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Abstract: Several versions of convolutional neural network (CNN) were developed to classify
hyperspectral images (HSIs) of agricultural lands, including 1D-CNN with pixelwise spectral data,
1D-CNN with selected bands, 1D-CNN with spectral-spatial features and 2D-CNN with principal
components. The HSI data of a crop agriculture in Salinas Valley and a mixed vegetation agriculture
in Indian Pines were used to compare the performance of these CNN algorithms. The highest overall
accuracy on these two cases are 99.8% and 98.1%, respectively, achieved by applying 1D-CNN with
augmented input vectors, which contain both spectral and spatial features embedded in the HSI data.

Keywords: convolutional neural network (CNN); hyperspectral image (HSI); agriculture; principal
component analysis (PCA)

1. Introduction

Hyperspectral images (HSIs) contain abundant spectral-spatial information for versatile
applications in agriculture, mineralogy, surveillance, physics, astronomy, chemical imaging and
environmental sciences [1]. Classifications based on HSIs face the challenges of redundant features,
limited number of available training samples and high dimensionality of data [2]. Many methods have
been applied to classify HSIs, including random forest (RF) [3], k-nearest neighbors [4], multinomial
logistic regression (MLR) [5], support vector machine (SVM) [6], convolutional neural network
(CNN) [7], deep belief network (DBN) [8] and stacked auto-encoder (SAE) [9]. Among these methods,
deep CNN has the potential of learning high-level spatial and spectral features [10,11].

Feature extraction and feature selection approaches were proposed to curtail the redundancy
of information among hyperspectral bands [12]. By feature extraction, a projection matrix is used to
map the original spectral data to a feature space while holding the dominant spectral information [13].
Typical feature extraction algorithms include principal component analysis (PCA) [14], linear
discriminant analysis (LDA) [15], manifold learning [16], nonnegative matrix factorization (NMF) [17]
and spatial-spectral feature extraction [18].

Feature selection means selecting part of the original bands based on proper criterion [19]. Typical
feature selection algorithms include multitask sparsity pursuit [20], structure-aware [21], support
vector machine [22], hypergraph model [23], sparse Hilbert–Schmidt independence criterion [24]
and nonhomogeneous hidden Markov chain model [25]. Different measures were used to select
preferred bands, including mutual information [12], information divergence [13], variance [26] and
local spatial information [27]. However, these algorithms are time-consuming because the classifiers
must be trained and tested again as the set of selected bands is changed. Pixels in an HSI are usually
spatially correlated to their adjacent pixels [28], which can be exploited to complement the spectral
information to achieve higher classification rate [29]. In [30], a spectral-spatial semisupervised training
set construction was proposed to mitigate the problem of labeled data scarcity, in which unlabeled

Sensors 2020, 20, 1734; doi:10.3390/s20061734 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9944-3431
http://dx.doi.org/10.3390/s20061734
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 1734 2 of 17

pixels are recruited for a class training subset if they belong to the same spectral cluster and are in the
spatial neighborhood of a labeled pixel.

Deep spectral features embedded in the HSIs of agricultural vegetation can be physically related
to the photosynthetic pigment absorption in the wavelengths of 400–700 nm, large spectral slope in
700–750 nm [31,32], liquid water inflection point in 1080–1170 nm [33], absorption by various leaf
waxes and oils in 1700–1780 nm and cellulose absorption around 2100 nm, to name a few. The spectral
features relevant to soil properties mainly appear in 2100–2300 nm [34,35]. These spectral features can
be exploited for applications like precision agriculture [36,37], noxious weed mapping for rangeland
management [38,39], forest health monitoring [40,41], vegetation stress analysis [42,43] and carbon
sequestration site monitoring [44].

CNN has the potential of exploiting deep-level features embedded in its input data for
classification, making it suitable for terrain classification with HSI data that contain both spatial
and spectral features. Although CNNs have been widely used for classification in agricultural lands,
there are always some outliers or misclassification between similar classes which contain similar spatial
and spectral features. In this work, we present several versions of CNN, each taking different types of
input vectors that include more feature information, to resolve these issues. These CNNs were trained
and tested on the HSIs of Salinas Valley and Indian Pines, respectively. The former is a crop agriculture,
the latter contains two-thirds crop agriculture and one-third forest or other natural perennial vegetation.
The rest of this article is organized as follows. The 1D-CNN with input vector composed of pixelwise
spectral data and spectral-spatial data are presented in Sections 2 and 3, respectively, The 2D-CNN
with input layer of principal components is presented in Section 4, simulation results are presented
and analyzed in Section 5, and some conclusions are drawn in Section 6.

