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Abstract: The current literature of remote sensing (RS) scene classification shows that state-of-the-art
results are achieved using feature extraction methods, where convolutional neural networks (CNNs)
(mostly VGG16 with 138.36 M parameters) are used as feature extractors and then simple to complex
handcrafted modules are added for additional feature learning and classification, thus coming back
to feature engineering. In this paper, we revisit the fine-tuning approach for deeper networks
(GoogLeNet and Beyond) and show that it has not been well exploited due to the negative effect of
the vanishing gradient problem encountered when transferring knowledge to small datasets. The
aim of this work is two-fold. Firstly, we provide best practices for fine-tuning pre-trained CNN5s
using the root-mean-square propagation (RMSprop) method. Secondly, we propose a simple yet
effective solution for tackling the vanishing gradient problem by injecting gradients at an earlier
layer of the network using an auxiliary classification loss function. Then, we fine-tune the resulting
regularized network by optimizing both the primary and auxiliary losses. As for pre-trained CNN,
we consider in this work inception-based networks and EfficientNets with small weights: GoogLeNet
(7M) and EfficientNet-B0 (5.3 M) and their deeper versions Inception-v3 (23.83 M) and EfficientNet-B3
(12 M), respectively. The former networks have been used previously in the context of RS and yielded
low accuracies compared to VGG16, while the latter are new state-of-the-art models. Extensive
experimental results on several benchmark datasets reveal clearly that if fine-tuning is done in an
appropriate way, it can settle new state-of-the-art results with low computational cost.

Keywords: scene classification; fine-tuning; vanishing gradient; auxiliary loss function;
regularization layer

1. Introduction

In recent years, scene-level analysis has attracted much interest from the RS community thanks to
the availability of RS images from a variety of earth observation platforms, including satellites, aerial
systems, and unmanned aerial vehicles. The aim of scene classification methods is to classify the image
based on a set of semantic categories in accordance with human interpretation. This task is challenging
as it requires the definition of high-level features for representing the image content.

The latest developments based on deep learning methods have considerably boosted the
classification accuracies compared to standard ones based on handcrafted features. The solutions based
on CNNs are actually perceived as the most effective ones, in particular, those based on knowledge
transfer from a pre-trained CNN. Indeed, using a pre-trained CNN has become a standard practice
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in many machine learning fields, including RS. One of the earliest ideas involves the removal of the
top layer of the pre-trained network and its replacement with another fully connected layer that has a
size equal to the number of classes (in the current problem) with a softmax activation layer. Then the
network with its new top layer can be trained again on the RS dataset. This approach is typically
known as fine-tuning. In general, the results reported up to now on several benchmark RS datasets
show that the fine-tuning approach is less competing, in particular, for deeper networks due to the
small size of the RS datasets (see literature review).

For this reason, other works opted instead to use the pre-trained network as a feature extractor by
extracting features at different representations levels. This step may also include feature combinations.
Then the resulting features are fed to an additional trainable module, which mainly acts as a classifier.
Typical choices for the classification stage include fully connected layers and support vector machines
(SVMs). On the other side, some works have proposed different methods and techniques to extract,
combine, and fuse features from many pre-trained networks to enhance the classification accuracy.
Thus, all of these methods in a sense are employing feature engineering one way or another, which
defeats the main characteristic of deep neural networks, which is learning feature representations
in an “end-to-end” manner from the dataset automatically. In fact, this characteristic has enabled
them to significantly outperform handcrafted features in recent years. Hence, coming back to feature
engineering practices while using deep neural networks seems counter-intuitive. So why fine-tuning
of deeper networks is not competing with those based on feature extraction? The main reason reported
so far in the literature is the deep nature of these networks, which causes them to suffer from the
problem of “vanishing gradients” during training.

