Comparing Evapotranspiration Products of Different Temporal and Spatial Scales in Native and Managed Prairie Pastures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
- burning in 2001, 2009, 2010, and 2014;
- periodic fertilizing and herbicide spraying (e.g., nitrogen fertilizer of about 67 N kg ha−1 and 44 kg N ha−1 was applied in 2007 and 2009, respectively);
- significant biomass was removed from the pasture by haying every year from 2008 to 2011, and in 2014 and 2016;
- the pasture was grazed with different stocking density almost every year except in 2006 and 2007.
2.2. Data
2.2.1. Eddy Covariance ET (ETEC) Data Collection and Processing
2.2.2. MODIS ET Data at Different Spatial Resolutions
2.2.3. Statistical Validation of MODIS ET Estimates with ETEC
3. Results
3.1. Weather Conditions, Vegetation Growth, and ET in 2015 and 2016
3.2. Comparison of MODIS ET (MODET30, ETMOD200, ETMOD500, and ETMOD1000) and ETEC at the Study Sites during 2015–2016
4. Discussion
4.1. Grassland Productivity, Vegetation Composition and ET in Pluvial Year
4.2. Management Factors and ET Differences between Two Pastures
4.3. Smaller Spatial Scales Provide Better ET Estimates in Grazing Pasture
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- White, R.P.; Murray, S.; Rohweder, M.; Prince, S.; Thompson, K. Grassland Ecosystems; World Resources Institute: Washington, DC, USA, 2000. [Google Scholar]
- O’Mara, F.P. The role of grasslands in food security and climate change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Suttie, J.M.; Reynolds, S.G.; Batello, C. Grasslands of the World; Food and Agriculture Organizaton: Rome, Italy, 2005; Volume 34. [Google Scholar]
- Hayes, D.J.; Turner, D.P.; Stinson, G.; McGuire, A.D.; Wei, Y.; West, T.O.; Heath, L.S.; De Jong, B.; McConkey, B.G.; Birdsey, R.A. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data. Glob. Chang. Biol. 2012, 18, 1282–1299. [Google Scholar] [CrossRef] [Green Version]
- Muir, J.; Pitman, W.; Foster, J. Sustainable, low-input, warm-season, grass–legume grassland mixtures: Mission (nearly) impossible? Grass Forage Sci. 2011, 66, 301–315. [Google Scholar] [CrossRef]
- Bajgain, R.; Xiao, X.; Basara, J.; Doughty, R.; Wu, X.; Wagle, P.; Zhou, Y.; Gowda, P.; Steiner, J.J.A.; Meteorology, F. Differential responses of native and managed prairie pastures to environmental variability and management practices. Agric. For. Meteorol. 2020, 294, 108137. [Google Scholar] [CrossRef]
- Novick, K.A.; Stoy, P.C.; Katul, G.G.; Ellsworth, D.S.; Siqueira, M.; Juang, J.; Oren, R. Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia 2004, 138, 259–274. [Google Scholar] [CrossRef]
- Kim, J.; Verma, S.B. Carbon dioxide exchange in a temperate grassland ecosystem. Bound. Layer Meteorol. 1990, 52, 135–149. [Google Scholar] [CrossRef]
- Rajan, N.; Maas, S.J.; Cui, S. Extreme drought effects on summer evapotranspiration and energy balance of a grassland in the Southern Great Plains. Ecohydrology 2015, 8, 1194–1204. [Google Scholar] [CrossRef]
