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Abstract: Evapotranspiration (ET) is a key component of the water balance, especially in arid
and semiarid regions. The current study takes advantage of spatially-distributed, near real-time
information provided by satellite remote sensing to develop a regional scale ET product derived from
remotely-sensed observations. ET is calculated by scaling PET estimated from Moderate Resolution
Imaging Spectroradiometer (MODIS) products with downscaled soil moisture derived using the
Soil Moisture Ocean Salinity (SMOS) satellite and a second order polynomial regression formula.
The MODis-Soil Moisture ET (MOD-SMET) estimates are validated using four flux tower sites
in southern Arizona USA, a calibrated empirical ET model, and model output from Version 2 of
the North American Land Data Assimilation System (NLDAS-2). Validation against daily eddy
covariance ET indicates correlations between 0.63 and 0.83 and root mean square errors (RMSE)
between 40 and 96 W/m?. MOD-SMET estimates compare well to the calibrated empirical ET model,
with a —0.14 difference in correlation between sites, on average. By comparison, NLDAS-2 models
underestimate daily ET compared to both flux towers and MOD-SMET estimates. Our analysis
shows the MOD-SMET approach to be effective for estimating ET. Because it requires limited
ancillary ground-based data and no site-specific calibration, the method is applicable to regions
where ground-based measurements are not available.
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1. Introduction

Evapotranspiration (ET) is fundamental to understanding the regional water balance, particularly
in semiarid and arid regions where ecosystem processes are often limited by the availability of water
and where water loss is dominated by ET [1]. However, ET remains one of the most challenging
surface fluxes to estimate due to its dependence on numerous climatological parameters as well as
physical soil properties and land cover [2—4].

Conventional ground-based ET measurement techniques (eddy covariance, Bowen ratio) are
constrained to relatively small homogeneous footprints that rarely exceed 1-2 km [5,6]. As such,
they are limited in their capability to estimate fluxes on larger spatial scales due to the inherent
heterogeneity of the land surface and hydroclimatological forcing. Alternatively, different methods
have been proposed to estimate ET through satellite remote sensing which allows acquisition of
large-scale distributed data at various spatial and temporal resolutions. These methods vary in
complexity, with tradeoffs between empirical and physically-based models [7]. Methods include
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the Surface Energy Balance Algorithm for Land (SEBAL) [8-10], Mapping EvapoTranspiration at
high resolution with Internalized Calibration (METRIC) [11], the Atmosphere-Land Exchange Inverse
(ALEXI) model [12], the operational Simplified Surface Energy Balance (SSEB,,) model [13,14], and
temperature-vegetation indices (Ts-VI) triangular and trapezoidal methods [15-19].

Residual methods, such as SEBAL and METRIC, perform well when applied at the field
scale [8-10,20,21]. However, they require specifications of representative hot/dry and wet/cool pixels
within the image to determine model parameters, use surface measurements for internal calibration,
and must be applied over a flat surface representing full hydrological contrast. Methods such as
METRIC are sensitive to meteorological input and have been found to be unsuitable for estimating
ET when ground data are limited [22]. Most SEB-based models report overestimation of ET in
moisture limited systems due to an incorrect partitioning of latent and sensible heat fluxes [23-25].
In this method, the individual effects of soil moisture, soil evaporation, transpiration and interception
are implicitly incorporated into the satellite remotely-sensed land surface temperature variable.
While viable in energy limited systems, this approach becomes an issue in systems where soil water
availability becomes the limiting factor for ET.

In order to capture the individual effects of soil moisture, soil evaporation, and transpiration,
many agro-hydrologic studies utilize ground-based soil water content as a stress function to reduce
potential ET (PET) to actual ET (ET) at the point or field scale [12,26-30]. Stress functions take varying
forms, including linear [31], piecewise linear or threshold [32], or non-linear [33]. Each is dependent
on soil textural properties, vegetation type, model pixel size, and sub-pixel heterogeneity of the
surface soil conditions, while also varying considerably in model complexity [34]. Linear functions are
preferred when application is performed over a large region. This is due to a constant sensitivity to
soil moisture and less detailed information about soil properties being required [35,36].

With recent advances in microwave radiometry, it is possible to measure near-surface soil
moisture from remote sensing platforms. Various studies have used this approach as an alternative
to ground-based soil moisture to estimate ET [37—40]. Specifically, Choi et al. [40] reported slightly
improved temporal variability in ET when compared to ET estimates made using ground-based soil
moisture. Similar results were reported in Gokmen et al. [37], where soil moisture stress was integrated
into a SEBS model by modifying canopy and soil resistance terms within the sensible heat calculation.
While initial attempts at incorporating remotely sensed soil moisture information as input to estimate
ET provides promising results, many approaches continue to require or use a combination of ancillary
ground-based data and/or coarse spatial resolution (~25 km) soil moisture estimates derived from
C-band frequencies.

The objective of the current study is to develop an ET product derived solely from remotely sensed
observations that can be used to better understand regional patterns of ET. PET is calculated using an
approach first proposed by Kim and Hogue [41] with input parameters from MODIS. PET is then scaled
using downscaled soil moisture estimated from the Soil Moisture Ocean Salinity (SMOS) satellite using
a second order polynomial regression formula which parameterizes soil moisture based on the triangle
technique relating land surface temperature (LST) and a vegetation index (VI) [15,42-44]. The approach,
specified as MOD-SMET (MODis-Soil Moisture ET), is tested and validated by comparing simulated
daily average ET to both eddy covariance stations installed in southeastern Arizona, USA, as well
as a calibrated empirical eight-day average ET model, created specifically for the region [45,46].
An additional comparison is made to two land surface model (LSM) outputs derived through the
phase 2 National Land Data Assimilation System (NLDAS-2). LSMs considered include the Noah and
Mosaic models. Comparisons are made during the year 2013 because of reliable in situ and remotely
sensed datasets acquired during the time span, providing a robust dataset required for a proof of
concept. Our goal is to develop an ET product that directly accounts for soil moisture limitations
without the need for ground-based observations so as to make the final ET product easily transferable
to ungauged basins.
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2. Study Area

