Real-Time Retrieving of Atmospheric Water Vapor From BeiDou, Galileo, GLONASS, and GPS Observations. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6385–6393. [Google Scholar] [CrossRef] [Green Version]
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)—Achievements, Prospects and Challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Emardson, T.; Derks, H. On the Relation between the Wet Delay and the Integrated Precipitable Water Vapour in the European Atmosphere. Meteorol. Appl. 2000, 7, 61–68. [Google Scholar] [CrossRef]
- Suresh Raju, C.; Saha, K.; Thampi, B.V.; Parameswaran, K. Empirical Model for Mean Temperature for Indian Zone and Estimation of Precipitable Water Vapor from Ground Based GPS Measurements. Ann. Geophys. 2007, 25, 1935–1948. [Google Scholar] [CrossRef] [Green Version]
- Heise, S.; Dick, G.; Gendt, G.; Schmidt, T.; Wickert, J. Integrated Water Vapor from IGS Ground-Based GPS Observations: Initial Results from a Global 5-Min Data Set. Ann. Geophys. 2009, 27, 2851–2859. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xing, Z.; Zhou, X.; Tang, Q.; Zhou, D.; Sun, W. GPS-Based Precipitable Water Vapour Retrieval and Variability Using Measured and Global Reanalysis Data in the Coastal Regions of China. Int. J. Remote Sens. 2019. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, H.; Liang, H.; Lou, Y.; Cai, Y.; Cao, Y.; Zhou, Y.; Liu, W. On the Suitability of ERA5 in Hourly GPS Precipitable Water Vapor Retrieval over China. J. Geod. 2019, 93, 1897–1909. [Google Scholar] [CrossRef]
- Böhm, J.; Möller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an Improved Empirical Model for Slant Delays in the Troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Landskron, D.; Böhm, J. VMF3/GPT3: Refined Discrete and Empirical Troposphere Mapping Functions. J. Geod. 2018, 92, 349–360. [Google Scholar] [CrossRef]
- Charoenphon, C.; Satirapod, C. Improving the Accuracy of Real-Time Precipitable Water Vapour Using Country-Wide Meteorological Model with Precise Point Positioning in Thailand. J. Spat. Sci. 2020, 1–17. [Google Scholar] [CrossRef]
- Iwasaki, H.; Kimura, F.; Nakagawa, K.; Miki, T.; Kimata, F.; Shimada, S.; Nakao, S. The Influence of the Moisture Gradient on the Accuracy of Precipitable Water Derived from GPS Data. J. Meteorol. Soc. Jpn. Ser. II 2000, 78, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Jarlemark, P.; Emardson, R.; Johansson, J.; Elgered, G. Ground-Based GPS for Validation of Climate Models: The Impact of Satellite Antenna Phase Center Variations. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3847–3854. [Google Scholar] [CrossRef]
- Ortiz de Galisteo, J.P.; Toledano, C.; Cachorro, V.; Torres, B. Improvement in PWV Estimation from GPS Due to the Absolute Calibration of Antenna Phase Center Variations. GPS Solut. 2010, 14, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Yadav, J.; Giri, R.; Malik, D. Effect of Broadcast and Precise Satellite Orbits in the Estimation of Zenith Tropospheric Delay and Integrated Precipitable Water Vapour from GPS. MAUSAM 2010, 61, 197–202. [Google Scholar]
- Labib, B.; Yan, J.; Barriot, J.P.; Zhang, F.; Feng, P. Monitoring Zenithal Total Delays over the Three Different Climatic Zones from IGS GPS Final Products: A Comparison between the Use of the VMF1 and GMF Mapping Functions. Geod. Geodyn. 2019, 10, 93–99. [Google Scholar] [CrossRef]
- Ning, T.; Elgered, G. Trends in the Atmospheric Water Vapor Content From Ground-Based GPS: The Impact of the Elevation Cutoff Angle. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 744–751. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M.; Ruggiero, V.; Sutera, A.; Zirilli, F. On the Retrieval of Water Vapour Profiles from a Single GPS Station. Nuovo C Della Soc. Ital. Fis. C 2000, 23, 611–620. [Google Scholar]
- Iassamen, A.; Sauvageot, H.; Jeannin, N.; Ameur, S. Distribution of Tropospheric Water Vapor in Clear and Cloudy Conditions from Microwave Radiometric Profiling. J. Appl. Meteorol. Climatol. 2009, 48, 600–615. [Google Scholar] [CrossRef]