- Bremer, D.J.; Auen, L.M.; Ham, J.M.; Owensby, C.E. Evapotranspiration in a prairie ecosystem. Agron. J. 2001, 93, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Pronger, J.; Campbell, D.; Clearwater, M.; Rutledge, S.; Wall, A.; Schipper, L. Low spatial and inter-annual variability of evaporation from a year-round intensively grazed temperate pasture system. Agric. Ecosyst. Environ. 2016, 232, 46–58. [Google Scholar] [CrossRef]
- Rose, L.; Coners, H.; Leuschner, C. Effects of fertilization and cutting frequency on the water balance of a temperate grassland. Ecohydrology 2012, 5, 64–72. [Google Scholar] [CrossRef]
- Niraula, R.; Saleh, A.; Bhattarai, N.; Bajgain, R.; Kannan, N.; Osei, E.; Gowda, P.; Neel, J.; Xiao, X.; Basara, J. Understanding the effects of pasture type and stocking rate on the hydrology of the Southern Great Plains. Sci. Total Environ. 2020, 708, 134873. [Google Scholar] [CrossRef]
- Villegas, J.C.; Dominguez, F.; Barron-Gafford, G.A.; Adams, H.D.; Guardiola-Claramonte, M.; Sommer, E.D.; Selvey, A.W.; Espeleta, J.F.; Zou, C.B.; Breshears, D.D. Sensitivity of regional evapotranspiration partitioning to variation in woody plant cover: Insights from experimental dryland tree mosaics. Glob. Ecol. Biogeogr. 2015, 24, 1040–1048. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Christian, J.; Christian, K.; Basara, J.B. Drought and pluvial dipole events within the great plains of the United States. J. Appl. Meteorol. Climatol. 2015, 54, 1886–1898. [Google Scholar] [CrossRef]
- Bajgain, R.; Xiao, X.; Wagle, P.; Basara, J.; Zhou, Y. Sensitivity analysis of vegetation indices to drought over two tallgrass prairie sites. ISPRS J. Photogramm. Remote Sens. 2015, 108, 151–160. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Laurin, G.V.; Balling, J.; Corona, P.; Mattioli, W.; Papale, D.; Puletti, N.; Rizzo, M.; Truckenbrodt, J.; Urban, M. Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS2 and Sentinel-2 data. J. Appl. Remote Sens. 2018, 12, 016008. [Google Scholar] [CrossRef]
- Rigge, M.; Smart, A.; Wylie, B.; Gilmanov, T.; Johnson, P. Linking phenology and biomass productivity in South Dakota mixed-grass prairie. Rangel. Ecol. Manag. 2013, 66, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Knipper, K.; Hogue, T.; Scott, R.; Franz, K. Evapotranspiration estimates derived using multi-platform remote sensing in a semiarid region. Remote Sens. 2017, 9, 184. [Google Scholar] [CrossRef] [Green Version]
- Velpuri, N.M.; Senay, G.B.; Singh, R.K.; Bohms, S.; Verdin, J.P. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sens. Environ. 2013, 139, 35–49. [Google Scholar] [CrossRef]
- King, E.; Van Niel, T.; Van Dijk, A.; Wang, Z.; Paget, M.; Raupach, T.; Guerschman, J.; Haverd, V.; McVicar, T.; Miltenburg, I. Actual Evapotranspiration Estimates for Australia Inter-Comparison and Evaluation; CSIRO: Canberra, Australia, 2011; pp. 1–5.