The study area is located in southeastern Arizona in the American Southwest (Figure 1). The area
of the region is roughly 6650 km?, with latitude and longitude ranging from 31.94° to 31.37°N and
109.86° to 110.90°W, respectively. The main land cover types include shrub/scrub land (84%), evergreen
forest (11%), grassland/herbaceous (2%) and areas of developed open space (1.5%) [47]. Surface
elevation ranges from 830 to 2890 m. The climate is classified as semiarid, with over half of the rainfall
occurring between July and September during the North American monsoon (NAM) [48]. Precipitation
during the NAM is characterized by local, short-duration, high-intensity convective thunderstorms,
which closely correlate with ecosystem flux responses and surface soil moisture distributions. For the
study year (2013), the NAM began on 5 July and ended on 30 September [49].
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Figure 1. Region of interest in southern Arizona with flux tower site locations: (A) Lucky
Hills (US-Whs); (B) Santa Rita-Mesquite (US-SRM); (C) Kendall Grassland (US-Wkg); and (D)
Charleston-Mesquite (US-CMW), and vegetation characteristics derived from the National Land
Cover Database [40].

Four eddy covariance flux tower sites were used for initial validation (Table 1). Two of the
AmeriFlux tower sites (Lucky Hills (US-Whs) and Kendall Grassland (US-Wkg)) are located within the
USDA-ARS Walnut Gulch Experimental Watershed (WGEW). Lucky Hills (US-Whs) is surrounded by a
diverse stand of Chihuahuan Desert shrubland species that dominate the area [50]. Kendall Grassland
(US-Wkg) consists mainly of C4 grasses with a few scattered shrubs [51]. Vegetation surrounding
Santa Rita—Creosote (US-SRC), which is located within the Santa Rita Experimental Range (SRER), is
primarily mature creosote bush [52]. Vegetation at the Charleston Mesquite Woodland (US-CMW) site
is predominantly dense mesquite-dominated riparian woodland with a maximum vegetation height
of 10 m [53]. Vegetation water use at this site is supplemented by groundwater.

Table 1. Details of eddy covariance tower validation sites used in this study.

Digital Object Longitude Measurement

Site Identifier (DOI) Latitude (deg) (deg) Height (m) Land Cover
Lucky Hills (Whs) 10.17190/ AMF /1246113 31.749 —110.052 6.4 Open Shrublands
Santa Rita—Mesquite (SRM) 10.17190/ AMF /1246104 31.822 —110.867 7.8 Woody Savannas
Charleston-Mesquite (CMW) NA 31.664 —110.178 14.0 Riparian Woodland
Kendall Grassland (Wkg) 10.17190/ AMF /1246112 31.738 —109.943 6.4 Grassland
3. Datasets

3.1. In Situ Measurements

Ground-based ET measurements were collected using the eddy covariance (EC) technique from
micrometeorological towers located at each site [51]. These provide estimates of ET over footprint
areas of several thousand square meters at each tower site [54] (Glenn et al., 2015). The EC method
consists of three-dimensional, sonic anemometers (CSAT-3; Campbell Scientific) and open-path infrared
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gas analyzers (LI-7500, LI-COR) used to measure the wind velocity vector, sonic temperature and
concentrations of water vapor and carbon dioxide. Data were sampled at 10 Hz and statistics calculated
for 30-min blocks. Previous work indicates latent heat flux (LE) from EC towers may be systematically
underestimated in the region due to the lack of energy balance closure [51]. Hence, we correct eddy
flux measurements for closure errors using a strategy proposed Twine et al. [55]. Observed sensible
and latent heat fluxes are modified so as to sum to the available energy (R,—G) yet retain the observed
Bowen ratio. Ground-based volumetric soil moisture content (m3/m?) was estimated using Campbell
Scientific CS616 water content reflectometers (Campbell Scientific, Inc.) [56]. Installation depths vary
slightly between sites, with surface depths between 2.5 and 5 cm and subsurface depths (defined as
root zone depth) between 12.5 and 15 cm.

3.2. Satellite Observations (SMOS and MODIS)

3.2.1. SMOS Satellite Observations

SMOS data consist of soil moisture estimates from the Level 3 (L3) product created by the best
estimation of soil moisture and dielectric constant based on a minimization of a data quality index
(DQX), as well as through temporal and/or spatial resampling or processing (Centre Aval de Traitment
des Donnees SMOS (CATDS); http://catds/ifremer.fr/). Spatial resampling creates a 25 km spatial
resolution soil moisture product with an intended accuracy of at least 0.04 m3/m?3 [57,58]. SMOS
provides an added benefit to additional soil moisture satellites such as AMSR-E, and its successor,
AMSR?2, by measuring soil moisture in the L-band (~1-2 GHz) microwave frequency. Frequencies in
the L-band are preferred as they are more sensitive to changes in soil moisture [59], less susceptible
to attenuation due to the atmosphere or vegetation compared to higher frequencies such as C-band
(AMSR-E and AMSR?2) [60,61], and penetrate to greater depths within the surface layer than shorter
wavelengths [62]. SMOS has also been found to provide improved soil moisture estimates in southern
Arizona when compared to AMSR-2 and regional flux towers [63]. SMOS has a sun-synchronous
orbit with local equatorial crossing times of approximately 6:00 a.m. and 6:00 p.m. in ascending
and descending nodes, respectively [64]. The ascending (6:00 a.m.) node is used in the current
study because surface soil layer conditions are expected to be closest to thermal equilibrium at this
time [58,65,66]. SMOS soil moisture data are discarded when the quality of retrieval is poor (DQX
greater than 0.07), the soil moisture value is negative, or the retrieval has failed. Radio Frequency
Interference (RFI), the contamination of microwave observations, has been reported as a nonissue in
the region of interest over the same time period [63].

