A First Assessment of the 2018 European Drought Impact on Ecosystem Evapotranspiration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Evapotranspiration and Meteorological Data
2.2.2. Land Cover Data
2.3. Data Processing and Analysis
2.4. Calculation of Anomalies Per Month
2.5. Method for Identifying Onset, Length, and Intensity of the Drought
2.6. Statistical Methods
3. Results
3.1. Characteristics of the Combined Heatwave and Drought in 2018
3.2. Spatio-Temporal Evaluation of Evapotranspiration Anomalies
3.3. Impact of Meteorological Driver Dynamics on Evapotranspiration Anomalies
3.4. Ecosystem Specific ET Responses to the 2018 Drought
4. Discussion
4.1. Considerations on Observed Drought Impact on Ecosystem Evapotranspiration
4.2. Reliability of this Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate Extremes and the Carbon Cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef]
- Sippel, S.; Reichstein, M.; Ma, X.; Mahecha, M.D.; Lange, H.; Flach, M.; Frank, D. Drought, Heat, and the Carbon Cycle: A Review. Curr. Clim. Chang. Rep. 2018, 4, 266–286. [Google Scholar] [CrossRef] [Green Version]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [Green Version]
- Anderegg, W.R.L.; Berry, J.A.; Smith, D.D.; Sperry, J.S.; Anderegg, L.D.L.; Field, C.B. The Roles of Hydraulic and Carbon Stress in a Widespread Climate-Induced Forest Die-Off. Proc. Natl. Acad. Sci. USA 2012, 109, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al. A First Assessment of the Impact of the Extreme 2018 Summer Drought on Central European Forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
- Gharun, M.; Hörtnagl, L.; Paul-Limoges, E.; Ghiasi, S.; Feigenwinter, I.; Burri, S.; Marquardt, K.; Etzold, S.; Zweifel, R.; Eugster, W.; et al. Physiological Response of Swiss Ecosystems to 2018 Drought across Plant Types and Elevation. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375. [Google Scholar] [CrossRef]
- Peters, W.; Bastos, A.; Ciais, P.; Vermeulen, A. A Historical, Geographical and Ecological Perspective on the 2018 European Summer Drought. Philos. Trans. R. Soc. B 2020, 375, 8. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, D.M.; Thornton, P.E.; Oleson, K.W.; Bonan, G.B. The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on Land–Atmosphere Interaction. J. Hydrometeorol. 2007, 8, 862–880. [Google Scholar] [CrossRef]
- Lu, X.; Liu, Z.; An, S.; Miralles, D.G.; Maes, W.; Liu, Y.; Tang, J. Potential of Solar-Induced Chlorophyll Fluorescence to Estimate Transpiration in a Temperate Forest. Agric. For. Meteorol. 2018, 252, 75–87. [Google Scholar] [CrossRef]
- Zhang, Y.; Peña-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.S.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.Y.; et al. Multi-Decadal Trends in Global Terrestrial Evapotranspiration and Its Components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Z.-M.; Kellomäki, S.; Zhou, X.; Wang, K.-Y.; Peltola, H.; Väisänen, H.; Strandman, H. Effects of Climate Change on Evapotranspiration and Soil Water Availability in Norway Spruce Forests in Southern Finland: An Ecosystem Model Based Approach: STAND HYDRO-PROCESSES UNDER CLIMATE CHANGE. Ecohydrology 2013, 6, 51–63. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Kane, J.M.; Anderegg, L.D.L. Consequences of Widespread Tree Mortality Triggered by Drought and Temperature Stress. Nat. Clim. Chang. 2013, 3, 30–36. [Google Scholar] [CrossRef]
- Bennett, A.C.; McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.J. Larger Trees Suffer Most during Drought in Forests Worldwide. Nat. Plants 2015, 1, 15139. [Google Scholar] [CrossRef]
- Gu, D.; Wang, Q.; Otieno, D. Canopy Transpiration and Stomatal Responses to Prolonged Drought by a Dominant Desert Species in Central Asia. Water 2017, 9, 404. [Google Scholar] [CrossRef] [Green Version]
- Orth, R.; Destouni, G. Drought Reduces Blue-Water Fluxes More Strongly than Green-Water Fluxes in Europe. Nat. Commun. 2018, 9, 3602. [Google Scholar] [CrossRef]