- He, M.; Kimball, J.S.; Yi, Y.; Running, S.W.; Guan, K.; Moreno, A.; Wu, X.; Maneta, M. Satellite data-driven modeling of field scale evapotranspiration in croplands using the MOD16 algorithm framework. Remote Sens. Environ. 2019, 230, 111201. [Google Scholar] [CrossRef]
- Coleman, S.; Phillips, W.; Volesky, J.; Buchanan, D. A comparison of native tallgrass prairie and plains bluestem forage systems for cow-calf production in the Southern Great Plains. J. Animal Sci. 2001, 79, 1697–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Northup, B.K.; Rao, S.C. Green manure and forage potential of lablab in the U.S. Southern Plains. Agron. J. 2015, 107, 1113–1118. [Google Scholar] [CrossRef]
- Zhou, Y.T.; Xiao, X.M.; Wagle, P.; Bajgain, R.; Mahan, H.; Basara, J.B.; Dong, J.W.; Qin, Y.W.; Zhang, G.L.; Luo, Y.Q.; et al. Examining the short-term impacts of diverse management practices on plant phenology and carbon fluxes of Old World bluestems pasture. Agr. For. Meteorol. 2017, 237, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Wagle, P.; Kakani, V.G.; Huhnke, R.L. Net ecosystem carbon dioxide exchange of dedicated bioenergy feedstocks: Switchgrass and high biomass sorghum. Agric. For. Meteorol. 2015, 207, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Ní Choncubhair, Ó.; Osborne, B.; Finnan, J.; Lanigan, G. Comparative assessment of ecosystem C exchange in Miscanthus and reed canary grass during early establishment. GCB Bioenergy 2017, 9, 280–298. [Google Scholar] [CrossRef] [Green Version]
- Joo, E.; Hussain, M.Z.; Zeri, M.; Masters, M.D.; Miller, J.N.; Gomez-Casanovas, N.; DeLucia, E.H.; Bernacchi, C.J. The influence of drought and heat stress on long term carbon fluxes of bioenergy crops grown in the Midwestern US. Plant Cell Environ. 2016, 39, 1928–1940. [Google Scholar] [CrossRef]
- Zeri, M.; Anderson-Teixeira, K.; Hickman, G.; Masters, M.; DeLucia, E.; Bernacchi, C.J. Carbon exchange by establishing biofuel crops in Central Illinois. Agric. Ecosyst. Environ. 2011, 144, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Moffat, A.M.; Papale, D.; Reichstein, M.; Hollinger, D.Y.; Richardson, A.D.; Barr, A.G.; Beckstein, C.; Braswell, B.H.; Churkina, G.; Desai, A.R. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric. For. Meteorol. 2007, 147, 209–232. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Amiro, B.; Barr, A.; Black, T.; Iwashita, H.; Kljun, N.; McCaughey, J.; Morgenstern, K.; Murayama, S.; Nesic, Z.; Orchansky, A. Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agric. For. Meteorol. 2006, 136, 237–251. [Google Scholar] [CrossRef]
- Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 2001, 107, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Hui, D.; Wan, S.; Su, B.; Katul, G.; Monson, R.; Luo, Y. Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations. Agric. For. Meteorol. 2004, 121, 93–111. [Google Scholar] [CrossRef]
- Wilson, K.; Baldocchi, D. Comparing independent estimates of carbon dioxide exchange over 5 years at a deciduous forest in the southeastern United States. J. Geophys. Res. D 2001, 106, 34. [Google Scholar] [CrossRef]
- Running, S.W.; Mu, Q.; Zhao, M.; Moreno, A. MODIS Global Terrestrial Evapotranspiration (ET) Product (MOD16A2/A3 and Year-End Gap-Filled MOD16A2GF/A3GF) NASA Earth Observing System MODIS Land Algorithm (For Collection 6); National Aeronautics and Space Administration: Washington, DC, USA, 2019.