3.2.2. Moderate Resolution Imaging Spectroradiometer (MODIS) Observations

Combinations of seven variables obtained from the MODIS Terra platform are used in the
current study to derive both PET and downscaled soil moisture. Products include daily land surface
temperature (LST) (MOD11_L2), daily emissivity (MOD11_L2), height above geoid (MODO03), daily
water vapor (MODO05), daily atmospheric profile (MOD07_L2), eight-day composite albedo (MCD43B3),
and 16-day composite NDVI (MOD13A2/MYD13A2). Due to the optimization of enhanced vegetation
index (EVI) in improving the vegetation signal and reducing soil background influence in semi-arid
regions, we substitute NDVI for EVI [67]. The phasing of both Terra and Aqua EVI products generates
a combined eight-day time series of vegetation indices. In the current study, we utilize a solar zenith
angle equal to local solar noon and an optical depth of 0.2 as default values when calculating blue-sky
albedo based on a known black-and-white sky albedo. All MODIS products are acquired at 1 km
resolution from the NASA Reverb ECHO site (http:/ /reverb.echo.nasa.gov/reverb) in the standard
hierarchical data format (HDF) for the year 2013. As with the SMOS dataset, MODIS variables
indicating poor quality, failed retrieval, or contamination were omitted prior to the calculation of
subsequent parameters.
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3.3. Empirical ET Model

In addition to flux tower observations, MOD-SMET is also compared to an empirically derived
ET at all four study sites. While many empirical ET models exist [68-71], the current study utilizes a
model introduced by Scott et al. [45] and later adjusted by Bunting et al. [46] due to its dependence on
only satellite derived parameters. The model follows the form:

ET = a(l — e_bEVI> + c(edLST) +e, @D

where a, b, ¢, d, and e are calibrated coefficients, and LST and EVI are nighttime land
surface temperature and enhanced vegetation index, respectively, acquired from MODIS products.
Adjustments of Equation (1) by Bunting et al. [46] led to numerous formulations requiring LST,
a normalized version of EVI, and/or precipitation, depending on the site used for calibration.
Models with best performance under either a riparian or upland classification, as determined by
Bunting et al. [46], were used in the current study (Equations (2) and (3)).

ET(riparian) = 1.109(1 — e~ 3464EVI") (007LST) 4 0 062, )

ET(upland) = 6.93(EVI) + 0.017(PPT) — 0.507, ®)

EVI* is a normalized eight-day composite EVI, LST is the land surface temperature, and PPT is
an eight-day total precipitation (mm). In the current study, an eight-day composite nighttime LST is
derived from MOD11A2, while the eight-day composite EVI is derived using both MOD13A2 and
MYD13A2 as described in Section 3.2.2 and in Bunting et al. [46]. The eight-day total precipitation is
obtained from each flux tower site. All models were chosen as they have been calibrated specifically
for three of the four sites currently under investigation. Upland sites include Wkg, SRM, and Whs and
will thus be estimated using Equation (3). Riparian site CMW will be estimated using Equation (2).
The eight-day empirically derived ET will be referred to as ES-ET.

3.4. NLDAS-2 Models

NLDAS-2 provides distributed hydrometeorological products over the contiguous United States
at ~12.5 km spatial resolution. NLDAS-2 forcing data consist of downward shortwave radiation,
downward longwave radiation, 2 m air temperature, 2 m air specific humidity, precipitation, surface
pressure, and 10 m wind speed and is used to drive four corresponding land surface models (LSMs).
Subsequently, each LSM produces state variables and water and energy fluxes, such as ET. LSMs
within NLDAS-2 include the Noah model [34], the Variable Infiltration Capacity (VIC) model [72],
Mosaic model [73], and the Sacramento Soil Moisture Accounting (SAC-SMA) model [74].

The SAC-SMA uses a climatologically based PET with seasonal variation (but no intra-monthly or
inter-annual variation) [75,76]. Due to the poor representation of intra-annual variation, the SAC-SMA
is not included in the current study. In addition, preliminary analysis also indicated considerable
underestimation of ET from VIC model simulations (not shown). Hence, the LSMs included for
comparison are the Mosaic and Noah models. Derivation of ET from Mosaic and Noah are expressed
as the combination of direct evaporation from the soil surface, transpiration via canopy and roots, and
evaporation of precipitation intercepted by the canopy. Major differences between model ET estimates
originate from differences in defined root-zone depths, which affect the magnitude of transpiration
via canopy and roots. Depths range from 1 m for short vegetation to 2 m for short trees and woody
vegetation in the Noah model and 40 cm for all vegetation types within the Mosaic model. For further
details, see Chen et al. [34] for the Noah model and Koster et al. [73] for the Mosaic model.
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4. Methodology

4.1. PET Estimation

PET is calculated using Kim and Hogue [41] and the Priestley—Taylor equation (Equation (4)),
written as:

PET:aAiy(Rn—G), @)
where PET is the daily average potential ET (in flux units of W/m?), A is the slope of saturated vapor
pressure versus temperature (kPa/K), R, is the daily average net radiation (W/m?), G is the daily
average ground heat flux (W/m?), v is the psychrometric constant (kPa/K), and « is an empirical
factor known as the Priestley-Taylor constant. A value of 1.26 is used in the current study as it best
describes ET from a variety of well-watered vegetated and water surfaces (i.e., PET) [77]. Despite
the simplicity of the Priestley—Taylor approach (neglects influence of vapor deficit, primarily relying
on radiation and temperature as proxies), it has been used extensively and has shown to provide
reasonable estimates for agricultural and hydrologic studies [78-80]. Priestley—Taylor estimates have
also been found to correlate to Penman-based PET estimates, a more advanced resistance-based
model [81,82]. The Priestley-Taylor method is advantageous for this study because it satisfies our
constraint that each formula variable can be derived from satellite remote sensing information.
Instantaneous net radiation is estimated through the energy balance formulation (Equation (5)),
written as:
Rn,inst = (1 - Alb)st + le,down - le,up/ ®)

where Ry, ingt is the instantaneous net radiation, Alb is the surface albedo (MCD43B3), R,y is the instant
downward shortwave radiation, and Ryy,down and Ry, yp are instant downward and upward longwave
radiation, respectively. Estimation of downward shortwave radiation stems from Zillman [83] and
modifications by Bisht and Bras [84]. This parameterization scheme uses near surface vapor pressure
(eg) (MODO07 and MODO05) and solar zenith angle (8) (MODO3) to estimate downward shortwave

radiation as follows:
Sp cos?(0)