2. 1D-CNN with Pixelwise Spectral Data

Figure 1 shows an HSI cube which is composed of Nx × Ny pixels and each pixel contains spectral
data in N bands. A one-dimensional (1D) input vector is prepared for each pixel by extracting the
spectral data from that pixel. The input vectors from a selected set of training pixels are used to train
the 1D-CNN shown in Figure 2, then the input vectors from another set of testing pixels are used to
evaluate the performance of the 1D-CNN.

Figure 1. The 1D input vector retrieved from a hyperspectral image (HSI) cube.

Figure 2. Schematic of a 1D convolutional neural network (CNN).

In the schematic of a 1D-CNN shown in Figure 2, the compositions of convp-n(1 × 2) and
convp-20(20× 2) are shown in Figures 3 and 4, respectively, and FC(20N′′ ×M) is a fully connected
layer shown in Figure 5.
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Figure 3. Schematic of convp-20(1× 2) layer.

Figure 3 shows the schematic of a convp-20(1× 2) layer, where conv-n(1× 2) is a convolutional
layer composed of n filters of kernel size two, taking one input vector. The outputs of conv-n(1× 2)
are processed with batch normalization (BN), rectified linear unit (ReLU) activation function and
maxpooling, MP(2), in sequence. The BN is used to make the learning process less sensitive to
initialization. The input to a BN is a mini-batch of M′ input vectors, x̄m = [xm1, xm2, · · · , xmN ]

t with
1 ≤ m ≤ M′. The mean value and variance of the nth band in the bth mini-batch are computed as [45]

µbn =
1

M′
M′

∑
m=1

xmn, σ2
bn =

1
M′

M′

∑
m=1

(xmn − µbn)
2 (1)

Then, the original input vectors in the bth mini-batch are normalized as

x̃mn =
xmn − µbn√

σ2
bn + ε

(2)

where ε is a regularization constant to avoid divergence when σ2
bn is too small. To further increase the

degree-of-freedom in the subsequent convolutional layers, the normalized input vectors are scaled
and shifted as

ymn = γn x̃mn + βn (3)

where the offset βn and the scaling factor γn are updated during the training phase. The ReLU
activation function is defined as y = max{0, x}, with input x and output y. The maxpooling function,
MP(`), reduces the computational load by picking the maximum from ` input data, which preserves
the main characteristics of feature maps at the cost of coarser resolution.

Figure 4 shows the composition of a convp-20(20 × 2) layer, where conv-n(20 × 2) is a
convolutional layer composed of n filters of kernel size two, taking 20 input feature maps.
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Figure 4. Schematic of convp-20(20× 2).

Figure 5 shows the schematic of a fully connected layer, FC(20N′′ × M), which connects the
feature maps from the last convolutional layer, convp-20(20× 2), to the input of the softmax function
for final classification. The softmax function is a normalized exponential function defined as

softmax(x̄) =

(
M

∑
m=1

exm

)−1

ex̄ (4)

which enhances the largest component in x̄ while making the sum of all its output components equal
to one.

Figure 5. Schematic of FC(20N′′ ×M).

Band Selection Approach

Figure 6 shows the flowchart of a band selection (BS) approach based on CNN (BSCNN), which
selects the best combination of spectral bands for classification. A CNN was first trained by using all
the N spectral bands of training pixels, and its configuration remained the same during the subsequent
band selection process. The BS process was executed L times. In each time, N′ bands (N′ < N) were
randomly selected and the data in the other (N − N′) bands were reset to zero in the input vector.
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Among all these L combinations, the N′ bands delivering the highest overall accuracy is adopted for
retraining the CNN for classification.

Figure 6. Flowchart of band selection (BS) approach based on CNN (BSCNN).

Figure 7 shows the preparation of input vectors with the selected N′ bands to retrain the 1D-CNN,
as configured in Figure 2. The newly trained 1D-CNN is be used for classification.

