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Abstract: The spatio-temporal distribution of atmospheric water vapor information can be obtained
by global positioning system (GPS) water vapor tomography. GPS signal rays pass through the
tomographic area from different boundaries because the scope of the research region (latitude,
longitude, and altitude) is designated in the process of tomographic modeling, the influence
of the geographic distribution of receivers, and the geometric location of satellite constellations.
Traditionally, only signal rays penetrating the entire tomographic area are considered in the
computation of water vapor information, whereas those passing through the sides are neglected.
Therefore, the accuracy of the tomographic result, especially at the bottom of the area, does
not reach its full potential. To solve this problem, this paper proposes a new method that
simultaneously considers the discretized tomographic voxels and the troposphere outside the research
area as unknown parameters. This method can effectively improve the utilization of existing GPS
observations and increase the number of voxels crossed by satellite signals, especially by increasing
the proportion of voxels penetrated. A tomographic experiment is implemented using GPS data from
the Hong Kong Satellite Positioning Reference Station Network. Compared to the traditional method,
the proposed method increases the number of voxels crossed by signal rays and the utilization of
the observed data by 15.14% and 19.68% on average, respectively. Numerical results, including
comparisons of slant water vapor (SWV), precipitable water vapor (PWV), and water vapor density
profile, show that the proposed method is better than traditional methods. In comparison to the
water vapor density profile, the root-mean-square error (RMS), mean absolute error (MAE), standard
deviation (SD), and bias of the proposed method are 1.39, 1.07, 1.30, and −0.21 gm−3, respectively.
For the SWV and PWV comparison, the RMS/MAE of the proposed method are 10.46/8.17 mm and
4.00/3.39 mm, respectively.

Keywords: remote sensing; water vapor; meteorology; GPS; tomography

1. Introduction

Although atmospheric water vapor comprises only a small percentage of the atmosphere, it
plays a key role in a series of weather phenomena [1,2]. A good understanding of the spatiotemporal
changes in water vapor is helpful in improving weather prediction, water resource management,

Appl. Sci. 2019, 9, 1446; doi:10.3390/app9071446 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-5427-6481
http://www.mdpi.com/2076-3417/9/7/1446?type=check_update&version=1
http://dx.doi.org/10.3390/app9071446
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 1446 2 of 15

and natural hazard reduction [3–9]. Compared with traditional water vapor acquisition methods,
such as a radiosonde and microwave radiometer, global positioning system (GPS) tomography has
the advantage of a high temporal and spatial resolution, and low construction and maintenance
costs [10–14].

The concept of water vapor tomography, which refers to the usage of GPS signals as scanning
rays in the tomographic grid, was first proposed by Braun et al. and realized by Flores et al. [15,16].
In GPS water vapor tomography, the research area is covered by ground GPS receivers and discretized
into several voxels [17]. The integral equations established by the signal observations are utilized to
calculate the wet refractivity or water vapor density within each voxel [18].

Signal rays penetrate not only from the top boundary of the area, but also from the side face
due to the specific distribution of the satellite constellation and receivers and the specific choice of
the tomographic area. Traditional methods, which use only the first-mentioned signal rays above,
reduce the utilization of GPS observation data and the accuracy of the tomographic result, especially
at the bottom of the area. To solve this problem, Rohm and Bosy estimated the outer part of the signal
rays using the UNB3m model based on a ray-tracing method [17], Notarpietro et al. used European
center for medium-range weather forecasts (ECMWF) data to calculate the SWV outside the research
area [19], and Chen and Liu applied the numerical weather prediction (NWP) profile data to estimate
the slant wet delay (SWD) outside the modeling area [20]. Benevides et al. proposed a geometric
linear method using an empirically exponential negative function to increase the utilization of signal
rays [21], whereas Yao et al. introduced a unit scale factor model and reconstructed a sophisticated
model for considering the signal rays penetrating from the side face of the study area [22,23].