- Bi, Y.M.; Mao, J.T.; Liu, X.Y.; Fu, Y.; Li, C.C. Remote Sensing of the Amount of Water Vapor along the Slant Path Using the Ground-Base GPS. Chin. J. Geophys. 2006, 49, 282–290. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, Q. A Novel, Optimized Approach of Voxel Division for Water Vapor Tomography. Meteorol. Atmos. Phys. 2017, 129, 57–70. [Google Scholar] [CrossRef]
- Haji-Aghajany, S.; Amerian, Y. Hybrid Regularized GPS Tropospheric Sensing Using 3-D Ray Tracing Technique. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1475–1479. [Google Scholar] [CrossRef]
- Yang, F.; Guo, J.; Shi, J.; Zhao, Y.; Zhou, L.; Song, S. A New Method of GPS Water Vapor Tomography for Maximizing the Use of Signal Rays. Appl. Sci. 2019, 9, 1446. [Google Scholar] [CrossRef] [Green Version]
- Brenot, H.; Rohm, W.; Kačmařík, M.; Möller, G.; Sá, A.; Tondaś, D.; Rapant, L.; Biondi, R.; Manning, T.; Champollion, C. Cross-Comparison and Methodological Improvement in GPS Tomography. Remote Sens. 2019, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Adavi, Z.; Rohm, W.; Weber, R. Analyzing Different Parameterization Methods in GNSS Tomography Using the COST Benchmark Dataset. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6155–6163. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Ding, N.; Zhao, Q. A Tropospheric Tomography Method with a Novel Height Factor Model Including Two Parts: Isotropic and Anisotropic Height Factors. Remote Sens. 2020, 12, 1848. [Google Scholar] [CrossRef]
- Dong, Z.; Jin, S. 3-D Water Vapor Tomography in Wuhan from GPS, BDS and GLONASS Observations. Remote Sens. 2018, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Haji-Aghajany, S.; Amerian, Y.; Verhagen, S. B-Spline Function-Based Approach for GPS Tropospheric Tomography. GPS Solut. 2020, 24, 88. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Ding, N.; Ma, P. An Improved Tropospheric Tomography Method Based on the Dynamic Node Parametrized Algorithm. Acta Geodyn. Geomater. 2020, 17, 191–206. [Google Scholar] [CrossRef]
- Furumoto, J.; Kurimoto, K.; Tsuda, T. Continuous Observations of Humidity Profiles with the MU Radar-RASS Combined with GPS and Radiosonde Measurements. J. Atmos. Ocean. Technol. 2003, 20, 23–41. [Google Scholar] [CrossRef]
- Lindenbergh, R.; Keshin, M.; van der Marel, H.; Hanssen, R. High Resolution Spatio-temporal Water Vapour Mapping Using GPS and MERIS Observations. Int. J. Remote Sens. 2008, 29, 2393–2409. [Google Scholar] [CrossRef]
- Leontiev, A.; Reuveni, Y. Augmenting GPS IWV Estimations Using Spatio-Temporal Cloud Distribution Extracted from Satellite Data. Sci. Rep. 2018, 8, 14785. [Google Scholar] [CrossRef]
- Alshawaf, F.; Fersch, B.; Hinz, S.; Kunstmann, H.; Mayer, M.; Meyer, F.J. Water Vapor Mapping by Fusing InSAR and GNSS Remote Sensing Data and Atmospheric Simulations. Hydrol. Earth Syst. Sci. 2015, 19, 4747–4764. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Du, Z.; Yao, W.; Yao, Y. Hybrid Precipitable Water Vapor Fusion Model in China. J. Atmos. Sol. Terr. Phys. 2020, 208, 105387. [Google Scholar] [CrossRef]
- Duan, J.; Bevis, M.; Fang, P.; Bock, Y.; Chiswell, S.; Businger, S.; Rocken, C.; Solheim, F.; van Hove, T.; Ware, R.; et al. GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water. J. Appl. Meteorol. 1996, 35, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Iwabuchi, T.; Naito, I.; Mannoji, N. A Comparison of Global Positioning System Retrieved Precipitable Water Vapor with the Numerical Weather Prediction Analysis Data over the Japanese Islands. J. Geophys. Res. Atmos. 2000, 105, 4573–4585. [Google Scholar] [CrossRef]
- Basili, P.; Bonafoni, S.; Ferrara, R.; Ciotti, P.; Fionda, E.; Arnbrosini, R. Atmospheric Water Vapor Retrieval by Means of Both a GPS Network and a Microwave Radiometer during an Experimental Campaign in Cagliari, Italy, in 1999. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2436–2443. [Google Scholar] [CrossRef]
- Braun, J.; Rocken, C.; Liljegren, J. Comparisons of Line-of-Sight Water Vapor Observations Using the Global Positioning System and a Pointing Microwave Radiometer. J. Atmos. Ocean. Technol. 2003, 20, 606–612. [Google Scholar] [CrossRef]
- Memmo, A.; Fionda, E.; Paolucci, T.; Cimini, D.; Ferretti, R.; Bonafoni, S.; Ciotti, P. Comparison of MM5 Integrated Water Vapor with Microwave Radiometer, GPS, and Radiosonde Measurements. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1050–1058. [Google Scholar] [CrossRef]