Rsw = ,
S 1.085cos(0) +en(2.7 + cos(0)) x 1073 + B

(6)

where Sy is the solar constant at the top of the atmosphere (1367 W-m~2) and B is an empirical
coefficient determined to be 0.2 by Niemeli et al. [85] and Bisht et al. [86]. Upward longwave radiation
is expressed using the Stefan-Boltzman equation:

le,up = 8SO-TASL/ )

where &5 is the surface emissivity (MODI11), o is the Stefan-Boltzman constant
(5.67 x 1078 W-m~2.K™%), and T is the surface temperature (K) (MOD11). Downward longwave
radiation is based on a parameterization scheme by Brutsaert [87] and is estimated as:

le,down = an-Tgl (8)

where ¢, is the air emissivity (determined by water vapor pressure (MODO05) and air temperature
(MOD07)), and T, is interpolated air temperature (K) (MODO07). Equations (6)—(8) are used within
Equation (5) to determine instantaneous net radiation at time of satellite overpass. Instantaneous
net radiation estimates are converted to daily average net radiation (Rn,daily) through a sinusoidal
function that assumes R, values become positive at sunrise and begin to decline at sunset
(Equations (9)) [41,86,88].

2
Rn,daily = Rn,inst — - ’ )
sin ( ( i — tsunrise ) ﬂ)

tsunset — tsunrise
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Ry, daily and Ry inst are daily and instantaneous net radiation, respectively, tsunrise and tsunset are
sunrise and sunset times obtained from the U.S. Naval Observatory, and t; is the satellite overpass time.

Ground heat flux (G) is estimated through an empirical formulation as a fraction of daily
net radiation, utilizing radiometric surface temperature, surface albedo, and EVI as proposed by
Bastiannssen [10] (Equation (10)).

T
G = Ry daily <Afb (0.0038A1b + 0.0074A1b2) (1 - 0.98EVI4) ) (10)

In the current study, T; is a radiometric surface temperature derived from MOD11 in degrees
Celsius, Alb is the surface albedo (MCD43B3), and EVI is the Enhanced Vegetation Index (MOD13A2
and MYD13A2) (replacing the originally utilized NDVI in Bastiannssen [10]).

Lastly, slope of the saturation vapor pressure versus temperature (A) is calculated as:

A A4098e a1
(237.5 + Ta)*’

where T, is interpolated air temperature (°C) (MODO07) and e is the saturated vapor pressure (kPa)
written as:

(12)

17.27T
es = 0.6108 exp( 2 )

2373 + Ta

4.2. Soil Moisture Estimation

Daily downscaled soil moisture estimates at a 1 km? spatial resolution are derived through
a second order polynomial regression formula relating soil moisture availability, land surface
temperature (Ts), and vegetation indices [15,42-44]. The regression relation, proposed by
Carlson et al. [15], can be written as:
_ \i=2 yj=2 *T %]
Gsfc = 21:0 0 aijEVI Ts , (13)
where 0Oy, is the estimated soil moisture, aj; are the model fitting coefficients, and EVI* and T* are

the normalized enhanced vegetation index (MOD13A2/MYD13A2) and normalized land surface
temperature (MOD11), respectively, defined as:

EVI — EVl,
EVI* = 14
EVImax — EVImin, ( )
TS — Tsmin
ST = ————, 15
Tsmax - Tsm'm ( )

where EVI,;, and EVIax are the minimum and maximum MODIS-derived EVI values determined
over the study domain, and similarly, where T i and Ts max are the minimum and maximum MODIS
derived Ts values determined over the study domain. This approach, and similar variations, has been
applied in many regions across the globe with promising results [42-44,89,90]. Specifically, the method
above was shown to provide reasonable downscaled surface soil moisture estimates in the southern
Arizona region by Knipper et al. [63]. Information on saturated and residual soil moisture content (Bsat
and 0Oy, respectively) were spatially derived through STATSGO soil texture data using established
pedo-transfer functions [91,92] to calculate topsoil effective saturation (O e ) at 1 km grid using the
following equation first proposed by van Genuchten [93]:

esfc — 9res

) 16
esat - eres ( )

e:sfc,eff =
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where Ogfc eff, Osfe, Ores, and Osat represent the effective saturation, downscaled soil moisture estimates,
and residual and saturated moisture content at 1 km pixel, respectively.

4.3. Actual Evapotranspiration

ET is derived using PET and a simple soil moisture function, f(6) [91] (Equation (16)):
ET = {(0)PET, (17)

where ET is the actual evapotranspiration and the soil moisture function, f(0), is a dimensionless
variable estimated by a simple linear model:

9I‘Z

C

(18)
where 0., is the volumetric soil moisture content at root zone depth and 0y, is the field capacity derived
spatially though STATSGO soil texture using established pedo-transfer functions [38,91]. The root zone
soil moisture (6y;) is estimated using a methodology presented by Bastiaanssen et al. [38], in which
subsurface saturation is derived through an empirical relationship between Leaf Area Index (LAI) and
remotely-sensed surface soil moisture. In the original formulation proposed by Bastiaanssen et al. [38],
LAl is calculated using the Normalized Difference Vegetation Index (NDVI) and remotely-sensed
surface moisture is obtained through estimates made by the AMSR-E satellite. In the current study,
we substitute MODIS derived EVI for LAI as EVI has been found to be more responsive to canopy
structural variations and is optimized to improve vegetation signal and reduce soil background
influence [67]. Moreover, EVI was found to better correlate with observed sub-surface soil moisture
estimates taken at root zone over the current study region. We also substitute derived 1 km effective
saturation (Ogg. off) for AMSR-E soil moisture estimates given the improvement SMOS estimates have
shown over AMSR derived estimates in the region [63]. Root zone soil moisture is then estimated as:

0, = 0.1EVI* + (1 — 0.1EVI*) (1 — exp(Ogge s (—0.5EVI* — 1))), (19)

where 0., represents the root zone soil moisture, EVI* is a normalized EVI (Equation (14)), and O eff
is the 1 km effective saturation derived using SMOS soil moisture estimates as described in Section 4.2.