In the above-mentioned methods, their focus is to calculate SWV values of the signal ray generated
outside the tomographic grid, which needs external data or models, such as ECMWF, NWP, and
UNB3m. This work proposes a new method that does not feature external data and considers and
models the troposphere outside the research area as unknown parameters for tomographic modeling
to improve the utilization of existing GPS observations and increase the number of voxels crossed
by satellite signals. Additionally, contrast methods were conducted to verify the performance of the
proposed method.

2. Methods

2.1. GPS Water Vapor Estimation

In this study, the SWV derived from GPS-based receivers is exploited to obtain the water vapor
distribution information. The SWV can be obtained by the following formula [24,25]:

SWV =
106

ρwaterRω

[
(k3/Tm) + k′2

] × SWD (1)

where ρwater is the density of liquid water; Rω = 461J/(kg · K) is the specific gas constants for water
vapor; k′2 = 16.48KhPa−1 and k3 = 3.776× 105K2hPa−1 are constants; and Tm is the weighted mean
tropospheric temperature, which is calculated by an empirical formula [26]. In order to obtain the
SWD, the ZWD and the wet delay gradient parameters should be mapped into the elevation direction
and the unmodeled residuals should be taken into account [27,28]. The specific calculation formula is
as follows:

SWD = mw(e) ∗ [ZWD + cot(e)(Gw
NS ∗ cos ϕ + Gw

WE ∗ sin ϕ)] + R (2)

where e and ϕ are the satellite elevation and azimuth, respectively; mw is the wet mapping function; R
denotes the unmolded residuals; Gw

NS and Gw
WE are wet delay gradient parameters in the north–south

and east–west directions, respectively; and ZWD is the zenith wet delay, which can be calculated by
subtracting the zenith hydrostatic delay from the zenith total delay.
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2.2. Traditional Tomographic Equation

In water vapor tomography, the tomographic equation consists of two types of equations, one
is the observation equation and the other is the constraint equation. The observation equation is the
core of water vapor tomography, which is based on the water vapor integral along the signal ray path.
The constraint equation contains horizontal and vertical constraints.

2.2.1. Observation Equation

The whole research area and the water vapor density in the discretized tomographic voxel are
shown in Figure 1, and the observation equation can be established on the basis of the GPS signal
crossing as follows:

SWVq =
n

∑
i=1

sq
i · xi (3)

where superscript q denotes the satellite index; n is the total number of discretized tomographic
voxels; sq

i represents the length of the satellite signals within the voxel, which can be calculated by the
coordinates of two intersections; and xi is the water vapor density of the voxel, i.
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Figure 1. Geometric illustration of global positioning system (GPS) signals crossing the tomographic
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2.2.2. Constraint Equations

The tomographic result only utilizing the observation equation is typically undetermined in the
inversion process. The source of this undetermined nature is related to SWV paths not penetrating
every voxel and that the SWV observations have similar geometry (i.e., from a GPS satellite to a
station). To overcome this inversion problem, the mostly widely-used method is to impose constraint
information [29].

In the research area, the water vapor density, xi, within a certain voxel can be represented by
the weighted average of its neighbors because of the relatively stable horizontal distribution [30,31].
The specific horizontal constraint equation is as follows:

wi
1x1 + wi

2x2 + · · ·wi
i−1xi−1 − xi + wi

i+1xi+1 + · · ·+ wi
mxm = 0 (4)

where m is the total number of voxels in the same layer and w denotes the horizontal weighting
coefficient, which can be computed by the Gaussian weighting function as follows:

wi
i−1 = di,i−1

/
m

∑
j=1

di,j (5)
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where d is the distance between the centers of the two corresponding voxels.
The vertical constraint equation is established using the empirical formula of the water vapor

density between two adjacent layers:

xj − pj+m · xj+m = 0 (6)

where xj and xj+m denote the water vapor density in the voxel, j and j + m, respectively, and pj+m is
the vertical weighting coefficient, which can be obtained as follows:

pj+m = e(hj+m−hj)/H (7)

where e is the Euler’s number and is approximately equal to 2.718, and H is the water vapor scale
height, which is set as 1–2 km.