- Glowacki, T.; Penna, N.; Bourke, W. Validation of GPS-Based Estimates of Integrated Water Vapour for the Australian Region and Identification of Diurnal Variability. Aust. Meteorol. Mag. 2006, 55, 131–148. [Google Scholar]
- Ha, J.; Park, K.D.; Kim, K.; Kim, Y.H. Comparison of Atmospheric Water Vapor Profiles Obtained by GPS, MWR, and Radiosonde. Asia-Pac. J. Atmos. Sci. 2010, 46, 233–241. [Google Scholar] [CrossRef]
- Musa, T.; Amir, S.; Othman, R.; Ses, S.; Omar, K.; Abdullah, K.; Lim, S.; Rizos, C. GPS Meteorology in a Low-Latitude Region: Remote Sensing of Atmospheric Water Vapor over the Malaysian Peninsula. J. Atmos. Sol. Terr. Phys. 2011, 73, 2410–2422. [Google Scholar] [CrossRef]
- Thomas, I.D.; King, M.A.; Clarke, P.J.; Penna, N.T. Precipitable Water Vapor Estimates from Homogeneously Reprocessed GPS Data: An Intertechnique Comparison in Antarctica. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Vaquero-Martínez, J.; Antón, M.; Ortiz de Galisteo, J.P.; Román, R.; Cachorro, V.E.; Mateos, D. Comparison of Integrated Water Vapor from GNSS and Radiosounding at Four GRUAN Stations. Sci. Total Environ. 2019, 648, 1639–1648. [Google Scholar] [CrossRef]
- Guerova, G.; Brockmann, E.; Schubiger, F.; Morland, J.; Mätzler, C. An Integrated Assessment of Measured and Modeled Integrated Water Vapor in Switzerland for the Period 2001-03. J. Appl. Meteorol. 2005, 44, 1033–1044. [Google Scholar] [CrossRef]
- Dirksen, R.J.; Sommer, M.; Immler, F.J.; Hurst, D.F.; Kivi, R.; Vömel, H. Reference Quality Upper-Air Measurements: GRUAN Data Processing for the Vaisala RS92 Radiosonde. Atmos. Meas. Tech. 2014, 7, 4463–4490. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.; Romero, P.M.; Hase, F.; Blumenstock, T.; Cuevas, E.; Ramos, R. Continuous Quality Assessment of Atmospheric Water Vapour Measurement Techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92. Atmos. Meas. Tech. 2010, 3, 323–338. [Google Scholar] [CrossRef] [Green Version]
- Bock, O.; Bouin, M.N.; Walpersdorf, A.; Lafore, J.P.; Janicot, S.; Guichard, F.; Agusti-Panareda, A. Comparison of Ground-Based GPS Precipitable Water Vapour to Independent Observations and NWP Model Reanalyses over Africa: PRECIPITABLE WATER VAPOUR DATA OVER AFRICA. Q. J. R. Meteorol. Soc. 2007, 133, 2011–2027. [Google Scholar] [CrossRef]
- Zhang, F.; Barriot, J.P.; Xu, G.; Yeh, T.K. Metrology Assessment of the Accuracy of Precipitable Water Vapor Estimates from GPS Data Acquisition in Tropical Areas: The Tahiti Case. Remote Sens. 2018, 10, 758. [Google Scholar] [CrossRef] [Green Version]
- Buehler, S.A.; Östman, S.; Melsheimer, C.; Holl, G.; Eliasson, S.; John, V.O.; Blumenstock, T.; Hase, F.; Elgered, G.; Raffalski, U.; et al. A Multi-Instrument Comparison of Integrated Water Vapour Measurements at a High Latitude Site. Atmos. Chem. Phys. 2012, 12, 10925–10943. [Google Scholar] [CrossRef] [Green Version]
- Van Malderen, R.; Brenot, H.; Pottiaux, E.; Beirle, S.; Hermans, C.; De Mazière, M.; Wagner, T.; De Backer, H.; Bruyninx, C. A Multi-Site Intercomparison of Integrated Water Vapour Observations for Climate Change Analysis. Atmos. Meas. Tech. 2014, 7, 2487–2512. [Google Scholar] [CrossRef] [Green Version]
- Cucurull, L.; Navascues, B.; Ruffini, G.; Elósegui, P.; Rius, A.; Vilà, J. The Use of GPS to Validate NWP Systems: The HIRLAM Model. J. Atmos. Ocean. Technol. 2000, 17, 773–787. [Google Scholar] [CrossRef] [Green Version]
- Köpken, C. Validation of Integrated Water Vapor from Numerical Models Using Ground-Based GPS, SSM/I, and Water Vapor Radiometer Measurements. J. Appl. Meteorol. 2001, 40, 1105–1117. [Google Scholar] [CrossRef]
- Vey, S.; Dietrich, R.; Rülke, A.; Fritsche, M.; Steigenberger, P.; Rothacher, M. Validation of Precipitable Water Vapor within the NCEP/DOE Reanalysis Using Global GPS Observations from One Decade. J. Clim. 2010, 23, 1675–1695. [Google Scholar] [CrossRef]
- Yang, X.; Sass, B.H.; Elgered, G.; Johansson, J.M.; Emardson, T.R. A Comparison of Precipitable Water Vapor Estimates by an NWP Simulation and GPS Observations. J. Appl. Meteorol. Climatol. 1999, 38, 941–956. [Google Scholar] [CrossRef]