5. Results and Discussion

5.1. Annual Total Actual Evapotranspiration Estimates

Spatial distribution of annual MOD-SMET ET for the study region is estimated between
300 mm/year and 1500 mm/year, depending on local physical attributes such as vegetation
and soil physical parameters (Figure 2). Computation of annual ET from MOD-SMET involves
linear interpolation, where ET values for unavailable dates (due to error in the remote sensor
or cloud-contaminated images) are linearly interpolated between two image acquisition dates.
This method is generally suitable when remotely sensed images are available at regular intervals
and each image captures the overall pattern of variation in ET [94]. For more information regarding
interpolation between clear sky days, please refer to Singh et al. [94]. Time between cloud/error
free images is six days on average (standard deviation of five days), with the largest gaps in data
occurring during the monsoon season where cloudy days increase significantly. Daily ET values are
then summed to an annual total ET estimate at 1 km? spatial resolution (Figure 2).
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Figure 2. MODis-Soil Moisture ET (MOD-SMET) estimated cumulative actual evapotranspiration (mm)
for the year 2013 (top) and land cover classification from NLCD [40] for the same region.

MOD-SMET shows varying ET patterns within the region of interest (Figure 2). As expected,
regions of bare soil or minimal vegetation have the lowest mean annual total ET (<400 mm/year),
with regions defined by more expansive vegetation and increased soil moisture availability reporting
higher mean annual total ET (>1100 mm/year) (Figure 2; Table 2). Large standard deviations (wide
spatial variations) are also reported for each land cover class (Table 2), with values of 248 mm for
evergreen forest, 224 mm for shrub/scrubland, and 210 mm for grassland. These three specific land
use/land cover types were chosen as they make up 97% of the total land use/land cover of the study
area. As noted in Singh et al. [94], this large variability in mean annual ET for each specific land
use/land cover classification may be attributed to the thematic accuracy of the NLCD map, where land
cover classes may be misclassified, resulting in a wide range of annual ET. An additional source of
spatial variability in ET between land cover classes may be due to the convective and episodic nature
of summer precipitation in the region and the subsequent role moisture pulses have in the ET flux
over the region [50,95,96]. Regions such as southern Arizona exhibit significant spatial trends and
variability in precipitation at the annual scale [97], thus contributing to large variability in ET.

Table 2. Annual evapotranspiration (mm) from MOD-SMET during 2013 for top three National Land
Cover Database [40] land use/land cover within the study area.

Land Use/Land Cover Mean Annual ET (mm) Standard Deviation (mm)
Evergreen Forest 1050 248
Shrub/Scrub 713 224
Grassland 647 210

A histogram of annual ET for the three specified land use/land cover classes shows large spatial
variability (Figure 3). Roughly a quarter of the evergreen forests report an annual ET between 900 and
1000 mm/year, with another quarter attributing to estimates greater than 1200 mm/year (Figure 3).
Shrub/scrubland, which accounts for an overwhelming majority of the region (84%), shows the largest
spatial variability, with roughly 20% of pixels having annual total ET rates of either 400-500 mm/year or
700-900 mm/year. About half of the grassland (53%) has an annual ET between 400 and 600 mm/ year,
with 30% of pixels reporting estimates of 800-900 mm /year.
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Figure 3. Histogram of the annual total ET for selected land cover classes evergreen forest,
shrub/scrubland, and grassland within the study domain.

Values reported here are larger than those reported by Singh et al. [94], where a similar analysis
was performed for the Colorado River Basin using the operational Simplified Surface Energy Balance
(SSEBop) model [14]. Singh et al. [94] used a larger study domain, including regions in the more
northern latitudes. These northern regions contain portions of Colorado and the Colorado Rockies.
In comparison with southern Arizona, these regions experience cooler temperatures, a winter
(non-growing) season, and receive reduced radiation. These differences may explain the lower annual
total ET estimates from Singh et al. [94]. It is important to note, however, that the region of interest in
the current study is characterized as a water limited system. Therefore, amplified radiation or surface
temperatures over the study domain in comparison to more northern latitude regions do not directly
imply an increase in ET.

High annual total ET over a majority of the study region are attributed to the influence of land
surface temperature and vegetation greenness in the MOD-SMET derivation. These remotely sensed
parameters remain elevated (especially MODIS-derived EVI due to its eight-day revisit time) during
portions of the year where observed ET rates are much more variable, likely propagating into larger
than expected annual totals. For example, an increase in duration between clear-sky days during the
monsoonal period (increase in cloud cover) is likely to cause elevated estimates of ET for interpolated
days that may not be representative. High evaporative demand and precipitation characterized by
local, short-duration convective thunderstorms can cause rapid changes in soil moisture status and
ET rates between satellite overpass times. Due to the increase in duration between clear-sky days
during this time period, MOD-SMET is unable to capture the variability of ET occurring at the surface,
including precipitation free days that likely exhibit drier conditions and subsequently lower ET rates.
Interpolation related issues will be further discussed when comparing MOD-SMET to flux tower
estimates at the point scale.

5.2. Soil Moisture Analysis

Analysis is also undertaken to better understand the role of subsurface soil moisture in
MOD-SMET estimates. Observed subsurface estimates are reported at 10 cm for SRM and 15 cm for
sites Whs, Wkg, and CMW. Most soil moisture dynamics and roughly 70% of the total root mass in the
soil in the region is confined to depths shallower than 15 cm [50,98]. As such, observed subsurface
depths between 10 and 15 cm are defined as representative of root zone soil moisture in the current
study. One exception to this, however, is the trees at CMW that have been shown to access substantial
quantities of groundwater at 11 m depth [53].
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Examination of the influence of soil water availability on ET indicates a positive correlation
between observed root zone soil moisture and observed ET at sites Whs, SRM, and Wkg (Figure 4, top
row). However, the riparian site CMW indicates an insignificant negative correlation (—0.08) when
comparing in situ subsurface soil moisture to observed ET. This is likely attributed to the vegetation at
the site and its ability to access groundwater at greater depths, as previously mentioned. Comparison
between modeled subsurface soil moisture and its influence on MOD-SMET estimates indicate similar
trends to observed, with positive correlations present at all sites, including CMW (Figure 4, bottom
row). The positive correlation at CMW between modeled subsurface soil moisture and MOD-SMET is
likely due to pixel heterogeneity and inclusion of non-riparian surface estimates within the MOD-SMET
pixel. This concept of pixel inclusion at CMW will be further elaborated on in subsequent sections.
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Figure 4. (Top Row) Comparison between observed sub-surface soil moisture (m3/m3) and observed
ET (W/m?) at sites Whs, SRM, Wkg, and CMW for year 2013. (Bottom Row) Comparison between
modeled subsurface soil moisture and MOD-SMET ET estimates at sites Whs, SRM, Wkg, and CMW
for year 2013.