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A Simple Surface Conductance Model to Estimate Regional Evaporation Using MODIS Leaf Area Index and the Penman-Monteith Equation: MODIS-LAI-BASED EVAPORATION MODEL. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Vetter, M.; Churkina, G.; Jung, M.; Reichstein, M.; Zaehle, S.; Bondeau, A.; Chen, Y.; Ciais, P.; Feser, F.; Freibauer, A.; et al. Analyzing the Causes and Spatial Pattern of the European 2003 Carbon Flux Anomaly Using Seven Models. Biogeosciences 2008, 5, 561–583. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Markkanen, T.; Aurela, M.; Mammarella, I.; Thum, T.; Tsuruta, A.; Yang, H.; Aalto, T. Response of Water Use Efficiency to Summer Drought in a Boreal Scots Pine Forest in Finland. Biogeosciences 2017, 14, 4409–4422. [Google Scholar] [CrossRef] [Green Version]
- Baltas, E. Spatial Distribution of Climatic Indices in Northern Greece. Meteorol. Appl. 2007, 14, 69–78. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.C.; Hain, C.; Wardlow, B.; Pimstein, A.; Mecikalski, J.R.; Kustas, W.P. Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States. J. Clim. 2011, 24, 2025–2044. [Google Scholar] [CrossRef]
- Guttman, N.B. COMPARING THE PALMER DROUGHT INDEX AND THE STANDARDIZED PRECIPITATION INDEX. J. Am. Water Resour. Assoc. 1998, 34, 113–121. [Google Scholar] [CrossRef]
- Tian, L.; Leasor, Z.T.; Quiring, S.M. Developing a Hybrid Drought Index: Precipitation Evapotranspiration Difference Condition Index. Clim. Risk Manag. 2020, 29, 100238. [Google Scholar] [CrossRef]
- Kim, D.; Rhee, J. A Drought Index Based on Actual Evapotranspiration from the Bouchet Hypothesis: DROUGHT INDEX FROM BOUCHET HYPOTHESIS. Geophys. Res. Lett. 2016, 43, 10277–10285. [Google Scholar] [CrossRef]
- Keyantash, J.A.; Dracup, J.A. An Aggregate Drought Index: Assessing Drought Severity Based on Fluctuations in the Hydrologic Cycle and Surface Water Storage: AN AGGREGATE DROUGHT INDEX. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef] [Green Version]
- Allen, R. PENMAN–MONTEITH EQUATION. In Encyclopedia of Soils in the Environment; Elsevier: Amsterdam, The Netherlands, 2005; pp. 180–188. [Google Scholar]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources: THE FUTURE OF EVAPOTRANSPIRATION. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Pereira, L.S.; Perrier, A.; Allen, R.G.; Alves, I. Evapotranspiration: Concepts and Future Trends. J. Irrig. Drain. Eng. 1999, 125, 45–51. [Google Scholar] [CrossRef]
- Van Loon, A.F. Hydrological Drought Explained: Hydrological Drought Explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Destouni, G.; Verrot, L. Screening Long-Term Variability and Change of Soil Moisture in a Changing Climate. J. Hydrol. 2014, 516, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Naumann, G.; Spinoni, J.; Vogt, J.V.; Barbosa, P. Assessment of Drought Damages and Their Uncertainties in Europe. Env. Res Lett 2015, 10, 124013. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Rego, F.C.; Rocha, M.; Seneviratne, S.I. Predicting above Normal Wildfire Activity in Southern Europe as a Function of Meteorological Drought. Environ. Res. Lett. 2014, 9, 084008. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a Global Evapotranspiration Algorithm Based on MODIS and Global Meteorology Data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Monteith, J.L.; Szeicz, G.; Waggoner, P.E. The Measurement and Control of Stomatal Resistance in the Field. J. Appl. Ecol. 1965, 2, 345. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Pérez, F.; Granger, B.E. IPython A System for Interactive Scientific Computing. Comput. Sci. Eng. 2007, 9, 21–29. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0--Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- van der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef] [Green Version]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference (SciPy 2010), Austin, TX, USA, 28 June–3 July 2010; pp. 56–61. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying Impacts of the 2018 Drought on European Ecosystems in Comparison to 2003. Biogeosciences 2020, 17, 1655–1672. [Google Scholar] [CrossRef] [Green Version]
- NOAA. National Centers for Environmental Information, State of the Climate: Global Climate Report for July 2018; National Oceanic and Atmospheric Administration, 2018; Published online August 2018. Available online: https://www.ncdc.noaa.gov/sotc/global/201807 (accessed on 29 November 2020).