2.3. New Tomographic Equation

As shown in Figure 1, the research area is divided into n voxels and the water vapor density of
each voxel is xi(i = 1, 2 · · · n) in the traditional method. To improve the utilization of GPS data, the
water vapor density in the four directions outside the research region are added to the observation
equation as unknown parameters. Figure 2 displays the four new parameters (xn+1, xn+2, xn+3, and
xn+4 for the north, east, south, and west, respectively) in the proposed method from a top view (left)
and a side view (right). The boundaries of these four regions are selected based on the location of GPS
receivers and the specifics of the tomographic area (see the process in the following experiment). The
observation equation of the proposed method is as follows:

SWVq =
n

∑
i=1

sq
i · xi +

(
sq

n+1 · xn+1 + sq
n+2 · xn+2 + sq

n+3 · xn+3 + sq
n+4 · xn+4

)
(8)
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Figure 2. Water vapor tomographic voxels in the proposed method (left for top view, right for side
view).

This equation is similar to that in the traditional method; only the four parameters in the
parentheses are added. The distances produced by satellite rays outside the research area are expressed
as sq

n+1, sq
n+2, sq

n+3, sq
n+4 and they equal 0 when the signal rays penetrate from the top boundary of

the area. The new functional model for the water vapor tomography comprises the new observation
equation and the constraint equation, which is described as: SWVq×1

0n×1

0(n−m)×1

 =

 Aq×(n+4)
Hn×(n+4)

V(n−m)×(n+4)

 · X(n+4)×1 +

 ∆1q×1

∆2n×1

∆3(n−m)×1

 (9)
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where A from Equation (8), H from Equation (4), and V from Equation (6) represent the coefficient
matrices of the new observation equation, the horizontal constraint equation, and vertical constraint
equation, respectively; X = [x1, x2, · · · , xn, · · · , xn+4] is a vector of the water vapor density containing
all voxels to be estimated; ∆1, ∆2, ∆3 are the noises of the new observation equation, the horizontal
constraint equation, and vertical constraint equation, respectively.

3. Experiment Description

The tomographic experiment is implemented using data from 12 stations (HKLT, HKMW, HKNP,
HKOH, HKPC, HKSC, HKSL, HKSL, HKSS, HKST, HKWS, T430 for tomographic modeling and HKKT
for SWV comparison) of the Hong Kong Satellite Positioning Reference Station Network (SatRet) for
a week (June 1–7, 2017). Figure 3 shows the GPS station distribution, the division of the grids, and
radiosonde station 45004. GAMIT (v.10.61) is used to process the GPS data with a sampling interval
of 30 s. The wet mapping function and the empirical formula of the weighted mean tropospheric
temperature are used to project SWV on the basis of Equations (1) and (2). The tomographic period is
30 min and 48 tomographic experimental solutions can be processed every day.
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Figure 3. Geographic distribution of GPS and radiosonde station and the division of grids (the GPS
stations in green are for tomographic modeling and the red one is for comparison).

The scope of the tomographic region is (113.87◦, 114.35◦) for longitude, (22.19◦, 22.54◦) for latitude,
and (0, 8 km) for altitude. The horizontal resolutions in the east–west and north–south directions
are 0.06◦ and 0.05◦, respectively, and the vertical resolution is 800 m. It should be noted that water
vapor density of the outer region (the north, east, south, and west) can be expressed by an unknown
parameter (xn+1, xn+2, xn+3, and xn+4), provided that the water vapor density in that region changes
are relatively stable and as many as possible signal rays from the side face can be included in the region.
To find the boundaries of the outer region that meet the above two requirements, the law of water
vapor change, the size of the research area, and the distribution of the stations need to be carefully
studied. The specific steps are as follows:

1. To analyze the law of water vapor change. Figure 4 shows the relationship between water vapor
density and altitude during the study period, with the red line being the fitted curve (upper for
45005, middle for 59,280, and lower for 59,316, respectively). The stations, 59,280 and 59,316,
are located outside the tomographic area and their coordinates are (23.66◦, 113.05◦) and (23.35◦,
116.66◦), respectively. We can see that the water vapor concentrates in the lower troposphere,
where it also changes more rapidly than above. In order to obtain the function between water
vapor density (x) and altitude (h), the polynomial fitting method was used. Equation (10) was
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estimated by taking the altitude as the independent variable, while the water vapor density was
regarded as the independent variable in Equation (11):

x = 26.34− 9.22 ∗ 10−3h + 1.19 ∗ 10−6h2 − 5.51 ∗ 10−11h3 (10)

h = 7704.64− 923.77x + 47.90x2 − 0.93x3 (11)

2. To find the suitable altitudinal boundary of the outer region. It can be computed by Equation (10)
that the value of the water vapor density near the surface is 26.34 g/m3. The range of the water
vapor density in this research area is considered as around 0–26.34 g/m3. For 10 layers in the
altitude direction, if the change of the water vapor density with altitude in the outer region is
within 0 to 2.634 g/m3, it can be defined as a stable outer region. From Equation (11), the water
vapor density of 2.634 g/m3 corresponds to the height of 5586 m. Considering the convenience
of rectification and the error caused by fitting, 5500 m can be selected as the alternative to the
suitable altitudinal boundary of the outer region.

3. To decide the boundaries of the outer region in the east–west and north–south directions. The
signal rays of all experimental periods acquired by satellite receivers in the research area are
collected and their paths in the tomographic grid are calculated. Then, the signal rays passing
through from the side face are extracted and divided to two parts, one of which are signals
penetrating from the side face at a height greater than 5500 m. Additionally, the intersections
of this part of the signal rays with the top layer, namely the layer of 8 km, are counted. The
boundaries of the outer region in the east–west and north–south directions are decided by the
distribution of these intersections.

4. To check the boundaries of the outer region. If the horizontal range of the outer region is
within twice the length of a voxel, the reasonable boundaries of the outer regions are achieved.
Otherwise, go back to Step 2, increase the value of the altitudinal boundary, and re-proceed to the
next steps.
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Figure 4. Scatter plot and polynomial fit of water vapor density with altitude (upper for 45,004, middle
for 59,280, and lower for 59,316, respectively).

After these procedures, the boundaries of the outer regions are determined in the Hong Kong
experiment, the boundary for altitude is 5.5 to 8 km, and the boundaries of the four directions (the
north, east, south, and west) are 22.59◦, 114.43◦, 22.11◦, and 113.84◦, respectively. Therefore, a total of
8 × 7 × 10 voxels in the research area and four extra unknown parameters outside the research area
are obtained.
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To evaluate the performance of the proposed method, we made tomographic solutions using
the traditional method with 8 × 7 × 10 voxels, identified as Scheme #1, and the new method
above-mentioned, identified as Scheme #2. In addition, Scheme #3 is to extend the size of the entire
tomographic area, that is, the scope is changed to (113.81◦, 114.41◦) for longitude, (22.14◦, 22.59◦) for
latitude. The new scope, which results in 10 × 9 × 10 voxels in the tomographic modeling, is nearly
to the outer boundaries of Scheme #2. For Scheme #3, the horizontal resolution in the east-west and
north-south direction are 0.06 and 0.05, respectively, and the vertical resolution is 800 m, which is the
same as that in Scheme #1. Since the outer regions in Scheme #2 are included, Scheme #3 can also
utilize the increased signal rays of Scheme #2 in the tomographic solutions.