- Matsuyama, H.; Flores, J.; Oikawa, K.; Miyaoka, K. Comparison of Precipitable Water via JRA-55 and GPS in Japan Considering Different Elevations. Hydrol. Res. Lett. 2020, 14, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Bock, O.; Nuret, M. Verification of NWP Model Analyses and Radiosonde Humidity Data with GPS Precipitable Water Vapor Estimates during AMMA. Weather Forecast. 2009, 24, 1085–1101. [Google Scholar] [CrossRef]
- Bock, O.; Parracho, A.C. Consistency and Representativeness of Integrated Water Vapour from Ground-Based GPS Observations and ERA-Interim Reanalysis. Atmos. Chem. Phys. 2019, 19, 9453–9468. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, L. Can Climate Trends Be Calculated from Reanalysis Data? J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Parracho, A.C.; Bock, O.; Bastin, S. Global IWV Trends and Variability in Atmospheric Reanalyses and GPS Observations. Atmos. Chem. Phys. 2018, 18, 16213–16237. [Google Scholar] [CrossRef] [Green Version]
- Raja, M.K.R.V.; Gutman, S.I.; Yoe, J.G.; McMillin, L.M.; Zhao, J. The Validation of AIRS Retrievals of Integrated Precipitable Water Vapor Using Measurements from a Network of Ground-Based GPS Receivers over the Contiguous United States. J. Atmos. Ocean. Technol. 2008, 25, 416–428. [Google Scholar] [CrossRef]
- Bennouna, Y.S.; Torres, B.; Cachorro, V.E.; de Galisteo, J.P.O.; Toledano, C. The Evaluation of the Integrated Water Vapour Annual Cycle over the Iberian Peninsula from EOS-MODIS against Different Ground-Based Techniques. Q. J. R. Meteorol. Soc. 2013, 139, 1935–1956. [Google Scholar] [CrossRef]
- Román, R.; Antón, M.; Cachorro, V.; Loyola, D.; Ortiz de Galisteo, J.; de Frutos, A.; Romero-Campos, P. Comparison of Total Water Vapor Column from GOME-2 on MetOp-A against Ground-Based GPS Measurements at the Iberian Peninsula. Sci. Total Environ. 2015, 533, 317–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, R.R.; Crisp, D.; Ott, L.E.; O’Dell, C.W. High-Accuracy Measurements of Total Column Water Vapor from the Orbiting Carbon Observatory-2: Total column water vapor from OCO-2. Geophys. Res. Lett. 2016, 43, 12,261–12,269. [Google Scholar] [CrossRef] [Green Version]
- Ningombam, S.S.; Jade, S.; Shrungeshwara, T.; Song, H.J. Validation of Water Vapor Retrieval from Moderate Resolution Imaging Spectro-Radiometer (MODIS) in near Infrared Channels Using GPS Data over IAO-Hanle, in the Trans-Himalayan Region. J. Atmos. Sol. Terr. Phys. 2016, 137, 76–85. [Google Scholar] [CrossRef]
- Wang, H.; Gonzalez Abad, G.; Liu, X.; Chance, K. Validation and Update of OMI Total Column Water Vapor Product. Atmos. Chem. Phys. 2016, 16, 11379–11393. [Google Scholar] [CrossRef] [Green Version]
- Vaquero-Martínez, J.; Antón, M.; Ortiz de Galisteo, J.P.; Cachorro, V.E.; Wang, H.; González Abad, G.; Román, R.; Costa, M.J. Validation of Integrated Water Vapor from OMI Satellite Instrument against Reference GPS Data at the Iberian Peninsula. Sci. Total Environ. 2017, 580, 857–864. [Google Scholar] [CrossRef]
- Vaquero-Martínez, J.; Antón, M.; Ortiz de Galisteo, J.P.; Cachorro, V.E.; Costa, M.J.; Román, R.; Bennouna, Y.S. Validation of MODIS Integrated Water Vapor Product against Reference GPS Data at the Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Vaquero-Martínez, J.; Antón, M.; Ortiz de Galisteo, J.P.; Cachorro, V.E.; Álvarez-Zapatero, P.; Román, R.; Loyola, D.; Costa, M.J.; Wang, H.; Abad, G.G.; et al. Inter-Comparison of Integrated Water Vapor from Satellite Instruments Using Reference GPS Data at the Iberian Peninsula. Remote Sens. Environ. 2018, 204, 729–740. [Google Scholar] [CrossRef]
- Gong, S.; Hagan, D.F.T.; Zhang, C. Analysis on Precipitable Water Vapor over the Tibetan Plateau Using FengYun-3A Medium Resolution Spectral Imager Products. J. Sens. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- He, J.; Liu, Z. Comparison of Satellite-Derived Precipitable Water Vapor Through Near-Infrared Remote Sensing Channels. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10252–10262. [Google Scholar] [CrossRef]
- Wang, H.; Souri, A.H.; González Abad, G.; Liu, X.; Chance, K. Ozone Monitoring Instrument (OMI) Total Column Water Vapor Version 4 Validation and Applications. Atmos. Meas. Tech. 2019, 12, 5183–5199. [Google Scholar] [CrossRef] [Green Version]