A spatial analysis of the correlation between derived subsurface soil moisture and MOD-SMET is
also performed to understand where subsurface soil moisture has the most influence on derived ET
estimates (Figure 5). Higher correlations are found in regions of minimal or less healthy vegetation
(lower values of vegetation indices) where soil water availability is likely more limited (Figure 5).
Lower correlations are present over regions with denser or healthier vegetation (higher values of
vegetation indices) and where soil water availability is likely less limited (Figure 5). These results are
consistent with prior studies, where positive correlations between soil moisture and ET are found
when soil water availability is insufficient [99-101].
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Figure 5. Spatial correlation coefficients between derived subsurface soil moisture and MOD-SMET ET
values over the entire study domain for year 2013.

Lower correlation over regions of denser or healthier vegetation may explain the overestimation
of ET in these regions. MOD-SMET is predicated on soil water availability being the limiting factor in
the ET estimation process (see Section 4.3). As such, the soil moisture function places a large amount of
weight on soil water availability in scaling PET (Equation (16)). However, in higher elevation evergreen
forest where we are seeing lower correlation, soil water availability is no longer the limiting factor.
Modeled subsurface soil moisture estimates in these regions are consistently larger than modeled
subsurface soil moisture estimates made in neighboring lower elevation shrub/scrubland pixels (not
shown). Therefore, given the formulation of MOD-SMET, ET is occurring closer to its potential rate in
these higher elevation, greener regions. It is also important to note the large variability in correlation
values for land cover defined as shrub/scrubland and grassland. Specifically, areas of shrub land
in the east central portion (directly on and east of the riparian corridor) or southwestern portion of
the study domain report lower correlations than areas of shrub land in the central and west central
portions of the region (Figure 5). Higher correlations reported over the central region of shrub/scrub
land are associated with more reasonable estimates of annual total ET for this type of land cover
(~400 mm/year) (Figure 2). Areas of decreased correlation show elevated estimates of annual total ET
(~700-900 mm /year) (Figure 2). Reported discrepancies or gaps in annual total ET for the same land
cover (shrub/scrub or grassland) is evident in the histogram provided in Figure 3 and may ultimately
lead to skewed high estimates of annual total ET for both land cover types. Differences in correlation
for defined land cover types are attributed to variations in soil physical parameters derived through
STATSGO soil texture data. Estimated soil moisture stress functions used to scale PET estimates are
consistently lower in regions associated with lower correlations, generating larger estimates of ET in
these regions.

5.3. Validation

5.3.1. Ground-Based Observations

Seasonal evolution of ET shows pre-monsoon conditions in May and June are characterized by
lower ET (Figure 6) with the exception of CMW where the vegetation has access to groundwater.
The onset of the monsoon season near the beginning of July causes greening and an observed increase
in ET. Evapotranspiration remains elevated during the monsoon season, with peak values occurring
around August before steadily declining following the monsoon. Although decreasing, post-monsoon
ET rates remain larger at CMW (Figure 6D) where the deep roots and near surface water table allow
transpiration to continue at higher rates after the monsoon season compared to upland sites Whs, SRM,
and Wkg (Figure 6A-C, respectively).
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Figure 6. Comparison between modeled ET (W/ m?2) and observed ET (W/m?) for sites: Whs (A);
SRM (B); Wkg (C); and CMW (D) for the year 2013.

Overall, modeled ET estimates compare well against observed values, with correlations ranging
from 0.63 to 0.83 and RMSE errors between 40 and 96 W/m? (Table 3). Sites Whs and Wkg show
slight positive bias over the entire time period (10 W/m? and 0.6 W/m?, respectively) while SRM
and CMW report considerable negative biases (—20 and —56 W/m?, respectively) over the same
period. MOD-SMET estimates compare much better to observed values during the drier portions of
the year (non-monsoon). RMSE errors decrease to between 8 and 26 W/m?, with the considerable
negative biases reported at SRM and CMW decreasing to —1.5 and —9.0 W/m?, respectively, during
the non-monsoon time period. Extremely low observed and modeled ET estimates at upland sites
Whs, SRM, and Wkg during the driest portion of the year (May and June) are likely due to the limited
vegetation cover and shallow rooted grasses and shrubs that dominate the areas surrounding each site,
subsequently resulting in extremely low observed and modeled ET estimates.

Both net radiation and air temperature are key variables in the ET (PET) scheme. We found
that each are well correlated to in situ observations, with correlation coefficients ranging from 0.67 to
0.79 for net radiation and 0.92-0.93 for air temperature. Positive bias in ET reported for Whs and
Wkg can be attributed to the positive bias in net radiation reported at each site (13 W/m? and
15 W/m?, respectively). Similarly, negative bias in ET reported for SRM and CMW coincides with
negative bias in derived net radiation (—9.0 W/ m? and —46 W/ mz). RMSE values range between
48 W/m? and 70 W/m? between sites, with the largest occurring at CMW. Due to sparse spatial
information surrounding each individual flux tower site, it is difficult to explicitly identify sources
of error and uncertainties. However, a clear source of uncertainty arises from the scale differences
between remotely-sensed satellite estimates and ground-based in situ measurements. In addition,
topographical effects and uncertainties stemming from instrumental measurements or satellite retrieval
are also a factor [102]. Relative to results from Kim and Hogue [4], which report RMSE and R values of
93 W/m? and 0.67, on average, when comparing similarly derived net radiation estimates at the same
study sites, results of the current study show relatively lower error and stronger correlation.
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Table 3. Correlation coefficient (R), root mean square error (RMSE) (W / m?), bias (W/m?), slope (-)
and intercept (W/ m?2) between observed ground-based ET estimates and MODIS ET, the eight-day
empirical model, Noah, and Mosaic models. For perfect agreement, slope = 1, intercept = 0.