Figure 7. Input vectors to the 1D-BSCNN.

3. 1D-CNN with Spectral-Spatial Data

Figure 8 shows the preparation of an augmented input vector by concatenating the spectral bands
of the target pixel with the PCA data surrounding the target pixel, exploiting the spatial correlation
between neighboring pixels. The PCA is first applied to all the spectral bands of each pixel to extract
the first Q principal components. Then, the first Q principal components of all the R × R pixels
surrounding the target pixel are collected, vectorized and concatenated to the original N bands of
the target pixel to form an augmented input vector of dimension N + R × R × Q, to be input to
the 1D-CNN.
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Figure 8. Preparation of an augmented input vector by concatenating pixelwise spectral bands and the
principal component analysis (PCA) data surrounding the target pixel.

4. 2D-CNN with Principal Components

Figure 9 shows the preparation of input layers, composed of principal components from each
pixel, to be input to the 2D-CNN shown in Figure 10. The PCA is first applied to all the N spectral
bands of each pixel to extract the first Q principal components [46]. The Q principal components from
each of the R× R pixels surrounding the target pixel form an input layer associated with the target
pixel. The PCA extracts the main features in the spectral dimension and exploits the spatial features
embedded in the hyperspectral data.

Figure 9. Preparation of input layers for 2D-CNN.

Figure 10. Schematic of the 2D-CNN.

Figure 10 shows the schematic of the 2D-CNN used in this work, where the compositions of
convp-n(1× 2× 2) and convp-20(20× 2× 2) are shown in Figures 11 and 12, respectively, FC(20R′′ ×
R′′ ×M) is a fully connected layer shown in Figure 13. Cascading four convp-20(1× 2× 2) layers
makes the resulting 2D-CNN highly nonlinear and enables it to recognize more abstract spatial-spectral
features embedded in the hyperspectral data.
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Figure 11. Schematic of convp-20(1× 2× 2).

Figure 11 shows the schematic of a convp-20(1 × 2 × 2) layer, where conv-n(1 × 2 × 2) is a
convolutional layer composed of n filters of kernel size 2× 2, taking one input layer. The outputs of
conv-n(1× 2× 2) are processed with BN, ReLU activation function and MP(2× 2) in sequence.

Figure 12. Schematic of convp-20(20× 2× 2).

Figure 12 shows the composition of a convp-20(20× 2× 2) layer, where conv-n(20× 2× 2) is a
convolutional layer composed of n filters of kernel size 2× 2, taking 20 input feature maps.

Figure 13 shows the composition of a fully connected layer, FC(20(R′′×R′′)×M), which connects
the feature maps from the last convolutional layer, convp-20(20× 2× 2), to the input of softmax
function for final classification.

Figure 13. Schematic of FC(20(R′′ × R′′)×M).
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5. Simulations and Discussions

5.1. Salinas Valley HSI

Figure 14 shows the image and ground truth, respectively, in Salinas Valley, which were acquired
with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor in October 1998 [47]. The
HSI is composed of 512× 217 pixels, with spatial resolution of 3.7 m. The spectral data in wavelengths
of 400–2500 nm were recorded in 224 bands, among which bands 108–112, 154–167 and 224 are removed
for the concern of dense water vapor and atmospheric effects, leaving 204 more reliable bands. Table 1
lists the ground truth of 54,129 pixels in 16 classes [47].

The main objective of the AVIRIS project was to identify, measure and monitor the composition of
Earth surface and atmosphere, based on the signatures of molecular absorption and particle scattering.
Research with AVIRIS data were focused on understanding the processes related to global environment
and climate change [48].

In the training phase of this work, 50% of pixels were randomly selected, labeled by ground-truth
data, to determine the weights and biases associated with each neuron. Mini-batches of size M′ = 16
were used over 200 training epochs. The other 50% of pixels were then used in the testing phase to
evaluate the classification performance.

(a) (b) (c)
Figure 14. Images of Salinas Valley, centered at 36◦40′39.8568′′ N, 121◦39′19.8072′′ W [47], area size is
1895 × 803 m, (a) grey-tone image, (b) ground truth, (c) legends of 16 classes.

Table 1. Summary of ground truth in Figure 14.

