An Adversarial Generative Network for Crop Classification from Remote Sensing Timeseries Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. GAN Embedded CNN and LSTM
3. Results and Discussion
3.1. Experiment Settings
3.2. Band Combination Selection
3.3. Acurracy Assessment of Crop Classification
3.4. Mapping Classification Result
3.5. Model Extensibility Verification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhai, Y.; Wang, N.; Zhang, L.; Hao, L.; Hao, C. Automatic crop classification in northeastern China by improved nonlinear dimensionality reduction for satellite image time series. Remote Sens. 2020, 12, 2726. [Google Scholar] [CrossRef]
- Bin, W.A.N.G.; Doglin, F.A.N. Research progress of deep learning in classification and recognition of remote sensing images. Bull. Surv. Mapp. 2019, 2, 99–102. [Google Scholar]
- Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [Google Scholar] [CrossRef]
- Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24. [Google Scholar]
- Mohd, H.I.; Pakhriazad, H.Z.; Shahrin, M.F. Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Geogr. Malays. J. Soc. Space 2009, 5, 1–10. [Google Scholar]
- Bazi, Y.; Melgani, F. Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Trans. Geosci. Remote. Sens. 2006, 44, 3374–3385. [Google Scholar] [CrossRef]
- Hui, C.; Huicheng, L. An improved BP neural network algorithm and its application. Comput. Simul. 2007, 24, 75–77. [Google Scholar]
- Liu, B.; Du, S.; Du, S.; Zhang, X. Incorporating deep features into GEOBIA paradigm for remote sensing imagery classification: A patch-based approach. Remote Sens. 2020, 12, 3007. [Google Scholar] [CrossRef]
- Gaoming, X.; Kai, H. The application of Tsinghua Sunway EPS software in the census of geographical conditions. Surv. Spat. Geogr. Inf. 2014, 37, 198–200. [Google Scholar]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Ina. Neural Inf. Process. Syst. 2012, 60, 1097–1105. [Google Scholar] [CrossRef]
- Masci, J.; Meier, U.; Cireşan, D.; Schmidhuber, J. Stacked convolutional auto-encoders for hierarchical feature extraction. In International Conference on Artificial Neural Networks, Proceedings of the 21st International Conference on Artificial Neural Networks, Espoo, Finland, 14–17 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 52–59. [Google Scholar]
- Zhang, D.; Wang, D. Relation classification via recurrent neural network. arXiv 2015, arXiv:1508.01006. [Google Scholar]
- Kaiyu, W.; Huihua, Y. Hyperspectral remote sensing image classification based on landmark spatial information. Vedio Eng. 2017, 41, 69–73. [Google Scholar]
- Cao, X.; Yao, J.; Xu, Z.; Meng, D. Hyperspectral Image Classification With Convolutional Neural Network and Active Learning. IEEE T. Geosci. Remote 2020, 58, 4604–4616. [Google Scholar] [CrossRef]
- Hsieh, T.-H.; Kiang, J.-F. Comparison of CNN algorithms on hyperspectral image classification in agricultural lands. Sensors 2020, 20, 1734. [Google Scholar] [CrossRef] [Green Version]
- Liang, P.; Shi, W.; Zhang, X. Remote sensing image classification based on stacked denoising autoencoder. Remote Sens. 2018, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Baatz, M.; Schäpe, A. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation. Available online: http://www.agit.at/papers/2000/baatz_FP_12.Pdf (accessed on 25 December 2020).