Model SITE R () RMSE (W/m?)  Bias (W/m?) Slope (-) Intercept (W/m?)
Whs 0.77 49.0 10.0 132 —3.50
SRM 0.69 40.0 —20.0 0.61 —2.84
MOD-SMET Wkg 0.83 40.0 0.6 1.34 -15.0
CMW 0.63 96.0 ~56.0 0.46 44
Whs 0.85 11.8 238 0.61 11.6
Eight-Day SRM 0.86 13.2 -53 0.62 10.6
Empirical Model Wkg 0.89 16.6 —-10.7 0.45 2.0
CMW 0.89 24.8 7.0 1.20 -0.9
Whs 0.86 18.0 -55 0.55 7.7
Noah SRM 0.86 31.0 —20.0 0.30 4.0
oa Wkg 0.85 21.0 -9.7 0.49 8.1
CMW 0.76 61.0 —41.0 0.25 8.2
Whs 0.83 17.0 32 0.72 5.0
Mosai SRM 0.66 33.0 —-21.0 0.27 4.2
osaic Wkg 0.78 22,0 -8.1 0.63 47
CMW 0.66 61.0 —-39.0 0.31 55

As previously stated, riparian site CMW shows a negative bias (—56.0 W/m?) over the entire
study period. However, it can be seen that bias does not remain consistent, with lower bias
during the beginning and end of the year and a higher negative bias found prior to, during, and
shortly after the monsoon season (Figure 6D). Negative bias reported at CMW is attributed to an
observed underestimation of net radiation (—46 W/m?) from pixel heterogeneity. Site CMW features
predominant green leaves and dark woody stems with ample branching, leading to low albedo
and subsequently high observed net radiation values. However, the limited extent of the mesquite
woodland is considerably smaller than the 1 km? MODIS pixel size, allowing inclusion of higher albedo
land surfaces to skew net radiation towards lower values that are not representative of the riparian
region. Misrepresentation of net radiation during this time period leads to the underestimation of ET
reported at CMW (Figure 6D). In general, ET rates at CMW are consistently higher than those reported
at the other sites, reflecting the influence of a more consistent source of soil water. The regression
line between MOD-SMET and observed ET shows negative intercepts at upland sites Whs, SRM, and
Wkg (positive intercept reported at riparian site CMW) with slopes ranging between 0.46 and 1.34
(the smallest of the two, 0.46, occurring at CMW) (Table 3).

5.3.2. Eight-Day Empirical and NLDAS-2 Model Comparison

MOD-SMET and eight-day average E8-ET are compared against observed daily and eight-day
average observed ET, respectively (Figure 7). E8-ET shows stronger correlations between sites (0.87 on
average), while also reporting improved RMSE errors (16.6 W/m? on average) (Table 3). MOD-SMET
bias estimates are larger than those reported by E8-ET. Lower bias values reported by ES-ET may be due
to the use of precipitation within the empirical models specified for upland sites. ET is strongly coupled
to moisture pulses at these sites [50,95,96]. However, rapid changes in soil moisture due to frequent
dry antecedent conditions and/or high evaporative demand, which is characteristic of the region, can
cause rapid changes in soil moisture status between satellite overpass times. On average, slopes are
better for MOD-SMET (0.93 on average) when compared to E8-ET (0.72 on average). Intercept values
are positive for E8-ET at upland sites Whs, Wkg, and SRM, while being slightly negative at riparian
site CMW. The opposite trend is true for MOD-SMET, which reports negative intercept values at
upland sites and a positive slope at riparian site CMW. Despite larger RMSE errors and slightly lower
correlations, MOD-SMET provides valuable spatially distributed ET information on an improved
temporal scale (available daily when no clouds are present). It is also important to note that while
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MOD-SMET performs slightly worse than E8-ET, it does not require site specific calibration and can
therefore be more confidently applied for spatial analysis compared to ES-ET.
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Figure 7. Comparison between daily average modeled ET and observed daily ET (inset) and eight-day
average empirical ET to observed eight-day average ET for sites: Whs (A); SRM (B); Wkg (C); and
CMW (D).

Further comparison to NLDAS-2 modeled ET indicates negative bias in both models tested
(Noah and Mosaic) at all flux tower sites (Figure 8). Similar biases are observed for the Noah and
Mosaic models, with average values of —19.0 W/m? and —17.8 W/m?, respectively, between sites
(Table 3). Noah shows the best correlations (0.83 on average) while reporting a similar RMSE to Mosaic
(32.8 W/m? on average for Noah and 33.3 W/m? for Mosaic). Slopes for both are much lower than
those reported by MOD-SMET (0.40 and 0.48 for Noah and Mosaic on average, respectively), with
small positive intercepts indicative of their negative bias and overall underestimation of ET. Mosaic
consistently simulates higher ET values, followed by Noah modeled ET. This is likely attributed to a
shallower root zone soil moisture depth defined by Mosaic, which better matches the true root zone
soil moisture in the region. These findings are consistent with those reported by Xia et al. [75], who
performed an analysis comparing ET climatologies for both LSMs over six different regions in the
United States.