# Class Sample Number

1 broccoli green weeds 1 2009
2 broccoli green weeds 2 3726
3 fallow 1976
4 fallow rough plow 1394
5 fallow smooth 2678
6 stubble 3959
7 celery 3579
8 grapes untrained 11,271
9 soil vineyard develop 6203
10 corn senesced green weeds 3278
11 lettuce romaine 4 weeks 1068
12 lettuce romaine 5 weeks 1927
13 lettuce romaine 6 weeks 916
14 lettuce romaine 7 weeks 1070
15 vineyard untrained 7268
16 vineyard vertical trellis 1807
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Figure 15 shows the mean value and standard deviation of all the pixels in each of the 16 classes,
over all 224 bands. The bands of dense water vapor and atmospheric effects are marked by a grey shade.

(a) (b)
Figure 15. (a) Mean value and (b) standard deviation of all the pixels in each of the 16 classes, over all
224 bands in Salinas Valley HSI.

Figure 16a shows the classification image with 1D-CNN applied to 204 selected bands. The overall
accuracy (OA) is 91.8%, which is the ratio of pixels correctly classified and the total number of testing
pixels. Table 2a lists the producer accuracy (PA) of each class, which is the ratio of pixels correctly
classified to a specific class and the total number of pixels which are classified to that specific class.
The PAs of classes #8 and #15 are 91.9% and 54.8%, respectively, consistent with the observation on
Figure 16a that classes #8 and #15 are apparently misclassified. Also notice that some spectral curves
in Figure 15 nearly overlap in certain bands, which may cause errors in classification.

(a) (b) (c) (d)
Figure 16. Classification images on Salinas Valley HSI, (a) 1D-CNN with 204 bands, overall accuracy
(OA) is 91.8%, (b) BSCNN with 70 selected bands, OA is 93.2%, (c) 1D-CNN with augmented input
vectors of 645 (21× 21 + 204) bands, OA is 99.8%, (d) 2D-CNN with input layer composed of one
principal component from each pixel, OA is 99%, color code the same as in Figure 14.
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Table 2. Producer accuracy (%) on Salinas Valley HSI: (a): 1D-CNN with 204 bands, (b): BSCNN with
70 selected bands, (c): 1D-CNN with augmented input vectors of 645 bands, (d): 2D-CNN with input
layer composed of one principal component from each pixel.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 OA

(a) 99.8 99.8 99.8 99.9 98.1 100 99.8 91.9 99.6 98.2 92 99.8 100 97.5 54.8 99.7 91.8
(b) 99.8 99.8 95.6 99.4 98.3 99.9 99.8 86.1 100 97.5 99.3 100 99.1 99.1 74.8 99.3 93.2
(c) 99.8 99.9 100 99.9 99.9 100 99.9 99.8 99.9 99.7 100 99.9 99.8 100 99.7 99.9 99.8
(d) 99.7 100 99.8 100 99.6 100 100 97.6 99.7 99.9 100 100 100 100 97.1 99.8 99

Figure 17 shows the effect of band number on the overall accuracy, which indicates that choosing
N′ = 70 bands renders the highest overall accuracy. Table 2b lists the PAs of all 16 classes on the
Salinas Valley HSI by applying BSCNN with 70 bands. By comparing with the results in Table 2a, the
PA on class #8 decreases from 91.9% to 86.1% and that on class #15 increases from 54.8% to 74.8%.
Figure 16b shows the classification image by applying the BSCNN.

Figure 17. Effect of band number in BSCNN on overall accuracy.

Figure 8 shows the preparation of an augmented input vector by concatenating the N spectral
bands of the target pixel and Q principal components from each of the R× R pixels surrounding the
target pixel. By choosing N = 204, Q = 1 and R = 21, the augmented input vector has the dimension
of N′ = 645. With additional spatial information, the accuracy rate is expected to improve [49].
Figure 16c shows the classification image with augmented input vectors of 645 bands. Table 2c lists the
PAs of all 16 classes, and the overall accuracy is 99.8%. By comparing Table 2a with 2b, the PAs on
classes #8 and #15 are significantly increased to 99.8% and 99.7%, respectively.