The question that we investigate in this work is: can we find a better way to combat the effect
of vanishing gradients in deeper networks, such as GoogLeNet and Inception-v3 [1-4]? To this end,
we will carry out an extensive analysis to show that these type of networks exhibit a phenomenon
similar to the “Hughes effect” widely encountered in hyperspectral imagery. Then in a second step,
we propose a simple solution to combat this effect by placing an auxiliary network on the top of an
earlier layer to inject additional gradients. Then, we optimize both the primary and auxiliary loss
functions using an opportune optimization method. It is worth recalling, that this idea was originally
employed by Google during the training of GoogLeNet [1]. Yet this idea has been overlooked by
researchers when transferring knowledge to new datasets during fine-tuning as they consider only
the primary loss function. In the second set of experiments, we show this technique can boost the
model performance significantly and permits to settle new state-of-the-art classification results on
many benchmark datasets. The main contributions of this paper could be summarized as follows:

e  Provide best practices for transferring knowledge from pre-trained CNNs with small weights;

e  Show that deeper CNNs suffer from the vanishing gradient problem, and then propose a simple
yet efficient solution to combat this effect using an auxiliary loss function;

e  Confirm experimentally, that this simple trick allows settling new state-of-the-art results on several
benchmark datasets with low computational cost (fine-tune for a maximum 40 iterations).

The remainder of the paper is organized in five sections. In Section 2 we review the main methods
based on deep learning for scene classification in RS imagery. In Section 3, we introduce the different
CNN s investigated in this work. Section 4, presents our fine-tuning method. Then, in Section 5, we
present the experimental results on five well-known datasets followed by discussions in Section 6.
Finally, we provide concluding remarks and future directions in Section 7.

2. Related Works

As mentioned in the introduction section, scene classification in RS imagery was approached
using fine-tuning or feature extraction methods. The fine-tuning approach (Table 1) was investigated
for AlexNet, GoogLeNet, and VGG16. As can be seen, the standard practice was to fine-tune the
network up to thousands of iterations using gradient-based algorithms. One can also notice that, with
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the exception of Merced dataset, GoogLeNet clearly exhibits less performance compared to VGGL1é6.
In a very recent work [5], the authors reported better results for VGG16 using an Adam optimizer for
only 50 iterations. Although many improved networks are available, it appears that VGG16 is still the
primary choice for many RS researchers.

Table 1. Results obtained by the fine-tuning approach in previous studies.

Merced dataset

Work Method CNN Acc [%] Train [%]
Castelluccio et al. [6] SGD, with a learning rate of 0.001,
2015 and 20,000 iterations. GoogLeNet 97.10% 80%
Adam, with a learning rate of 0.001
for the classification layer, and 0.001 VGG16+SVM 96.82 + 0.20
Cheng et al. [7] 2018 for the other layers. The iteration GoogLeNet+SVM 97.14 £ 0.10 80%
number changes from 1000 to 15,000 AlexNet+SVM 94.58 + 0.11
with a stride of 1000.

SGD, with a learning rate of 0.001,

Nogueira et al. [8] 2017 and 20,000 iterations. GoogLeNet 97.78 £ 0.97 80%
. . . 97.14 + 0.48 80%
Sun et al. [5] 2019 SGD 0.0001 learning rate, 50 iterations VGG16 96.57 + 0.48 50%
AID dataset
. . . VGG16 93.60 + 0.64 50%
Sun et al. [5] 2019 SGD 0.0001 learning rate, 50 iterations VGGI16 89.49 4 0.34 20%
NWPU dataset
) _ . 87.15+045
Boualleg et al. [9] 2019 0.01 learning rate for the la.st la}{er, VGGNetl6: GoogLeNet: 8257 +0.12 10%
0.001 for other layer, 15,000 iterations AlexNet:
81.22 +0.19
. 90.36 + 0.18
, 0.01 learning rate for the last layer, VGGNetlé:
Q 00
Boualleg et al. [9]2019 0.001 for other layer, 15,000 iterations GoogLeNet: AlexNet: gg(l)g i g}g 20%
Cheng et al. [10] 2017 VGG16 84.56 10%
Optimal-31 dataset
. . VGG16 87.45 + 0.45
Wang etal. [11]2018 o details Weraergfz;’:jr‘;d for the used GoogLeNet 82.57 + 0.12 80%
P : AlexNet 81.22 +0.19
Sun et al. [5] 2019 SGD 0.0001 learning rate, 50 iterations VGG16 89.52 + 0.26 80%