- Carbajal Henken, C.; Dirks, L.; Steinke, S.; Diedrich, H.; August, T.; Crewell, S. Assessment of Sampling Effects on Various Satellite-Derived Integrated Water Vapor Datasets Using GPS Measurements in Germany as Reference. Remote Sens. 2020, 12, 1170. [Google Scholar] [CrossRef] [Green Version]
- Vaquero-Martínez, J.; Antón, M.; Román, R.; Cachorro, V.E.; Wang, H.; González Abad, G.; Ritter, C. Water Vapor Satellite Products in the European Arctic: An Inter-Comparison against GNSS Data. Sci. Total Environ. 2020, 741, 140335. [Google Scholar] [CrossRef]
- Alraddawi, D.; Sarkissian, A.; Keckhut, P.; Bock, O.; Noël, S.; Bekki, S.; Irbah, A.; Meftah, M.; Claud, C. Comparison of Total Water Vapour Content in the Arctic Derived from GNSS, AIRS, MODIS and SCIAMACHY. Atmos. Meas. Tech. 2018, 11, 2949–2965. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Li, Z.; Cho, J. Integrated Water Vapor Field and Multiscale Variations over China from GPS Measurements. J. Appl. Meteorol. Climatol. 2008, 47, 3008–3015. [Google Scholar] [CrossRef]
- Wu, S.; Zou, H.; Wu, J. The Diurnal Variations of GPS PWV near Poyang Lake in China during Midsummer. Adv. Meteorol. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Takagi, T.; Kimura, F.; Kono, S. Diurnal Variation of GPS Precipitable Water at Lhasa in Premonsoon and Monsoon Periods. J. Meteorol. Soc. Jpn. 2000, 78, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, H.; Miki, T. Observational Study on the Diurnal Variation in Precipitable Water Associated with the Thermally Induced Local Circulation over the “Semi-Basin” around Maebashi Using GPS Data. J. Meteorol. Soc. Jpn. 2001, 79, 1077–1091. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Kimura, F.; Sato, T.; Huang, D. A Composite Analysis of Diurnal Cycle of GPS Precipitable Water Vapor in Central Japan during Calm Summer Days. Theor. Appl. Climatol. 2008, 92, 15–29. [Google Scholar] [CrossRef]
- Wu, P.; Hamada, J.I.; Mori, S.; Tauhid, Y.I.; Yamanaka, M.D.; Kimura, F. Diurnal Variation of Precipitable Water over a Mountainous Area of Sumatra Island. J. Appl. Meteorol. 2003, 42, 1107–1115. [Google Scholar] [CrossRef]
- Torri, G.; Adams, D.K.; Wang, H.; Kuang, Z. On the Diurnal Cycle of GPS-Derived Precipitable Water Vapor over Sumatra. J. Atmos. Sci. 2019, 76, 3529–3552. [Google Scholar] [CrossRef]
- Sohn, D.H.; Cho, J.H. Trend Analysis of GPS Precipitable Water Vapor Above South Korea Over the Last 10 Years. J. Astron. Space Sci. 2010, 27, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; Wang, J.; Ware, R.H.; Van Hove, T. Diurnal Variation in Water Vapor over North America and Its Implications for Sampling Errors in Radiosonde Humidity: Water vapor Diurnal variation over north america. J. Geophys. Res. Atmos. 2002, 107, ACL 11-1–ACL 11-14. [Google Scholar] [CrossRef] [Green Version]
- Gradinarsky, L.; Johansson, J.; Bouma, H.; Scherneck, H.G.; Elgered, G. Climate Monitoring Using GPS. Phys. Chem. Earth Parts A/B/C 2002, 27, 335–340. [Google Scholar] [CrossRef]
- Combrink, A.Z.; Bos, M.S.; Fernandes, R.M.; Combrinck, W.L.; Merry, C.L. On the Importance of Proper Noise Modelling for Long-Term Precipitable Water Vapour Trend Estimations. S. Afr. J. Geol. 2007, 110, 211–218. [Google Scholar] [CrossRef]
- Jakobson, E.; Ohvril, H.; Elgered, G. Diurnal Variability of Precipitable Water in the Baltic Region, Impact on Transmittance of the Direct Solar Radiation. Boreal Environ. Res. 2009, 14, 45–55. [Google Scholar]
- Suparta, W.; Ali, M.A.M.; Yatim, B.; Fraser, G.J. Analysis of GPS-Sensed Atmospheric Water Vapour Variability and Its Response to the Terrestrial Winds over Antarctica. Phys. Chem. Earth Parts A/B/C 2009, 34, 72–87. [Google Scholar] [CrossRef]
- Ortiz de Galisteo, J.P.; Cachorro, V.; Toledano, C.; Torres, B.; Laulainen, N.; Bennouna, Y.; de Frutos, A. Diurnal Cycle of Precipitable Water Vapor over Spain. Q. J. R. Meteorol. Soc. 2011, 137, 948–958. [Google Scholar] [CrossRef]
- Sharifi, M.A.; Souri, A.H. A Hybrid LS-HE and LS-SVM Model to Predict Time Series of Precipitable Water Vapor Derived from GPS Measurements. Arab. J. Geosci. 2015, 8, 7257–7272. [Google Scholar] [CrossRef]