Figure 16d shows the classification image by using 2D-CNN, with one principal component from
each pixel to form an input layer. Table 2d lists the PAs of all 16 classes, and the overall accuracy
is 99%.

In summary, the OA of 1D-CNN with 204 selected bands is the lowest of 91.8%, that of BSCNN
with 70 selected bands is 93.2%, that of 1D-CNN with augmented input vectors of 645 bands is the
highest of 99.8% and that of 2D-CNN with one principal component from each pixel is 99%.

5.2. Indian Pines HSI

Figure 18 shows a testing site in the Indian Pines, which was recorded on 12 June 1992, with
AVIRIS sensors over the Purdue University Agronomy farm, northwest of West Lafayette. The image
is composed of 145× 145 pixels, each containing 220 spectral reflectance bands in wavelengths of
400–2500 nm. The number of bands is reduced to 200 after removing bands 104–108, 150–163 and 220,
which suffer significant water absorption. Two-thirds of the test site was covered with agriculture
land and one-third with forest or other natural perennial vegetation. There were also two dual-lane
highways, a rail line, some low-density housings, other man-made structures and local roads. At the
time of recording, some crops were growing, corn and soybeans were in their early stage of growth,
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with less than 5% coverage. Table 3 lists the available ground truth in 16 classes, which are not
mutually exclusive.

(a) (b)

(c)
Figure 18. Images of Indian Pines, centered at 40◦27′37.9′′ N, 87◦00′32.7′′ W [50], area size is
3.2 × 3.2 km, (a) false color image, (b) ground truth, black area is unlabeled, (c) legends of 16 classes.

Table 3. Summary of ground truth in Figure 18 [50].

# Class Sample Number
1 alfalfa 46
2 corn-notill 1428
3 corn-mintill 830
4 corn 237
5 grass-pasture 483
6 grass-trees 730
7 grass-pasture-mowed 28
8 hay-windrowed 478
9 oats 20
10 soybean-notill 972
11 soybean-mintill 2455
12 soybean-clean 593
13 wheat 205
14 woods 1265
15 buildings-grass-trees-drives 386
16 stone-steel-towers 93

In the training phase of this work, 50% of pixels were randomly selected, labeled by ground-truth
data, to determine the weights and biases associated with each neuron. Mini-batches of size M′ = 16
were used over 200 training epochs. The other 50% of pixels were then used in the testing phase to
evaluate the classification performance.

Figure 19 shows the mean value and standard deviation of all the pixels in each of the 16 classes,
over the 200 selected bands.
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(a) (b)
Figure 19. (a) Mean value and (b) standard deviation of all the pixels in each of 16 classes over all 200
bands in Indian Pines HSI.

Figure 20a shows the classification image with 1D-CNN applied to 200 selected bands, and the
overall accuracy is 83.4%. Table 4a lists the PAs of all 16 classes, in which the lowest PAs are 55.2%,
57.1% and 62.2%, on classes #3, #7 and #15, respectively.

Table 4. Producer accuracy (%) on Indian Pines HSI: (a): 1D-CNN with 200 bands, (b): 1D-CNN
with augmented input vectors of 641 bands, (c): 2D-CNN with input layer composed of one principal
component from each pixel, (d): 1D-CNN with augmented input vectors of 1964 bands.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 OA

(a) 83.3 76.1 55.2 82 94.4 96.5 57.1 98.7 77.8 73.3 87.2 84.9 99 96.6 62.2 91.7 83.4
(b) 95.2 92.8 94 97.5 89.1 99.2 94.7 99.6 71.4 89.7 97.5 88.4 100 98.9 99.5 100 95.4
(c) 90.5 82.2 87.4 92 90.7 96.5 100 100 58.3 82.1 95.1 88 100 97.7 96.9 97.7 91.5
(d) 100 94.9 98.6 97.5 99.2 99.7 100 100 90.9 96.7 98.8 97.2 99 99.2 99.5 98.2 98.1

Figure 20b shows the classification image with augmented input vectors of 641 bands, where we
choose N = 200, Q = 1 and R = 21. Table 4b lists the PAs of all 16 classes, with an overall accuracy
of 95.4%. Compared to Table 4a, the PAs on classes #3, #7 and #15 are improved to 94%, 94.7% and
99.5%, respectively.