Regarding feature extraction, the literature reports several methods with increased complexity.
For example, Singh et al. [12] proposed a weakly supervised network that is able to classify the
image and localize the most distinctive regions when trained on class labels only. They showed that
training the model on the relevant regions instead of the entire scene can increase the classification
accuracy. Liu et al. [13] proposed a scene classification triplet network trained entirely from scratch
on weakly labeled data. The network is trained using image triplets. The cross-entropy loss is
replaced with several loss functions based on the difference loss. In [14], the authors proposed an
architecture that stacks multiple autoencoders to learn hierarchical feature representations. A Fisher
vector pooling layer is used to build global feature representation of the image. Zhang et al. [15]
proposed a gradient-boosting random framework that combines multiple CNNSs to effectively classify
remote sensing images. The authors in [16] proposed a feature representation method termed as
a bag of convolutional features, that generates visual words from CNNs instead of handcrafted
features. Wang at el. [11] used the recurrent neural networks (RNNs) to learn on the key regions of
the scene. First, a pre-trained CNN is used as a feature extractor. Then, a mask matrix is applied to
extract the key regions. The RNN is used to train the mask matrix and process the recurrent features
sequentially. In [17], the authors used a pre-trained CNN to generate an initial feature representation of
the images. These features are then coded using a sparse autoencoder for learning a new representation.
The classification is performed by either adding a softmax layer on the top of the encoding layer and
fine-tune the full network, or by training an autoencoder for each class. In [18], the authors used a
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pre-trained CNN for feature extraction. They removed the last fully connected layer and used extreme
learning machine (ELM) for classification.

In other contributions, the authors tried to improve image representations by resolving the problem
of object rotation and scale variations and training the model on scale-invariant features [19-21] or
rotation-invariant features [22]. In [19], the authors proposed a two-branch network, one for fixed-size
images and the other for varied-size images. The two branches are trained simultaneously via shared
weights. Spatial pyramid pooling and similarity measure layers are added to force the network to
learn the multiscale features. Liu et al. [23] proposed CNNs with varied-input sizes. Multiscale images
are fed into their corresponding CNNs and spatial pyramid pooling is used to accelerate the training of
these multiple networks. The best combination of the features is chosen by learning a multiple kernel
method. In [22], the authors proposed a network that can combat variance in image orientation in
large-scale remote sensing images by using a squeeze layer with average, active rotating filters.

Other group of works embedded a metric learning regularizer for better representation of remote
sensing images [7,24]. Cheng at el. [6] proposed to embed a metric learning term along with the
cross-entropy term to learn more discriminative features. This term maps image pairs that belong
to the same class to be as close as possible, while images of different classes are mapped to be as
farther as possible. In [24], the authors considered the contextual information between different
pairs during training and proposed a diversity regularization method to reduce the redundancy of
learned parameters.

One of the recent trends for image representation is using a combination of features where different
features are extracted from multiple hidden layers of pre-trained CNNs and combined using a fusion
strategy [25-30]. In [25], the authors trained three CNNs concurrently, each with distinct receptive
field size. The image and two patches extracted from the image are fed into these networks. Then, a
probability fusion model is used to combine the features. Liu at el. [26] integrated two pre-trained
CNNs (i.e., CaffeNet and VGG16) and combined features from the lower layers of the network with the
fully connected layer. The two resulting converted CNNs are adaptively integrated to further improve
the classification accuracy. Marmanis at el. [27] proposed a two-stage framework. In the first stage, an
initial set of features are extracted from a pre-trained CNN. Then, the obtained features are fed into a
supervised CNN classifier to train the network.