4. Results and Discussion

4.1. Utilization of Voxels and Signal Rays

To compare the influences of different methods on the number of signal rays used, the
experimental results were analyzed. Figure 5 shows the number of signal rays used in different
schemes at day of year (DOY) 152, 2017, the upper one for the case of per 30 min, and the lower one
for each tomographic solution. It can be seen that only a small part of the signal rays is used in Scheme
#1 compared with the total number of signal rays observed. Scheme #2 improves the utilization of
signal rays in every epoch and solution, and Scheme #3 has the same effect in improving the usage of
signal rays, which illustrates that Scheme #3 can be a good comparison to Scheme #2. Moreover, the
average number of signal rays observed, used in different schemes, can be seen in Figure 6. The figure
illustrates that Scheme #2 improves the average utilization of signal rays used by 19.68% compared
with Scheme #1. For Scheme #3, the percentage of increment is 22.2%.
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Figure 5. Number of signal rays used in Schemes #1, Scheme #2, and Scheme #3 per 30 min (upper) and
each solution (lower) of DOY 152, 2017 (yellow triangles for the total number of signal rays observed).

On the other hand, the number of voxels passing through by the signals is analyzed. The upper
image in Figure 7 shows the number of voxels crossed by the signal rays once per 30 min between
Schemes #1, #2, and #3, whereas the lower image shows the situation of every tomographic solution in
that day. Evidently, the number of voxels crossed by the signal rays in Scheme #2 is more than that of
Scheme #1, both for an epoch or a tomographic solution. For Scheme #3, it has the largest number of
voxels crossed by signal rays in most cases, but it does not represent a good performance in penetrating
voxels for Scheme #3. This is because the total number of voxels in Scheme #3 is 900, which is much
larger than 560 in the other schemes. It may make more sense to focus on the percentage of the voxels
crossed by signal rays.
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each solution (lower) of DOY 152, 2017.

Moreover, the statistical results, which include the average number and percentage of voxels
crossed by signal rays once per day in different schemes for the period of DOY 152–158, 2017, can
be seen in Figure 8. The finding shows that the average number of Scheme #1 increases by 15.14%
from 65.36% to 80.50% under Scheme #2. Additionally, Scheme #3 has the largest value in the average
number of voxels, but its percentage (54.74%) of voxels crossed by signal rays is the smallest. For
models with different total voxels, the percentage of voxels passing though by signal rays is more
important than the number of that.
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4.2. PWV Comparison

To assess the accuracy of the tomographic result, the PWV value for the location of the radiosonde
station is calculated using the water vapor density of the voxels acquired from the three schemes and
compared with PWV derived from the radiosonde data at UTC 0:00 and 12:00. In this experiment,
eight tomographic solutions are selected daily to calculate PWV. As shown in Figure 9, the trends
of the PWV time series are basically consistent and the results of Scheme #3 agree worst with that
from the radiosonde. Compared with Scheme #1, it is clear that Scheme #2 is more consistent with
the radiosonde data, indicating that the proposed method can improve the tomographic accuracy.
The statistical results are listed in Table 1, which show an advantage of Scheme #2 compared with
other schemes in terms of RMS, MAE, and bias.
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for the period of DOY 152–158, 2017.

Table 1. Statistical results of PWV between various schemes and radiosonde for the week of DOY
152–158, 2017 (unit: mm).

RMS MAE Bias

Scheme #1 5.06 4.40 4.11
Scheme #2 4.00 3.39 2.76
Scheme #3 5.72 5.21 4.23
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4.3. Water Vapor Profile Comparison

In general, if two vertical layers are exchanged arbitrarily, then the PWV remains the same, but
the vertical distribution of the water vapor changes. Therefore, the PWV comparison mentioned
above may not denote a correct tomographic result obtained, although the PWV derived from the
different schemes are in good agreement with that from the radiosonde. To validate the accuracy of the
vertical water vapor density, the water vapor profiles between the radiosonde and the two schemes
are compared, as shown in Figure 10. Two dates are selected because they correspond to the maximum
and minimum RMS during the week-long experimental period.
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Figure 10. Water vapor profiles derived from radiosonde and Schemes #1 and #2; left and right are the
dates with maximum and minimum RMS, respectively.