A comparison between annual total ET for each study site indicates MOD-SMET best represents
annual ET at sites Whs (2% difference) and CMW (17% difference) (Table 4). MOD-SMET largely
overestimates annual total ET at Whs, where all three additional models perform relatively well
(19% difference on average between Noah, Mosaic, and E8-ET modeled estimates). Both Noah and
Mosaic severely underestimate annual totals at riparian site CMW (Table 4). By contrast, E8-ET shows
a slightly closer estimate, which is likely attributed to the site specific calibration performed in E8-ET.
MOD-SMET estimates show the lowest percent difference to observed annual total ET when averaged
over all sites (37% difference on average between sites), followed by E8-ET (49% difference on average
between sites). However, the distinction between MOD-SMET estimates and the additional three
models is the positive bias in MOD-SMET (as noted in Section 5.2). This is most evident at sites Whs
and Wkg, where estimated annual total ET is roughly double that of observations. Conversely, SRM
does not show a large positive bias in MOD-SMET annual total ET. Discrepancies between Whs/Wkg
and SRM originate from differences in both MODIS-derived albedo values and estimated soil physical
properties. MODIS-derived albedo estimates at and surrounding sites Whs and Wkg are, on average,
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20% lower than values reported for SRM. Lower albedo estimates contribute to an increase in net
radiation, and by association, PET and subsequently ET. Moreover, estimated soil properties derived
through STATSGO soil texture data differ between SRM and Whs/Wkg. Specifically, the derived soil
moisture stress function used to scale PET reports consistently larger values at SRM when compared
to the same soil moisture stress function derived for Whs and Wkg, generating larger estimates of ET
at sites Whs and Wkg.
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Figure 8. Comparison between daily average ET estimates derived by NLDAS-2 Noah and Mosaic
models, as well as MOD-ET to observed daily average ET at sites: Whs (A); SRM (B); Wkg (C); and
CMW (D).

Table 4. Comparison of eddy covariance Tower ET with MOD-SMET, Noah, Mosaic, and E8-ET
calculated ET. Values are annual total ET estimates for year 2013 and standard errors are in parentheses.

Site Tower ET MOD-SMET Noah Mosaic ES8-ET
(mm/year) (mm/year) (mm/year) (mm/year) (mm/year)

Whs 359 (20) 763 (50) 292 (13) 323 (17) 281 (14)

SRM 387 (22) 395 (26) 168 (7) 160 (8) 230 (8)

Wkg 415 (21) 750 (50) 309 (12) 323 (17) 156 (7)

CMW 763 (40) 905 (55) 297 (12) 313 (18) 562 (32)

Again, we note the impact of increases in duration between clear-sky days during the monsoonal
period. Despite relative agreement between observed ET and MOD-SMET ET estimates during
the drier portions of the year (Figure 6), MOD-SMET tends to overestimate during the monsoon
period (for available days) (Figure 6). Larger data gaps in cloud-free images during the monsoonal
period is likely to cause elevated estimates for interpolated days, especially at sites Whs and Wkg.
Given the shallowness of infiltration, high evaporative demand, and precipitation that is characterized
by convective thunderstorms, it is likely that soil moisture and subsequently ET undergo rapid changes
between satellite overpass times. Due to an increase in duration between clear-sky days during the
monsoon season (as mentioned in Section 5.1), MOD-SMET is unable to capture the variability of
ET occurring at the surface, including precipitation free days that likely exhibit drier conditions and
subsequently lower ET rates.



Remote Sens. 2017, 9, 184 17 of 22

6. Conclusions

The current study develops a method to determine actual ET (MOD-SMET) using multi-platform
remote sensing products over a semiarid region, evaluating the product in southeastern Arizona
for 2013. Large spatial variations in total annual ET were observed, corresponding to vegetative
characteristics in the region. Despite well correlated spatial representation, MOD-SMET overestimates
annual total ET when compared to both observed estimates and previously published studies.
This may be attributed to both discrepancies in spatial soil physical properties for defined land
cover classification and an increase in duration between clear-sky days during the monsoonal period,
which causes elevated estimates of daily ET for interpolated days during this time period. As such,
optimal application of MOD-SMET occurs when the time between cloud-free images is minimal.
Spatial analysis between modeled subsurface soil moisture and MOD-SMET ET estimates indicate
increased correlations over regions of insufficient soil water availability. In contrast, lower correlations
are present over regions of sufficient soil water availability. Soil water availability is considered the
limiting factor in the MOD-SMET estimation process. However, in regions with higher soil moisture
relative to lower elevation shrubland, such as higher elevation forests, using soil water availability
as the limiting factor is less valid. Therefore, MOD-SMET assumes unrealistic ET rates closer to the
potential rate, leading to an overestimation in these regions. Regions defined as shrub/scrub land
report large variability in correlation between modeled subsurface soil moisture and MOD-SMET, with
areas reporting higher correlations coinciding with more reasonable estimates of annual total ET and
those areas reporting lower correlations coinciding with elevated estimates.

Point scale comparison indicates derived MOD-SMET values are well correlated with observed
values, while showing slight positive bias at Whs and Wkg and more pronounced negative bias at
SRM and CMW. Discrepancies between the sites are likely attributed to site specific vegetation and
soil properties, access to groundwater, and inclusion of pixel heterogeneity. This is most evident at
CMW, where the extent of the riparian vegetation is considerably smaller than the 1 km?> MODIS
pixel. MOD-SMET estimates compare slightly worse than those made by the eight-day empirical ET
model developed for this region. However, by comparison, MOD-SMET does not require site-specific
calibration and can be more confidently applied when requiring a spatial interpretation of ET rates
at the surface. NLDAS-2 LSM simulated ET shows negative bias at all sites, with Mosaic estimates
slightly less bias than those reported by Noah. This is likely attributed to a shallower root zone soil
moisture depth parameterized within Mosaic, which better matches root zone soil moisture in the
region. Similar to spatial annual total ET rates, MOD-SMET overestimates annual total ET at each
of the four sites. In contrast, Noah, Mosaic, and E8-ET all underestimate annual totals. MOD-SMET
reports the lowest percent difference between modeled total ET and observed on average between
the sites.

The developed approach shows that a simple ET model based on PET with a downscaled soil
moisture product is an effective alternative to more complex surface-atmosphere models for estimating
actual ET. Despite the limitation of only being available under clear sky conditions, the method
described here can still prove beneficial in an operational setting. Specifically, the method has the
ability to aid regional drought monitoring, improving water allocation and decision-making in a
region where water conservation is crucial. The proposed methodology also requires limited ancillary
ground-based data (only soil texture data from STATSGO is used), site specific calibration, or subjective
specifications, allowing it to be transferable to ungauged basins located in water-limited regions.
As such, the proposed method can help guide model validation and assimilation in data sparse regions,
allowing improved predictions of land-atmosphere interactions in semiarid regions.
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