Another work [28] used features extracted from pre-trained CNNSs, namely VGG and ResNet.
Two types of features are considered: the high-level features extracted from the last fully connected layer,
and the low and mid-level features extracted from the intermediate convolutional layers. Extracted
features are reduced by Principal Component Analysis (PCA) and then concatenated. Chaib et al. [30]
used a pre-trained VGG network for feature extraction. The outputs of the first and second fully
connected layers of the network are transformed using discriminant correlation analysis and then
fused through concatenation and addition. In [29], the authors proposed a fusion strategy for features
extracted from multiple layers of a pre-trained CNN. This strategy fused features encoded by a
multiscale improved Fisher vector and the output of the last fully connected layer using PCA with a
spectral regression kernel discriminant analysis.

3. Inception Networks and EfficientNets

3.1. Inception Networks

Inception networks are a family of CNNs that are developed by a group of researchers at
Google [1,3,4]. They have a lot of heavily engineered tricks that set them apart from other conventional
CNN architectures, such as AlexNet or VGG16. In general, inception networks have a lower
number of weights than competitive networks, such as AlexNet and VGG16. Table 2 shows a
comparative summary.
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Table 2. Weights for different CNN architectures [31].

Network #Parameters
AlexNet 60.97 M
VGG16 138.36 M
GoogLeNet [1] 7M
Inception-v3 [3] 23.83 M
Inception-v4 [4] 4271 M
Incep-Res-v2 [4] 55.97 M

The earliest version was introduced back in 2014 as GoogLeNet by Szegedy et al. [1]. Later on, this
was also named as Inception-v1. In 2015, Szegedy et al. improved on their first version by introducing a
new batch normalization layer in a second version called Inception-v2 [2] and the concept of factorizing
convolutions in the third version Inception-v3 [3]. Finally, the team presented further improvements
in the Inception-v4 and the Inception-ResNet versions in another paper [4]. Inception-v4 contained
several simplifications which reduced the computational costs. While Inception-ResNet added the
concept of residual blocks, which was inspired by the success of the ResNet architecture [32]. In the
following subsection, we discuss in more detail the different inception versions.

3.1.1. GoogLeNet (Inception-v1)

The first version of inception networks, known as GoogLeNet, is composed of several inception
modules. The inception modules deal better with variations in scale and location. They apply filters
with multiple sizes on the same level. The network essentially gets a bit “wider” rather than “deeper”.
The initial design of the inception module is shown in Figure 1.

1x1
y.Convolutions

1x1

A “Convolutions A
3x3 \ 3x3
¥ ~Convolutions €onvolutians
Previous | | ¢ Concatenation Previous ¥ Concatenation
layer - result layer \ 5x5 : result
* ~Convolutigns Convolutions
- h = a (= nvlTltl n
Y 'Max pooling Max pooling onvolutions
(a) (b)

Figure 1. Inception modules where filters with different sizes are applied at the same level. (a) Naive
version of an inception module. (b) Inception module with dimension reduction.

The complete network is shown in Figure 2, where we see that it is composed of an initial stem
followed by a sequence of inception modules, and finally global average pooling and a softmax layer.

As with any very deep network, Inception-v1 is subject to the vanishing gradient problem. As a
solution, the authors in [1] introduced the two auxiliary classifiers as shown in Figure 2. In these two
auxiliary classifiers, they applied softmax to the outputs of two inception modules and computed
an auxiliary loss over the same labels. The network was trained using all three losses combined.
The motivation behind this was to combat the effect of the “diminishing gradient” problem due to
the depth of the network. According to the authors, only one auxiliary classifier near the end of the
network was found to improve accuracy. This motivated our second set of experiments, where we use
this technique while fine-tuning the inception networks.
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Figure 2. Inception-vl (GoogLeNet): The orange box is the stem, which has some preliminary
convolutions. The purple boxes are auxiliary classifiers. The wide parts are the inception modules [1].

3.1.2. Inception-v3

This network included more improvements in the architecture, including (1) the RMSprop
optimizer, (2) factorized 7 X 7 convolutions, (3) batch normalization in the auxiliary classifiers, and
(4) label smoothing, which is a type of a regularizing component added to the loss formula that
prevents the network from becoming too confident about a class and prevents overfitting. The general
architecture of the Inception-v3 network is shown in Figure 3. It was the first runner-up in the image
classification competition in ImageNet Large Scale Visual Recognition Competition (ILSVRC) 2015 [3].