- Ebrahimi, J.; Dou, D. Chain based RNN for relation classification. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, CO, USA, 31 May–5 June 2015; pp. 1244–1249. [Google Scholar]
- Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the Advances in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–30 May 2013; pp. 6645–6649. [Google Scholar]
- Linzen, T.; Dupoux, E.; Goldberg, Y. Assessing the ability of LSTMs to learn syntax-sensitive dependencies. Trans. ACL 2016, 4, 521–535. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. arXiv 2015, arXiv:1502.04390. Available online: https://arxiv.org/abs/1502.04390v1 (accessed on 12 February 2015). [CrossRef] [PubMed] [Green Version]
- Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.H.; Di, L.P.; Fang, H. Using long short-term memory recurrent neural network in land cover classification on Landsat and Cropland data layer time series. Int. J. Remote Sens. 2019, 40, 593–614. [Google Scholar] [CrossRef]
- Zhang, G.; Rui, X.; Poslad, S.; Song, X.; Fan, Y.; Ma, Z. Large-Scale, Fine-Grained, Spatial, and Temporal. Sensors 2019, 19, 2156. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Zeng, J.; Wu, Y.; Liu, J.G.; Wang, L.; Hu, J. Learning and inference on generative adversarial quantum circuits. Phys. Rev. A 2019, 99, 052306. [Google Scholar] [CrossRef] [Green Version]
- USDA National Agricultural Statistics Service Cropland Data Layer. Published Crop-Specific Data Layer. Verified USDA-NASS, Washington, DC. 2019. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 10 May 2020).
- Johnson, D.M. Using the Landsat archive to map crop cover history across the United States. Remote Sens. Environ. 2019, 232, 111286. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.C.; Zhang, X. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 2017, 188, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training gans. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Barcelona, Spain, 4–9 December 2016; pp. 2234–2242. [Google Scholar]
- Roy, S.; Sangineto, E.; Sebe, N.; Demir, B. Semantic-fusion gans for semi-supervised satellite image classification. In Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 684–688. [Google Scholar]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 694–711. [Google Scholar]
- Bazi, Y.; Al Rahhal, M.M.; Alhichri, H.; Alajlan, N. Simple yet effective fine-tuning of deep CNNs using an auxiliary classification loss for remote sensing scene classification. Remote Sens. 2019, 11, 2908. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826. [Google Scholar]
- Ienco, D.; Gaetano, R.; Dupaquier, C.; Maurel, P. Land cover classification via multitemporal spatial data by deep recurrent neural networks. IEEE Geosci Remote Sens. Lett. 2017, 1685–1689. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, Z.; Zhao, X.; Shao, L. MapGAN: An intelligent generation model for network tile maps. Sensors 2020, 20, 3119. [Google Scholar] [CrossRef]