- Alshawaf, F.; Balidakis, K.; Dick, G.; Heise, S.; Wickert, J. Estimating Trends in Atmospheric Water Vapor and Temperature Time Series over Germany. Atmos. Meas. Tech. 2017, 10, 3117–3132. [Google Scholar] [CrossRef] [Green Version]
- Barman, P.; Jade, S.; Kumar, A.; Jamir, W. Inter Annual, Spatial, Seasonal, and Diurnal Variability of Precipitable Water Vapour over Northeast India Using GPS Time Series. Int. J. Remote Sens. 2017, 38, 391–411. [Google Scholar] [CrossRef]
- Hadad, D.; Baray, J.L.; Montoux, N.; Van Baelen, J.; Fréville, P.; Pichon, J.M.; Bosser, P.; Ramonet, M.; Yver Kwok, C.; Bègue, N.; et al. Surface and Tropospheric Water Vapor Variability and Decadal Trends at Two Supersites of CO-PDD (Cézeaux and Puy de Dôme) in Central France. Atmosphere 2018, 9, 302. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Yao, Y.; Yao, W. Studies of Precipitable Water Vapour Characteristics on a Global Scale. Int. J. Remote Sens. 2019, 40, 72–88. [Google Scholar] [CrossRef]
- Bernet, L.; Brockmann, E.; von Clarmann, T.; Kämpfer, N.; Mahieu, E.; Mätzler, C.; Stober, G.; Hocke, K. Trends of Atmospheric Water Vapour in Switzerland from Ground-Based Radiometry, FTIR and GNSS Data. Atmos. Chem. Phys. 2020, 20, 11223–11244. [Google Scholar] [CrossRef]
- Bousquet, O.; Lees, E.; Durand, J.; Peltier, A.; Duret, A.; Mekies, D.; Boissier, P.; Donal, T.; Fleischer-Dogley, F.; Zakariasy, L. Densification of the Ground-Based GNSS Observation Network in the Southwest Indian Ocean: Current Status, Perspectives, and Examples of Applications in Meteorology and Geodesy. Front. Earth Sci. 2020, 8. [Google Scholar] [CrossRef]
- Lees, E.; Bousquet, O.; Roy, D.; de Bellevue, J.L. Analysis of Diurnal to Seasonal Variability of Integrated Water Vapour in the South Indian Ocean Basin Using Ground-based GNSS and Fifth-generation ECMWF Reanalysis (ERA5) Data. Q. J. R. Meteorol. Soc. 2020. [Google Scholar] [CrossRef]
- Trakolkul, C.; Satirapod, C. Variations of Precipitable Water Vapor Using GNSS CORS in Thailand. Surv. Rev. 2020, 1–7. [Google Scholar] [CrossRef]
- Ortiz de Galisteo, J.P.; Bennouna, Y.; Toledano, C.; Cachorro, V.; Romero, P.; Andrés, M.I.; Torres, B. Analysis of the Annual Cycle of the Precipitable Water Vapour over Spain from 10-Year Homogenized Series of GPS Data: Annual Cycle of the Precipitable Water Vapour over Spain. Q. J. R. Meteorol. Soc. 2014, 140, 397–406. [Google Scholar] [CrossRef]
- Torres, B.; Cachorro, V.E.; Toledano, C.; Ortiz de Galisteo, J.P.; Berjón, A.; de Frutos, A.M.; Bennouna, Y.; Laulainen, N. Precipitable Water Vapor Characterization in the Gulf of Cadiz Region (Southwestern Spain) Based on Sun Photometer, GPS, and Radiosonde Data. J. Geophys. Res. 2010, 115, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Penna, N.T.; Li, Z. Generation of Real-time Mode High-resolution Water Vapor Fields from GPS Observations. J. Geophys. Res. Atmos. 2017, 122, 2008–2025. [Google Scholar] [CrossRef]
- Bordi, I.; Fraedrich, K.; Sutera, A.; Zhu, X. Ground-Based GPS Measurements: Time Behavior from Half-Hour to Years. Theor. Appl. Climatol. 2014, 115, 615–625. [Google Scholar] [CrossRef]
- Jin, S.; Luo, O. Variability and Climatology of PWV From Global 13-Year GPS Observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1918–1924. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Z. Global Water Vapor Variability and Trend from the Latest 36 Year (1979 to 2014) Data of ECMWF and NCEP Reanalyses, Radiosonde, GPS, and Microwave Satellite: Global water vapor variability and trend. J. Geophys. Res. Atmos. 2016, 121, 11442–11462. [Google Scholar] [CrossRef]
- Wang, J.; Dai, A.; Mears, C. Global Water Vapor Trend from 1988 to 2011 and Its Diurnal Asymmetry Based on GPS, Radiosonde, and Microwave Satellite Measurements. J. Clim. 2016, 29, 5205–5222. [Google Scholar] [CrossRef]
- Gutman, S.I.; Benjamin, S.G. The Role of Ground-Based GPS Meteorological Observations in Numerical Weather Prediction. GPS Solut. 2001, 4, 16–24. [Google Scholar] [CrossRef]
- Guerova, G.; Bettems, J.M.; Brockmann, E.; Matzler, C. Assimilation of the GPS-Derived Integrated Water Vapour (IWV) in the MeteoSwiss Numerical Weather Prediction Model—A First Experiment. Phys. Chem. Earth Parts A/B/C 2004, 29, 177–186. [Google Scholar] [CrossRef]