3]

Convolution
AvgPool
MaxPool

Concat E] .

@» Dropout
@» Fully connected
@ Softmax

Figure 3. Inception-v3: The auxiliary loss function was used by the authors only in the training phase.

3.2. EfficientNets

EfficientNet is a new model scaling method, developed by Google recently [33], for scaling up
CNNs. It uses a simple, greatly effective compound coefficient. EfficientNet works differently from
traditional methods that scale dimensions of networks, such as width, depth, and resolution; and it
scales each dimension with a fixed set of scaling coefficients uniformly. Practically, scaling individual
dimensions improves model performance; however, balancing all dimensions of the network with
respect to the available resources effectively improves the whole performance (Figure 4). Model
scaling’s efficacy depends strongly on the baseline network. To this end, a new baseline network is
created by using the AutoML framework, which optimizes both precision and effectiveness (FLOPS), to
perform a neural architecture search. Similar to MobileNetV2 and MnasNet, EfficientNet uses mobile
inverted bottleneck convolution (MBConv) as the main building block. Additionally, this network uses
a new activation function called swish instead of the Rectifier Linear Unit (ReLU) activation function.
EfficientNet-B0 is shown in Figure 5. In this work, we propose to investigate the baseline architecture
of EfficientNet-B0 and its deeper version, EfficientNet-B3.
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Figure 4. Comparison between EfficientNets and other CNNs [33].
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Figure 5. Architecture of the baseline EfficientNet-B0.

4. Proposed Fine-Tuning Method

Let us consider D = {X;, y;}i_, as a training set composed of n remote sensing images, each of
dimension 256 x 256 x 3 pixels. To each image X;, we associate a corresponding binary label vector
y; € RK, where K is the total number of classes. In a multiclass setting, the kth entry of this vector
that corresponds to the kth class is set 1, while the other entries are set to zero (i.e., Z]Ile yixk = 1).
Let us also define j}; as the output vector obtained from the main softmax function placed on the
top of the network. In addition, we denote Z; as an auxiliary output vector obtained from another
auxiliary softmax function placed on the top of an intermediate layer as shown in Figure 6 in the case
of Inception-v3. The position of this auxiliary softmax function is important to boost the network
performances. In the experiments, we will investigate this issue and show that placing this layer near
to the top of the network allows combating the vanishing gradient problem in a better way and thus
resulting in increased classification accuracies. To this end, we propose two different configurations
for this auxiliary network using simple global average pooling (GAP) followed by a softmax or using
additional convolution filters (Conv+BN+ReLU+GAP+Dropout(0.8)+Softmax). We recall that this
auxiliary layer will be used for regularization purposes during the training phase only and will be
removed in the test phase thus keeping the original network architecture. For EfficientNets and for
conformity, we adopt the swish activation function instead of ReLU. Table 3 provides the suitable
position of the auxiliary softmax function for each of the four networks considered in this work.
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Figure 6. Example of adding an auxiliary softmax function to the Inception-v3 network. Two
configurations are proposed: (a) a simple GAP+Softmax or (b) applying an additional convolution:
Conv+BN+ReLU+GAP+Dropout(0.8)+Softmax.

Table 3. Position of the auxiliary softmax function for the four networks investigated in this work. A
typical choice is near to the top of the network before the last spatial reduction step.