- Mao, X.D.; Li, Q.; Xie, H.R.; Raymond, Y.K.; Wang, Z.; Smalley, S.P. Least Squares Generative Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2794–2802. [Google Scholar]
- Liu, X.K.; Zhai, H.; Shen, Y.L.; Lou, B.K.; Jiang, C.M.; Li, T.Q.; Hussain, S.; Shen, G.L. Large-scale crop mapping from multisource remote sensing images in google earth engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 414–427. [Google Scholar] [CrossRef]
NO. | Band Combination | Crop | 22 July 2019 | 7 August 2019 | 24 September 2019 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Type | Corn Soybeans Others | Corn Soybeans Others | Corn Soybeans Others | ||||||||
1 | 5, 6, 4 | Corn | 1.00 | 1.86 | 1.93 | 1.00 | 1.73 | 1.87 | 1.00 | 1.79 | 1.82 |
Soybeans | 1.86 | 1.00 | 1.76 | 1.73 | 1.00 | 1.74 | 1.79 | 1.00 | 1.85 | ||
Others | 1.93 | 1.76 | 1.00 | 1.87 | 1.74 | 1.00 | 1.82 | 1.85 | 1.00 | ||
2 | 5, 6, 2 | Corn | 1.00 | 1.61 | 1.79 | 1.00 | 1.77 | 1.83 | 1.00 | 1.62 | 1.84 |
Soybeans | 1.61 | 1.00 | 1.68 | 1.77 | 1.00 | 1.81 | 1.62 | 1.00 | 1.59 | ||
Others | 1.79 | 1.68 | 1.00 | 1.83 | 1.81 | 1.00 | 1.84 | 1.59 | 1.00 | ||
3 | 4, 3, 2 | Corn | 1.00 | 1.50 | 1.62 | 1.00 | 1.66 | 1.72 | 1.00 | 1.57 | 1.54 |
Soybeans | 1.50 | 1.00 | 1.57 | 1.66 | 1.00 | 1.68 | 1.57 | 1.00 | 1.71 | ||
Others | 1.62 | 1.57 | 1.00 | 1.72 | 1.68 | 1.00 | 1.54 | 1.71 | 1.00 | ||
4. | 5, 4, 3 | Corn | 1.00 | 1.76 | 1.68 | 1.00 | 1.67 | 1.83 | 1.00 | 1.55 | 1.62 |
Soybeans | 1.76 | 1.00 | 1.53 | 1.67 | 1.00 | 1.57 | 1.55 | 1.00 | 1.64 | ||
Others | 1.68 | 1.53 | 1.00 | 1.83 | 1.57 | 1.00 | 1.62 | 1.64 | 1.00 | ||
5 | 1, 2, 3 | Corn | 1.00 | 1.58 | 1.65 | 1.00 | 1.75 | 1.49 | 1.00 | 1.60 | 1.67 |
Soybeans | 1.58 | 1.00 | 1.47 | 1.75 | 1.00 | 1.56 | 1.60 | 1.00 | 1.53 | ||
Others | 1.65 | 1.47 | 1.00 | 1.49 | 1.56 | 1.00 | 1.67 | 1.53 | 1.00 | ||
6 | 5, 4, 1 | Corn | 1.00 | 1.21 | 1.83 | 1.00 | 1.42 | 1.56 | 1.00 | 1.51 | 1.68 |
Soybeans | 1.21 | 1.00 | 1.47 | 1.42 | 1.00 | 1.63 | 1.51 | 1.00 | 1.61 | ||
Others | 1.83 | 1.47 | 1.00 | 1.56 | 1.63 | 1.00 | 1.68 | 1.61 | 1.00 | ||
7 | 7, 4, 3 | Corn | 1.00 | 1.60 | 1.82 | 1.00 | 1.47 | 1.66 | 1.00 | 1.46 | 1.73 |
Soybeans | 1.60 | 1.00 | 1.39 | 1.47 | 1.00 | 1.28 | 1.46 | 1.00 | 1.51 | ||
Others | 1.82 | 1.39 | 1.00 | 1.66 | 1.28 | 1.00 | 1.73 | 1.51 | 1.00 | ||
8 | 7, 5, 4 | Corn | 1.00 | 1.25 | 1.56 | 1.00 | 1.59 | 1.57 | 1.00 | 1.37 | 1.64 |
Soybeans | 1.25 | 1.00 | 1.77 | 1.59 | 1.00 | 1.68 | 1.37 | 1.00 | 1.72 | ||
Others | 1.56 | 1.77 | 1.00 | 1.57 | 1.68 | 1.00 | 1.64 | 1.72 | 1.00 |
NO. | Model | Crop | Confusion Matrix (%) | Kappa Coefficient | OA | ||
---|---|---|---|---|---|---|---|
Type | Corn Soybeans Others | ||||||
1 | LSTM | Corn | 92.36 | 0.63 | 7.01 | 0.3369 | 0.54 |