Figure 10 shows that the tomographic water vapor profiles of the three schemes agree well with
those from the radiosonde data. The water vapor density profile of Scheme #2 better matches that
from radiosonde than the other two schemes, especially in the low layers. Scheme #3 has the worst
performance. Compared with radiosonde, the numerical results of the tomography from Scheme #2
for the two selected epochs (RMS are 1.90 and 0.78 g/m3) are superior to those of Scheme #1 (RMS are
2.98 and 1.32 g/m3) and Scheme #3 (RMS are 3.37 and 1.67 g/m3).

Table 2 lists the statistical results of the three schemes in all water vapor profile comparisons,
including RMS, MAE, bias, and SD. The numerical results reveal that the average RMS/MAE/bias/SD
values are 1.97/1.51/−0.33/1.87, 1.39/1.07/−0.21/1.30, and 2.23/1.68/–0.41/2.11 gm−3 for Schemes
#1, #2, and #3, respectively. The maximum and minimum values of each statistic are shown in the
table. These findings show that the proposed method is more consistent with the radiosonde data
than the other two traditional methods. It should be noted that Scheme #3 does worse than Scheme #1,
which indicates the total number of voxels and the selection of the entire tomographic area size are
important to the tomographic result.
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Table 2. Statistical results of water vapor profile comparisons between radiosonde and different
schemes for the period of DOY 152 to 158, 2017 (unit: g/m3).

Scheme #1 Scheme #2 Scheme #3

RMS
Mean 1.97 1.39 2.23
Max 2.98 1.90 3.37
Min 1.32 0.78 1.67

MAE
Mean 1.51 1.07 1.68
Max 2.42 1.62 2.80
Min 1.06 0.66 1.33

Bias
Mean −0.33 −0.21 −0.41
Max 0.59 0.53 0.72
Min −1.15 −0.87 −1.28

SD
Mean 1.87 1.30 2.11
Max 2.89 1.82 3.30
Min 1.17 0.76 1.56

To make a further comparison of the relationship between the altitude and the errors in different
schemes, the tomographic results (DOY 152–158, 2017) are analyzed. The average RMS error and
relative error at different layers for the three schemes are calculated in this period to show the pattern of
the vertical water vapor distribution and altitude. Figure 11 gives the RMS and relative error changes
with height throughout the experimental period. It can be seen that the RMS, generally, decreases with
altitude, whereas the relative error shows an opposite trend. A large relative error appears in the upper
layers because the water vapor density is very low in those layers and a small discrepancy between the
tomographic result and radiosonde data will result in a large value. In addition, the RMS and relative
error of the proposed method (Scheme #2) are generally less than those of the traditional methods
(Scheme #1 and #3) for the different layers, which validates the improved nature of the proposed
method over the traditional methods.
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4.4. SWV Comparison

To further evaluate the performance of the proposed method, the SWV of station HKKT is
computed using the three schemes and their differences against the GAMIT-estimated SWV are
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identified. It should be noted that only the SWV penetrated from the top boundary in Scheme #1
were used in this comparison. To better show the results, SWV residuals are grouped into individual
elevation bins of 5◦, such that all residuals with an elevation angle between 15◦ and 20◦ are evaluated
as a single unit. The RMS of each elevation bin are calculated and are shown in Figure 12, in which
the upper and lower one represent the rainy and rainless scenario, respectively. It is clearly visible
that the RMS of SWV residuals reduced as the elevation angle decreased. Colors in the figure indicate
that better RMS results can be achieved by Scheme #2 in different weather conditions. Scheme #3 also
is worse than Scheme #1 in this comparison. In summary, the residuals of SWV are reduced by the
proposed method compared with the other two schemes.
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lower for the rainless scenario.