CNN Placement of the Auxiliary Softmax Layer Output
GoogLeNet Mixed_4f Concatenatated 16 x 16 x 832
Inception-v3 Mixed7 14 x 14 X 768
EfficientNet-B0 Swish34 16 X 16 X 672
EfficientNet-B3 Swish54 16 x 16 x 816

From a statistical point of view, the distribution of the network outputs can be regarded as a
generalization of the Bernoulli distribution to more than two classes (i.e., Hllle}?i}ik and Hllleiiylf for
the main and auxiliary softmax layers, respectively). The weight W of the network can be learned by
maximizing the following log-likelihood function:

L(D,W) = A Zil In(ITE_, §3%) + (1-2) Zil In(IT_,23%), €y

where A is a regularization parameter that controls the contributions of the two terms. Setting this
parameter to A = 1 will result in the standard fine-tuning approach.
The above problem is equivalent to minimizing the following loss function:

LOW) =AY " (T 9%%) —(1-2) Y (1T 20k), @)
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This expression could be further expressed as:

K K
N N
LO,W) =-AY " Y yalngy - (1-0 )" ) yiInzi. ®)
k=1 k=1

By taking into consideration that the binary label vector y; has only one entry set to 1, we obtain
the so-called cross-entropy loss function:

K K
LOW) =AY " l; 1(y; = K)ngy -1-0) Y kzi 1(y, = K)In2g, @)

where 1(-) is an indicator function that takes 1 if the statement is true, otherwise it takes 0. To optimize
the cost function L(D, W), we use the RMSprop optimization method, which is one of the most popular
adaptive gradient algorithms introduced by Hinton to speed up the training deep neural networks.
The RMSprop divides the gradient by a running average of its recent magnitude.

e = pEg?] + (- ) )
&= & |1 IW /]’
JdL 1
Wt = Wt—l - O((m)— ’ (6)
E[g?];
where E[gz]t is the moving average of squared gradients at iteration t, aa_va is the gradient of the loss

function with respect to the weight W, while « is the learning rate and {3 is the moving average
parameter. In the experiments, we set the parameter [ to its default values (3 = 0.9), while for the
learning parameter o, we set it initially to 0.0001 and decrease by a factor of 1/10 every 20 epochs.

5. Experiments

In this section, we present an extensive experimental analysis to demonstrate the capabilities of
the proposed solution. We test the proposed methods on five common RS scene datasets, namely, the
University of California (UC) Merced dataset [34], the aerial image dataset (AID) [35], the Kingdom
of Saudi Arabia (KSA) dataset [36], the NWPU-RESISC45 dataset [10], and the latest Optimal-31
dataset [11]. In the next section, we provide a more detailed description of each dataset. Then in the
section that follows, we present the results of each experiment.

5.1. Dataset Description

UC Merced land-use dataset: The UC Merced dataset consists of 2100 RGB images measuring
256 x 256 pixels of 21 categorized land-use classes (100 images per class). The class labels are as
follows: agricultural, airplane, baseballdiamond, beach, buildings, chaparral, denseresidential, forest,
freeway, golfcourse, harbor, intersection, mediumresidential, mobilehomepark, overpass, parkinglot,
river, runway, sparseresidential, storagetanks, and tenniscourt. The images were manually extracted
by Yang and Newsam from the United States Geological Survey (USGS) [34]. These images have a
pixel resolution of one foot.

Aerial image dataset: The aerial image dataset (AID) is a large-scale dataset consisting of more
than 10,000 aerial sense images measuring 600 x 600 pixels, categorized within 30 classes [35]. AID is
collected from Google Earth imagery which is carefully chosen from different countries and regions at
different times and seasons around the world, mostly from China, the United States, England, France,
Italy, Japan, and Germany. These images have a pixel resolution of about half a meter.

KSA dataset: This dataset is categorized into 13 classes acquired over different cities in the
Kingdom of Saudi Arabia (KSA). It has 250 images per class of size 256 x 256 pixels [17,37]. The class
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labels are as follows: agriculture, beach, cargo, chaparral, dense residential, dense trees, desert, freeway,
medium-density residential, parking lot, sparse residential, storage tanks, and water. The KSA dataset
includes a total of 3250 RGB images with spatial high resolutions of 1 and 0.5 m.