- Wagle, P.; Gowda, P.H.; Northup, B.K.; Starks, P.J.; Neel, J.P.S. Response of tallgrass prairie to management in the US Southern Great Plains: Site descriptions, management practices, and eddy covariance instrumentation for a long-term experiment. Remote Sens. 2019, 11, 1988. [Google Scholar] [CrossRef] [Green Version]
- Paruelo, J.M.; Lauenroth, W. Relative abundance of plant functional types in grasslands and shrublands of North America. Ecol. Appl. 1996, 6, 1212–1224. [Google Scholar] [CrossRef]
- Gong, D.; Kang, S.; Yao, L.; Zhang, L. Estimation of evapotranspiration and its components from an apple orchard in northwest China using sap flow and water balance methods. Hydrol. Process. 2007, 21, 931–938. [Google Scholar] [CrossRef]
- Wagle, P.; Skaggs, T.H.; Gowda, P.H.; Northup, B.K.; Neel, J.P.J.A.; Meteorology, F. Flux variance similarity-based partitioning of evapotranspiration over a rainfed alfalfa field using high frequency eddy covariance data. Agric. For. Meteorol. 2020, 285, 107907. [Google Scholar] [CrossRef]
- Nagler, P.; Glenn, E.; Kim, H.; Emmerich, W.; Scott, R.; Huxman, T.; Huete, A. Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices. J. Arid Environ. 2007, 70, 443–462. [Google Scholar] [CrossRef]
- Wagle, P.; Xiao, X.; Gowda, P.; Basara, J.; Brunsell, N.; Steiner, J.; Anup, K. Analysis and estimation of tallgrass prairie evapotranspiration in the central United States. Agric. For. Meteorol. 2017, 232, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Polhamus, A.; Fisher, J.B.; Tu, K.P. What controls the error structure in evapotranspiration models? Agric. For. Meteorol. 2013, 169, 12–24. [Google Scholar] [CrossRef]
- Glenn, E.P.; Neale, C.M.; Hunsaker, D.J.; Nagler, P.L. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrol. Process. 2011, 25, 4050–4062. [Google Scholar] [CrossRef]
- De Boeck, H.J.; Lemmens, C.M.; Bossuyt, H.; Malchair, S.; Carnol, M.; Merckx, R.; Nijs, I.; Ceulemans, R. How do climate warming and plant species richness affect water use in experimental grasslands? Plant Soil 2006, 288, 249–261. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Bernhofer, C. Grazing intensity effects on the partitioning of evapotranspiration in the semiarid typical steppe ecosystems in Inner Mongolia. Int. J. Climatol. 2016, 36, 4130–4140. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, H.; Ketzer, B.; Horn, R.; Bernhofer, C. Effect of grazing intensity on evapotranspiration in the semiarid grasslands of Inner Mongolia, China. J. Arid Environ. 2012, 83, 15–24. [Google Scholar] [CrossRef]
- Li, Y.; Fan, J.; Hu, Z.; Shao, Q.; Zhang, L.; Yu, H. Influence of land use patterns on evapotranspiration and its components in a temperate grassland ecosystem. Adv. Meteorol. 2015, 2015. [Google Scholar] [CrossRef]
- Day, T.; Detling, J. Water relations of Agropyron smithii and Bouteloua gracilis and community evapotranspiration following long-term grazing by prairie dogs. Am. Midl. Nat. 1994, 132, 381–392. [Google Scholar] [CrossRef]
- Pereyra, D.A.; Bucci, S.J.; Arias, N.S.; Ciano, N.; Cristiano, P.M.; Goldstein, G.; Scholz, F.G. Grazing increases evapotranspiration without the cost of lowering soil water storages in arid ecosystems. Ecohydrology 2017, 10, e1850. [Google Scholar] [CrossRef]
- Deng, X.; Güneralp, B.; Su, H. Observations and modeling of the climatic impact of land-use changes. Adv. Meteorol. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lee, G.; Lee, P.; Oikawa, T. Model analysis of grazing effect on above-ground biomass and above-ground net primary production of a Mongolian grassland ecosystem. J. Hydrol. 2007, 333, 155–164. [Google Scholar] [CrossRef]