To further show the superiority of the proposed method in the SWV comparison, the RMS
and MAE of every tomographic solution in DOY 152, 2017 are compared in Figure 13. The red
marks acquired by Scheme #2 are smaller than the blue markers obtained by Scheme #1, and also
smaller than the green markers obtained by Scheme #3 in the solutions of every period of time,
which illustrates the superiority of the proposed method over the traditional methods. Moreover,
Table 3 shows the average RMS and MAE calculated from the three schemes for 7 days. A similar
situation as that in Figure 13 shows that the RMS and MAE of SWV reduced by the proposed method
in the experimental period from 11.74/9.15 mm (Scheme #1) and 12.51/9.87 mm (Scheme #3) to
10.46/8.17 mm, respectively. In summary, it is clear evidence that the proposed method improves the
accuracy of the tomographic result.

Table 3. RMS and MAE of SWV using Schemes #1 and #2 for 7 days (unit: mm).

DOY
RMS MAE

Scheme #1 Scheme #2 Scheme #3 Scheme #1 Scheme #2 Scheme #3

152 9.81 8.61 10.73 7.41 6.96 7.99
153 11.58 9.49 12.40 9.00 7.59 9.93
154 11.48 10.48 12.64 8.99 7.33 10.38
155 13.26 12.57 14.21 10.93 10.01 11.08
156 11.76 10.98 12.08 8.99 8.00 9.64
157 11.21 9.95 11.67 8.72 8.01 9.28
158 13.07 11.13 13.81 9.98 9.34 10.80

Average 11.74 10.46 12.51 9.15 8.17 9.87
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5. Conclusions

The observation equations of GPS water vapor tomography are constructed by signal rays, and
an increase in the quantity of signal rays added to the tomographic model contributes to an improved
tomographic result. This paper proposed a new method that utilizes the signal rays coming from
the top boundary and the side face of the tomographic area. Four outer regions were added to the
tomographic equation as unknown parameters, and their boundaries were reasonably determined
in the experiment. The traditional method using 8 × 7 × 10 voxels with the selected research area
(Scheme #1) and another method using 10 × 9 × 10 voxels with an extended research area (Scheme #3)
were utilized as comparisons.

The tropospheric parameters were estimated using GAMIT software based on the Hong Kong
Satellite Positioning Reference Station Network. The tomographic experiment was subsequently
conducted using the three schemes. Numerical results from DOY 152 –158, 2017 show that the
proposed method increases the number of voxels crossed by signal rays (15.14% on average) and
improves the utilization of the observed data (19.68% on average) in comparison with the traditional
method (Scheme #1). For Scheme #3, the cost of increasing the number of signal rays and the quantity
of voxels crossed by rays was to add voxels in total from 560 to 900, which makes the proportion of
crossed voxels drop.

Radiosonde data were used as a reference to validate the tomographic result. In a comparison
of the PWV time series, the RMS, MAE, and bias values of the proposed method were 4.00,
3.39, and 2.76 mm, respectively, which were smaller than those of the two traditional methods.
A comparison of the water vapor density profiles at different altitudes showed that the profile of the
proposed method matches the radiosonde data well. This finding was supported by the statistical
results for RMS/MAE/bias/SD, which changed from 1.97/1.51/−0.33/1.87 gm−3 of Scheme #1 and
2.23/1.68/-0.41/2.11 gm−3 of Scheme #3 to 1.39/1.07/−0.21/1.30 gm−3 of Scheme #2. In addition, an
SWV comparison using data from station HKKT was conducted using different schemes; the RMS and
MAE values of the SWV changed from 11.74/9.15 mm of Scheme #1 to 10.46/8.17 mm of Scheme #2
and 12.51/9.87 mm of Scheme #3. In all comparisons mentioned above, the proposed method achieved
the best performance, and Scheme #3 with the extended research area performed worst. This suggests
that increasing the percentage of voxels crossed by rays is key to improving tomographic accuracy,
rather than simply increasing the number of signal rays.
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The experiments were only carried out in Hong Kong at a specific time period, in which the
boundaries of the outer regions were suitable. When changes occur in the tomographic region, GPS
receivers’ location, or resolution of voxels, the boundaries of outer regions should be appropriately
adjusted. So, the feasibility and superiority remain to be further verified for various periods, regions,
and weather conditions.
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