NWPU-RESISC45: The NWPU-RESISC45 acquired from Google Earth imagery was created by
the Northwestern Polytechnical University (NWPU) [4]. The dataset consists of 31,500 remote sensing
images, divided into 45 classes. Each class contains 700 images with size cropped to 256 X 256 pixels.
Most of the classes have spatial resolutions that vary from around 30 meters to 0.2 meters, except those
with lower spatial resolutions: island, lake, mountain, and snowberg.

Optimal-31: This is a new dataset containing images from Google Earth imagery as shown in
Figure 7. The images have a size of 256 X 256 pixels and their resolution is 0.5 meters. Optimal-31
categorizes 1860 images within 31 classes, and each class contains 60 images [11].

Figure 7. Optimal dataset.

5.2. Experimental Set-Up

We ran the experiments on an HP Omen Station with the following characteristics: central
processing unit (CPU)-Intel core (TM) i9-7920x CPU @ 2.9GHz with a RAM of 32 GB and graphical
processing unit (GPU) called NVIDIA GeForce GTX 1080 Ti (11 GB GDDR5X). All codes were
implemented using Keras, which is an open-source deep neural network library written in Python.
For each dataset, the results are presented in terms of overall accuracy (OA) and standard deviation
(STD) over five trials. Table 4 summarizes the main parameters used in all the experiments.
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Table 4. Parameters used in the experiments.

Parameter Settings
Optimizer RMSprop
Learning parameter o Initial:0.0001, then decreased by a factor of 1/10 after each 20 iterations
Moving average f8 0.9
Maximum number of epochs 40
Loss contribution A 0.5
Images size 256 x 256 pixels

Mini-batch size 50
Number of trials for each experiment 5

Data augmentation Not used

5.3. Experiments on Inception-v3

Inception-v3 is one of the standard pre-trained networks bundled with major deep learning
frameworks. The inception-v3 network is a very deep network with 48 layers in total. In the first set
of experiments, we analyzed its sensitivity with respect to the vanishing gradient problem. We built
subnetworks by taking the output of an intermediate inception layer and discarding the remaining
ones, then applying GAP followed by softmax and fine-tuning by using only the primary loss function.
Figure 8 and Table 5 summarize the results obtained by stopping at different middle inception layers
and for all the five datasets. The results clearly showed that the network suffers from the peaking
paradox (widely known in the remote sensing community as the Hughes effect), which has been
observed in many scientific problems in the past [38]. Basically, this paradox says that extracting
more and more features from data may help at the beginning, but then at some point, the increased
complexity of the feature extractor starts to hurt the performance of the model. In pattern recognition,
many researchers have observed that in order to increase the recognition accuracy, we usually need to
compute more detailed features. At some point, this becomes counterproductive and the recognition
accuracy starts to decrease again. This is because computing more discriminative features requires the
estimation of additional parameters in the model. If the training data is limited, then the estimation of
the parameters will lead to overfitting problems. Table 5 reports the OA for all datasets and suggests
that the inception layer termed as Mixed7 is the best for transferring knowledge from the network.

Table 5. Sensitivity analysis with respect to the network depth. The results are presented in terms of
(OA + STD) over five trials with different training and testing images.

Inception Layer Merced AID NWPU Optimal-31 KSA
Mixed Layer Size 50% Train 20% Train 10% Train 80% Train 20% Train
Mixed4 (12,12,768) 9533+043 90.17+0.23 84.20+025 90.57+030 94.11+042
Mixed5 (12,12,768) 9657 £0.28  91.16+0.31 85.75+030 91.66+0.34  94.58 +0.38
Mixed6 (12,12,768) 9706 £0.36  91.72+0.10 86.92+028  92.02+0.87  94.80+0.33
Mixed?7 (12,12,768) 9767 +029  9228+035 8824+043 93.11+1.04  95.03+0.50
Mixed8 (5,5,1280) 96.78 £0.67  91.17+0.37 87.11+031 91.88+1.03  93.38 +0.66
Mixed9 (5,5,2048) 96.62+0.38 91.87+037 87.89+010 9279+1.02  94.38+0.55

Mixed10 (5,5,2048) 9541+042 9039+029 8723+036 9145+1.10 9227 +1.65
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Figure 8. Classification accuracy represented in terms of Overall Accuracy+Stdandrd Deviation
(OA + STD) over five runs for (a) Merced, (b) AID, (c) NWPU, (d) Optimal-31, and (e) KSA datasets.
Each time we fine-tuned the network up to a certain inception layer, while removing the upper layers.