- Yuan, Z.; Ding, J.; Chen, M. Preliminary Study on the Application of GPS Observations to a Mesoscale Numerical Model. Acta Meteorol. Sin. 2005, 19, 332–344. [Google Scholar]
- Gendt, G.; Dick, G.; Reigber, C.; Tomassini, M.; Liu, Y.; Ramatschi, M. Near Real Time GPS Water Vapor Monitoring for Numerical Weather Prediction in Germany. J. Meteorol. Soc. Jpn. 2004, 82, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Chen, M.; Kuo, Y.H.; Fan, S.; Zhong, J. Numerical Assessing Experiments on the Individual Component Impact of the Meteorological Observation Network on the “July 2000” Torrential Rain in Beijing. Acta Meteorol. Sin. 2006, 20, 389–401. [Google Scholar]
- Ha, S.Y.; Kuo, Y.H.; Guo, Y.R.; Lim, G.H. Variational Assimilation of Slant-Path Wet Delay Measurements from a Hypothetical Ground-Based GPS Network. Part I: Comparison with Precipitable Water Assimilation. Mon. Weather Rev. 2003, 131, 2635–2655. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Xue, M. Retrieval of Moisture from Slant-Path Water Vapor Observations of a Hypothetical GPS Network Using a Three-Dimensional Variational Scheme with Anisotropic Background Error. Mon. Weather Rev. 2006, 134, 933–949. [Google Scholar] [CrossRef] [Green Version]
- Karabatić, A.; Weber, R.; Haiden, T. Near Real-Time Estimation of Tropospheric Water Vapour Content from Ground Based GNSS Data and Its Potential Contribution to Weather Now-Casting in Austria. Adv. Space Res. 2011, 47, 1691–1703. [Google Scholar] [CrossRef]
- Kumar, P.; Gopalan, K.; Shukla, B.P.; Shyam, A. Impact of Single-Point GPS Integrated Water Vapor Estimates on Short-Range WRF Model Forecasts over Southern India. Theor. Appl. Climatol. 2017, 130, 755–760. [Google Scholar] [CrossRef]
- Mascitelli, A.; Federico, S.; Fortunato, M.; Avolio, E.; Torcasio, R.C.; Realini, E.; Mazzoni, A.; Transerici, C.; Crespi, M.; Dietrich, S. Data Assimilation of GPS-ZTD into the RAMS Model through 3D-Var: Preliminary Results at the Regional Scale. Meas. Sci. Technol. 2019, 30, 055801. [Google Scholar] [CrossRef] [Green Version]
- Graham, E.; Koffi, E.N.; Mätzler, C. An Observational Study of Air and Water Vapour Convergence over the Bernese Alps, Switzerland, during Summertime and the Development of Isolated Thunderstorms. Meteorol. Z. 2012, 21, 561–574. [Google Scholar] [CrossRef]
- Kingsmill, D.E.; Neiman, P.J.; Moore, B.J.; Hughes, M.; Yuter, S.E.; Ralph, F.M. Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Mon. Weather Rev. 2013, 141, 2015–2036. [Google Scholar] [CrossRef] [Green Version]
- Neiman, P.J.; Hughes, M.; Moore, B.J.; Ralph, F.M.; Sukovich, E.M. Sierra Barrier Jets, Atmospheric Rivers, and Precipitation Characteristics in Northern California: A Composite Perspective Based on a Network of Wind Profilers. Mon. Weather Rev. 2013, 141, 4211–4233. [Google Scholar] [CrossRef] [Green Version]
- Suparta, W. Observations of Precipitable Water Vapor along the Maritime Continent Associated with El Niño-Southern Oscillation Activity. Ann. Geophys. 2018, 61. [Google Scholar] [CrossRef]
- Vaquero-Martínez, J.; Antón, M.; Ortiz de Galisteo, J.P.; Román, R.; Cachorro, V.E. Water Vapor Radiative Effects on Short-Wave Radiation in Spain. Atmos. Res. 2018, 205, 18–25. [Google Scholar] [CrossRef]
- Vaquero-Martínez, J.; Antón, M.; Sanchez-Lorenzo, A.; Cachorro, V.E. Evaluation of Water Vapor Radiative Effects Using GPS Data Series over Southwestern Europe. Remote Sens. 2020, 12, 1307. [Google Scholar] [CrossRef] [Green Version]
- Perrefort, D.; Wood-Vasey, W.M.; Bostroem, K.A.; Gilmore, K.; Joyce, R.; Matheson, T.; Corson, C. Pwv_kpno: A Python Package for Modeling the Atmospheric Transmission Function Due to Precipitable Water Vapor. Publ. Astron. Soc. Pac. 2019, 131, 025002. [Google Scholar] [CrossRef] [Green Version]
Work | Year | N | Instr. | Start | End | Region | Bias | DEV | Corr |
---|---|---|---|---|---|---|---|---|---|
[50] | 1996 | 4 | WVR | 1993-05 | 1993-05 | Interior US (US) | 0.05 | 1.28 | - |
[51] | 2000 | 556 | NWP | 1996-09 | 1996-09 | Japan | 2–4 | 3.8 | - |
[52] | 2001 | 1 | radiosonde, WVR | 1999-01 | 1999-12 | Cagliari (Italy) | 0.4 | 1.9 | - |