- Miralles, D.G.; Teuling, A.J.; van Heerwaarden, C.C.; Vilà-Guerau de Arellano, J. Mega-Heatwave Temperatures Due to Combined Soil Desiccation and Atmospheric Heat Accumulation. Nat. Geosci. 2014, 7, 345–349. [Google Scholar] [CrossRef]
- Luterbacher, J.; Liniger, M.A.; Menzel, A.; Estrella, N.; Della-Marta, P.M.; Pfister, C.; Rutishauser, T.; Xoplaki, E. Exceptional European Warmth of Autumn 2006 and Winter 2007: Historical Context, the Underlying Dynamics, and Its Phenological Impacts. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mueller, B.; Seneviratne, S.I. Hot Days Induced by Precipitation Deficits at the Global Scale. Proc. Natl. Acad. Sci. USA 2012, 109, 12398–12403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drouard, M.; Kornhuber, K.; Woollings, T. Disentangling Dynamic Contributions to Summer 2018 Anomalous Weather Over Europe. Geophys. Res. Lett. 2019, 46, 12537–12546. [Google Scholar] [CrossRef] [Green Version]
- Quesada, B. Asymmetric European Summer Heat Predictability from Wet and Dry Southern Winters and Springs. Nat. Clim. Chang. 2012, 2, 6. [Google Scholar] [CrossRef]
- C3S. European State of the Climate 2018; Compiled by the Copernicus Climate Change Service (C3S), Implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) on Behalf of the European Union; European Union, 2019. Published online September 2018. Available online: https://climate.copernicus.eu/ESOTC/2018 (accessed on 29 November 2020).
- Puletti, N.; Mattioli, W.; Bussotti, F.; Pollastrini, M. Monitoring the Effects of Extreme Drought Events on Forest Health by Sentinel-2 Imagery. J. Appl. Remote Sens. 2019, 13, 1. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Damm, A.; Paul-Limoges, E.; Kükenbrink, D.; Bachofen, C.; Morsdorf, F. Remote Sensing of Forest Gas Exchange: Considerations Derived from a Tomographic Perspective. Glob. Chang. Biol. 2020, 26, 2717–2727. [Google Scholar] [CrossRef]
Normalized Value Range | Ordinal Scale of Drought Characteristics | |||
---|---|---|---|---|
Intensity | Onset | Length | Onset Difference | |
0.00 to 0.20 | Low | Early emergence in April–May | Short ≤ 2 months | Early ET onset ~= −4 months |
0.21 to 0.40 | Medium | Emergence in May–June | Moderate ~= 3 months | Early ET onset ~= −2 months |
0.41 to 0.60 | Moderate | Emergence in June–July | Moderate ~= 4 months | Onset difference onset ± 1 month |
0.61 to 0.80 | High | Emergence in July–Aug | Moderate ~= 5 months | Late ET onset ~=2 months |
0.81 to 1.00 | Extreme | Late Emergence in Sept–Oct | Long ≥ 6 months | Late ET onset ~=4 months |
Region1 | Region2 | Region3 | Region4 | Region5 | Region6 | |||||||||
Onset | Tsa | |||||||||||||
P | ||||||||||||||
ET | ||||||||||||||
Length | Tsa | |||||||||||||
P | ||||||||||||||
ET | ||||||||||||||
Intensity (Absolute) | Tsa | |||||||||||||
P | ||||||||||||||
ET | ||||||||||||||
Intensity (Relative) | Tsa | |||||||||||||
P | ||||||||||||||
ET | ||||||||||||||
Onset difference ET-Tsa | ||||||||||||||
Onset difference ET-P | ||||||||||||||
Ordinal scale for Onset, length, Intensity, and Onset difference | ||||||||||||||
Intensity | Onset | Length | Onset difference | |||||||||||
Low | Early emergence in April–May | Short ≤ 2 months | Early ET onset ~= −4 months | |||||||||||
Medium | Emergence in May–June | Moderate ~= 3 months | Early ET onset ~= −2 months | |||||||||||
Moderate | Emergence in June–July | Moderate ~= 4 months | Onset difference onset ± 1 month | |||||||||||
High | Emergence in July–Aug | Moderate ~= 5 months | Late ET onset ~= 2 months | |||||||||||
Extreme | Late Emergence in Sept–Oct | Long ≥ 6 months | Late ET onset ~= 4 months |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, K.R.; Paul-Limoges, E.; Rascher, U.; Damm, A. A First Assessment of the 2018 European Drought Impact on Ecosystem Evapotranspiration. Remote Sens. 2021, 13, 16. https://doi.org/10.3390/rs13010016
Ahmed KR, Paul-Limoges E, Rascher U, Damm A. A First Assessment of the 2018 European Drought Impact on Ecosystem Evapotranspiration. Remote Sensing. 2021; 13(1):16. https://doi.org/10.3390/rs13010016
Chicago/Turabian StyleAhmed, Kazi Rifat, Eugénie Paul-Limoges, Uwe Rascher, and Alexander Damm. 2021. "A First Assessment of the 2018 European Drought Impact on Ecosystem Evapotranspiration" Remote Sensing 13, no. 1: 16. https://doi.org/10.3390/rs13010016
APA StyleAhmed, K. R., Paul-Limoges, E., Rascher, U., & Damm, A. (2021). A First Assessment of the 2018 European Drought Impact on Ecosystem Evapotranspiration. Remote Sensing, 13(1), 16. https://doi.org/10.3390/rs13010016