Figure 20c shows the classification images by applying 2D-CNN, with the input layer composed
of one principal component from each pixel. Table 4c lists the PAs of all 16 classes, with the overall
accuracy of 91.5%.

In summary, the OA of 1D-CNN with 200 selected bands is the lowest of 83.4%, that of 1D-CNN
with augmented input vectors of 641 bands is 95.4%, and that of 2D-CNN with one principal component
from each pixel is 91.5%.

Figure 21 shows the overall accuracy of 2D-CNN with different numbers of principal components.
The highest OA is slightly below 98%, with 4, 30 or 60 principal components. Figure 20d shows the
classification image by applying 1D-CNN with augmented input vectors of 1964 bands, where we
choose N = 200, Q = 4 and R = 21. Table 4d lists the PAs of all 16 classes, with the overall accuracy of
98.1%. Compared to Table 4a, the PAs on classes #3, #7 and #15 are significantly improved to 98.6%,
100% and 99.5%, respectively.

The computational time for training and testing these CNNs as well as the resulting accuracy
were affected by the size of input vector, input layer, convolution kernel, batch and epoch. Table 5
lists the CPU time for each CNN developed in this work, on a desktop PC with Intel R© CoreTM i7-8700
processor 3.2 GHz.
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(a) (b)

(c) (d)

Figure 20. Classification images on Indian Pines HSI: (a) 1D-CNN with 200 bands, OA is 83.4%, (b)
1D-CNN with augmented input vectors of 641 (21× 21 + 200) bands, OA is 95.4%, (c) 2D-CNN with
input layer composed of one principal component from each pixel, OA is 91.5%, (d) 1D-CNN with
augmented input vectors of 1964 ((21× 21)× 4 + 200) bands, OA is 98.1%, color code the same as
in Figure 18.

(a) 10 or less principal components (b) 100 or less principal components
Figure 21. Overall accuracy versus number of principal components in 2D-CNN.
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Table 5. Computational time for training and testing CNNs.

HSI on Salinas Valley CPU Time HSI on Indian Pines CPU Time

1D-CNN with 204 bands 1 h 43 min 1D-CNN with 200 bands 18 min
BSCNN with 70 selected bands 1 h 35 min 1D-CNN with augmented input vectors of 641 bands 26 min

1D-CNN with augmented input vectors of 645 bands 6 h 58 min 2D-CNN with input layer composed of one principal component from each pixel 17 min
2D-CNN with input layer composed of one principal component from each pixel 1 h 32 min 1D-CNN with augmented input vectors of 1964 bands 1 h 27 min
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Both sets of HSI data used in this work were recorded in about 200 bands and classified into 16
labels. The pixel numbers are 54,129 and 21,025, respectively. The complexity of the CNNs adopted
in this work seems suitable to these HSI datasets. It is conjectured that more complicated CNN
configuration should be considered if more bands or more labels are involved. The results on these
two cases show that the overall accuracy of the 1D-CNN with augmented input vectors is higher than
1D-CNN, BSCNN and 2D-CNN. The results of 2D-CNN turn out to be more accurate than conventional
1D-CNN, indicating that the spatial feature embedded in the spectral data can be useful. A small
percentage of misclassification between similar classes can be resolved by applying the 1D-CNN
with augmented input vectors which contain both the spatial and spectral features embedded in the
HSI data.

6. Conclusions

Both the spectral and spatial features of HSI are exploited to increase the overall accuracy of
image classification with several versions of 1D-CNN and 2D-CNN. The PCA was applied to extract
significant spectral information while reducing the data dimension. These CNNs were applied
to the HSI data on Salinas Valley and Indian Pines, respectively, to compare their accuracy rates of
classification. The selection of band number and principal components was investigated by simulations.
The highest OA on the Salinas Valley HSI is 99.8%, achieved by applying 1D-CNN to augmented
input vectors of 645 bands, with one principal component from 21 × 21 pixels surrounding the target
pixel. The highest OA on the Indian Pines HSI is 98.1%, achieved by applying 1D-CNN to augmented
input vectors of 1964 bands, with four principal components from 21 × 21 pixels surrounding the
target pixel. Possible misclassification between similar labels can be resolved by augmenting the input
vectors to include more spatial and spectral features embedded in the HSI data.
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