[53] | 2003 | 5 | WVR | 2000-05 | 2000-06 | Oklahoma | - | 1.3 | 0.99 |
[54] | 2005 | MWR, NWP (MM5), radiosonde | 2002-08 | 2003-09 | Europe (Italy) | 0.01 | 0.286 | 0.939 | |
[55] | 2006 | 8 | NWP(GASP; ECMWF), radiosonde | 2000-01 | 2000-12 | Australia | −1.4–+1.1 (GASP), −1.8–+1.3 (ECMWF) | 3.1–5.3 (GASP), 2.7–3.5 (ECMWF) | - |
[56] | 2010 | 3 | MWR, radiosonde | 2009-08 | 2009-09 | Ulleungdo (South Korea) | :3.0 (Radiosonde), 5.0 (MWR) | 12.5 (Radiosonde), 9.3 (MWR) | - |
[57] | 2011 | 4 | radiosonde | 2008-01 | 2008-12 | Malaysia | −1.5–0.0 | 3.5–4.3 | 0.80–0.88 |
[58] | 12 | radiosonde, AIRS, MODIS | 2004-01 | 2004-12 | Antarctic | −0.48 (Radiosonde) | - | - | |
[59] | 2019 | 4 | radiosonde | 2006-05 | 2018-01 | global | −0.87–(−0.49) | 0.61–1.10 | 0.99 |
Work | Year | N | Instr. | Start | End | Region | Bias | DEV | Corr |
---|---|---|---|---|---|---|---|---|---|
[70] | 1999 | 25 | HIRLAM | 1995-08 | 1995-11 | Northern Europe (Finland, Sweden) | −0.1 | 2.3 | 0.94 |
[67] | 2000 | 5 | HIRLAM, radiosonde | 1996-12 | 1996-12 | Madrid Sierra (Spain) | −0.4 | 2.0 | - |
[68] | 2001 | 25 | BALTEX; European, SSM/I, WVR | 1995-08 | 1995-10 | Finland, Sweden | 2.5–3.0 | 2.8 | 0.92 |
[74] | 2004 | 160 | ERA-40; NOSAT | 2000-07 | 2001-01 | global | −31.26–10.75 % | - | - |
[60] | 2005 | 20 | MWR, Alpine Model, radiosonde | 2001-01 | 2003-06 | Switzerland | −2.8 (forecast), −1.5 (analysis) | - | - |
[72] | 2009 | 11 | ECMWF, NCEP, radiosonde | 2005-01 | 2008-12 | Africa | - | - | - |
[75] | 2018 | 104 | ERA-Interim | 1995-01 | 2010-12 | global | - | - | - |
[73] | 2019 | 120 | 2010-12 | global | −1–1 | <2 | - | ||
[71] | 2020 | 26 | JRA-55 | 2010-07 | 2012-12 | Japan | - | - | - |
Work | Year | N | Instr. | Start | End | Region | Bias | DEV | Corr |
---|---|---|---|---|---|---|---|---|---|
[76] | 2008 | 375 | AIRS | 2004-04 | 2004-10 | US | 0.5–1.2 | 3.0–4.5 | 0.91–0.98 |
[77] | 2013 | 18 | MODIS | 2002-01 | 2008-12 | Iberian P. (Spain) | 0.1–0.4 | 4.4–5.7 | 0.83–0.88 |
[66] | 2014 | 28 | radiosonde, AIRS, GOME, GOME-2, SCIAMACHY, sunphotometer | 1995-01 | 2011-04 | Northern Hemisphere | - | - | - |
[78] | 2015 | 21 | GOME2 | 2007-01 | 2012-12 | Iberian P. (Spain) | 0.7 | 4.4 | 0.84 |
[79] | 2016 | - | MWR, radiosonde, OCO-2, sunphotometer | 2014-09 | 2016-02 | global | <0.5 | 1.3 | 0.994 |
[80] | 1 | MODIS-NIR | 2005-01 | 2012-12 | Trans-Himalayan | −0.18 | 1.37 | 0.9848858 | |
[81] | 250 | OMI, SSMIS, sunphotometer | 2009-12 | global | - | - | - | ||
[82] | 2017 | 9 | OMI | 2007-01 | Iberian P. (Spain) | −0.3 | 5.1(IQR) | 0.79 | |
[83] | 21 | MODIS | 2012-12 | Iberian P. (Spain) | 0.9% | 39.36% (IQR) | 0.78 | ||
[84] | 2018 | 9 | AIRS, GOME-2, MODIS, OMI, SCIAMACHY, SEVIRI | Iberian P. (Spain) | −5.2–16.7% | - | 0.75–0.91 | ||
[85] | 2019 | 1 | FengYun-3A-MERSI, MODIS, sunphotometer | 2010-01 | 2013-07 | Tibetian Plateau | −1.14–0.64 | 1.87–2.75 | - |
[86] | 370 | ENVISAT-MERIS, FengYun-3A-MERSI, Terra-MODIS | 2010-12 | US | −5.9–5.6 | 2.5–12.4 | 0.73–0.94 | ||
[87] | 303 | OMI, SSMIS | 2006-01 | 2006-12 | global | −3–4 | 3–10 | - | |
[88] | 2020 | 300 | IASI, MIRS, MODIS, MODIS-FUB | 2012-05 | 2014-06 | Europe (Germany) | −1.7–1.4 | 2.52–3.77 | 0.88–0.96 |
[89] | 1 | AIRS, GOME2, MODIS, OMI, POLDER, SCIAMACHY | 2010-01 | 2017-12 | European Arctic | −2.67–5.87 | 2.36–7.32 | 0.47–0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaquero-Martínez, J.; Antón, M. Review on the Role of GNSS Meteorology in Monitoring Water Vapor for Atmospheric Physics. Remote Sens. 2021, 13, 2287. https://doi.org/10.3390/rs13122287
Vaquero-Martínez J, Antón M. Review on the Role of GNSS Meteorology in Monitoring Water Vapor for Atmospheric Physics. Remote Sensing. 2021; 13(12):2287. https://doi.org/10.3390/rs13122287
Chicago/Turabian StyleVaquero-Martínez, Javier, and Manuel Antón. 2021. "Review on the Role of GNSS Meteorology in Monitoring Water Vapor for Atmospheric Physics" Remote Sensing 13, no. 12: 2287. https://doi.org/10.3390/rs13122287
APA StyleVaquero-Martínez, J., & Antón, M. (2021). Review on the Role of GNSS Meteorology in Monitoring Water Vapor for Atmospheric Physics. Remote Sensing, 13(12), 2287. https://doi.org/10.3390/rs13122287