Soybeans | 62.67 | 32.53 | 4.80 | ||||
Others | 20.18 | 44.12 | 35.70 | ||||
2 | CNN | Corn | 89.54 | 2.51 | 7.94 | 0.4634 | 0.64 |
Soybeans | 26.21 | 68.19 | 5.60 | ||||
Others | 43.46 | 20.1 | 36.44 | ||||
3 | CNN+LSTM | Corn | 86.94 | 11.41 | 1.65 | 0.5140 | 0.68 |
Soybeans | 4.01 | 87.39 | 8.60 | ||||
Others | 4.68 | 78.04 | 17.28 | ||||
4 | GAN+CNN | Corn | 97.28 | 0.38 | 2.34 | 0.6498 | 0.77 |
Soybeans | 38.72 | 53.71 | 7.57 | ||||
Others | 12.23 | 7.63 | 80.14 | ||||
5 | SVM | Corn | 92.65 | 7.13 | 0.22 | 0.7222 | 0.81 |
Soybeans | 7.27 | 87.89 | 4.84 | ||||
Others | 4.65 | 30.41 | 64.94 | ||||
6 | SegNet | Corn | 96.21 | 1.46 | 2.33 | 0.7578 | 0.83 |
Soybeans | 12.59 | 70.02 | 8.39 | ||||
Others | 12.82 | 6.96 | 80.22 | ||||
7 | GAN+CNN+LSTM | Corn | 97.55 | 1.13 | 1.32 | 0.7933 | 0.86 |
Soybeans | 12.84 | 80.21 | 6.95 | ||||
Others | 10.33 | 11.24 | 78.43 |
NO. | Model | Crop | Confusion Matrix (%) | Kappa Coefficient | OA | ||
---|---|---|---|---|---|---|---|
Type | Corn Soybeans Others | ||||||
1 | SVM | Corn | 88.53 | 7.14 | 4.33 | 0.6541 | 0.75 |
Soybeans | 17.3 | 71.83 | 10.87 | ||||
Others | 14.51 | 12.29 | 73.2 | ||||
2 | SegNet | Corn | 92.17 | 4.25 | 3.58 | 0.7186 | 0.81 |
Soybeans | 16.5 | 72.14 | 11.36 | ||||
Others | 10.39 | 19.27 | 70.34 | ||||
3 | GAN+CNN+LSTM | Corn | 90.31 | 6.72 | 2.97 | 0.7635 | 0.85 |
Soybeans | 5.37 | 81.42 | 13.21 | ||||
Others | 9.34 | 13.8 | 76.86 |
NO. | Model | Crop | Confusion Matrix (%) | Kappa Coefficient | OA | ||
---|---|---|---|---|---|---|---|
Type | Corn Soybeans Others | ||||||
1 | SVM | Corn | 91.47 | 5.12 | 3.41 | 0.7426 | 0.83 |
Soybeans | 13.87 | 74.66 | 11.47 | ||||
Others | 7.91 | 21.72 | 71.37 | ||||
2 | SegNet | Corn | 93.95 | 3.08 | 2.97 | 0.7651 | 0.87 |
Soybeans | 15.91 | 77.82 | 6.27 | ||||
Others | 11.90 | 10.89 | 77.21 | ||||
3 | GAN+CNN+LSTM | Corn | 90.93 | 7.62 | 1.45 | 0.7701 | 0.88 |
Soybeans | 3.60 | 87.21 | 9.19 | ||||
Others | 3.04 | 23.52 | 73.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Shen, Y.; Yang, C. An Adversarial Generative Network for Crop Classification from Remote Sensing Timeseries Images. Remote Sens. 2021, 13, 65. https://doi.org/10.3390/rs13010065
Li J, Shen Y, Yang C. An Adversarial Generative Network for Crop Classification from Remote Sensing Timeseries Images. Remote Sensing. 2021; 13(1):65. https://doi.org/10.3390/rs13010065
Chicago/Turabian StyleLi, Jingtao, Yonglin Shen, and Chao Yang. 2021. "An Adversarial Generative Network for Crop Classification from Remote Sensing Timeseries Images" Remote Sensing 13, no. 1: 65. https://doi.org/10.3390/rs13010065
APA StyleLi, J., Shen, Y., & Yang, C. (2021). An Adversarial Generative Network for Crop Classification from Remote Sensing Timeseries Images. Remote Sensing, 13(1), 65. https://doi.org/10.3390/rs13010065