- Ketzer, B.; Liu, H.; Bernhofer, C. Surface characteristics of grasslands in Inner Mongolia as detected by micrometeorological measurements. Int. J. Biometeorol. 2008, 52, 563. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2010, 1, 187–194. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P. Integration of the GG model with SEBAL to produce time series of evapotranspiration of high spatial resolution at watershed scales. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Shang, S. A hybrid dual-source scheme and trapezoid framework–based evapotranspiration model (HTEM) using satellite images: Algorithm and model test. J. Geophys. Res. 2013, 118, 2284–2300. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Li, X.; Hong, Y.; Fisher, J.B.; Zhang, N.; Chen, J.; Cheng, J.; Zhao, S.; Zhang, X. Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations. J. Geophys. Res. 2014, 119, 4521–4545. [Google Scholar] [CrossRef]
- Ershadi, A.; McCabe, M.F.; Evans, J.P.; Walker, J.P. Effects of spatial aggregation on the multi-scale estimation of evapotranspiration. Remote Sens. Environ. 2013, 131, 51–62. [Google Scholar] [CrossRef]
- Sharma, V.; Kilic, A.; Irmak, S. Impact of scale/resolution on evapotranspiration from Landsat and MODIS images. Water Resour. Res. 2016, 52, 1800–1819. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Shao, K.; Li, Z.-L.; Wu, H.; Tang, B.-H.; Zhou, G.; Zhang, L. Multiscale validation of the 8-day MOD16 evapotranspiration product using flux data collected in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1478–1486. [Google Scholar] [CrossRef]
- Biggs, T.W.; Marshall, M.; Messina, A. Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison. Water Resour. Res. 2016, 52, 7311–7326. [Google Scholar] [CrossRef]
Name of Sensors | Variables Measured | Company Name |
---|---|---|
Quantum sensors | photosynthetic photon flux density (PPFD) | LI-190, LI-COR Inc., Lincoln, NE, USA |
Net radiometers | net radiation (Rn) | CNR1, Kipp and Zonen, Delft, The Netherlands |
Temperature and relative humidity probes | Temperature and relative humidity of air | HMP45C, Vaisala, Helsinki, Finland |
Soil heat flux sensors | soil heat fluxes (G) | HFT3.1, Radiation and Energy Balance Systems, Inc., Seattle, WA, USA |
Hydra probe | Soil moisture content | Stevens Water, Inc., Portland, Oregon, USA |
Winter (Nov–Jan) | Spring (Feb–Apr) | Summer (May–Jul) | Fall (Aug–Oct) | Annual | |
---|---|---|---|---|---|
Rainfall (mm) | |||||
2015 | 117.3 | 603.2 | 353.0 | 199.64 | 1273.3 |
2016 | 88.4 | 222.7 | 206.2 | 118.1 | 635.5 |
30-year | 103.6 | 268.9 | 250.2 | 218.4 | 871.5 |
Temperature (°C) | |||||
2015 | 4.88 | 20.01 | 25.19 | 10.46 | 15.09 |
2016 | 7.4 | 18.86 | 25.51 | 11.05 | 16.02 |
30-year | 5.42 | 18.93 | 25.01 | 9.24 | 14.54 |
Grazing (06/01/2016 to 06/30/2016) | ET (mm d−1) | Haying (08/08/2016) | ET (mm d−1) | |
---|---|---|---|---|
Managed pasture | Before grazing | 7.93 | Before haying | 7.70 |
During Grazing | 6.65 | After haying | 4.6 | |
After grazing | 8.17 | 1st week | 5.13 | |
2nd week | ||||
Native pasture | Before grazing | 6.09 | -- | -- |
During Grazing | 5.12 | |||
After grazing | 7.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajgain, R.; Xiao, X.; Wagle, P.; Kimball, J.S.; Brust, C.; Basara, J.B.; Gowda, P.; Starks, P.J.; Neel, J.P.S. Comparing Evapotranspiration Products of Different Temporal and Spatial Scales in Native and Managed Prairie Pastures. Remote Sens. 2021, 13, 82. https://doi.org/10.3390/rs13010082
Bajgain R, Xiao X, Wagle P, Kimball JS, Brust C, Basara JB, Gowda P, Starks PJ, Neel JPS. Comparing Evapotranspiration Products of Different Temporal and Spatial Scales in Native and Managed Prairie Pastures. Remote Sensing. 2021; 13(1):82. https://doi.org/10.3390/rs13010082
Chicago/Turabian StyleBajgain, Rajen, Xiangming Xiao, Pradeep Wagle, John S. Kimball, Colin Brust, Jeffrey B. Basara, Prasanna Gowda, Patrick J. Starks, and James P. S. Neel. 2021. "Comparing Evapotranspiration Products of Different Temporal and Spatial Scales in Native and Managed Prairie Pastures" Remote Sensing 13, no. 1: 82. https://doi.org/10.3390/rs13010082