In the second set of experiments, we adopted our proposed solution by adding an auxiliary loss
function to the network on the top of Mixed?7 (since we found in the previous experiment that it is the
best choice for transferring knowledge) and then fine-tuned it by using both the primary and secondary
loss functions. Table 6 shows the results obtained for the two different configurations proposed for
the auxiliary loss function: Softmax and Conv+Softmax, as explained in the methodological section.
Table 6 reports the overall accuracies obtained for the five datasets. The overall accuracy was calculated
based on the classes predicted from the primary output only, while the auxiliary output was not
considered. As can be seen from the results, the auxiliary classifier enabled a significant improvement
(more than 2%) in the classification accuracy for all datasets, confirming that it plays an important
role in combatting the vanishing gradient problem. By averaging the results over the five datasets,
the inclusion of the auxiliary softmax layer allowed to boost the classification accuracy from 91.35%
to 93.73%. On the other hand, the second version of the auxiliary classifier based on Conv+Softmax
allowed the classification to reach an accuracy of 94.19%.
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Table 6. Fine-tuning results obtained using an auxiliary loss function besides the primary one compared
to the standard fine-tuning solution based only on the primary loss.

Without Auxiliary Auxiliary

Dataset Auxiliary Softmax Conv + Softmax
Merced 95.41 + 0.42 97.35+0.43 97.63 +0.20
AID 90.39 +0.29 92.69 +0.34 93.52 +0.21
NWPU 87.23 £0.36 89.28 +0.29 89.32 + 0.33
Optimal31 91.45 +1.10 93.81 +0.51 94.13 +0.35
KSA 9227 +1.65 95.55 + 0.25 96.36 + 0.24
Average 91.35 +0.76 93.73 + 0.36 94.19 + 0.27

5.4. Experiments on GoogLeNet

GoogLeNet (or Inception-v1) has been used in the RS literature by many researchers as indicated
in the literature review. In general, the reported results were less competing compared to other models.
In this section, we will show that this network has been penalized and demonstrate that it can provide
better results compared to state-of-the-art. Table 7 shows the OA for all dataset averaged over five runs.
As can be seen, this network seemed to be less sensitive to the depth effect compared to Inception-v3,
as the results produced by the output layer Mixed_5c were better compared to the hidden inception
layer Mixed_4f; however, adding the auxiliary classifier on the top of Mixed_4f produced improvement
for all five datasets, albeit not as significant as for Inception-v3. By averaging the OA over the five
datasets, the inclusion of the auxiliary softmax and auxiliary Conv+Softmax allowed to increase the
accuracies from 92.95% to 93.25% and 93.92%, respectively.

Table 7. OA (%) Obtained by fine-tuning GoogLeNet without and with an auxiliary classifier.

. Without With Auxiliary With Auxiliary

Mixed_4f Auxiliary Softmax Conv + Softmax
Merced 97.12 +0.21 97.04 +0.26 97.52 +0.28 97.90 + 0.34
AID 91.09 +0.20 92.09 +0.14 92.58 +0.22 93.25+0.33
NWPU 85.52 +0.17 88.16 + 0.13 88.06 + 0.34 89.22 +0.25
Optimal-31 90.64 + 0.90 92.36 + 0.60 92.63 + 0.36 93.11 + 0.55
KSA 94.32 + 0.68 95.10 + 0.53 95.46 + 0.50 96.14 + 0.39
Average 91.74 +0.43 92,95+ 0.33 93.25 + 0.34 93.92 +0.37

Figure 9 shows the evolution of the loss function during training with and without the auxiliary
classifier. Due to space limitation, we only show this for two datasets, namely Merced and AID datasets;
however, we observed this behavior for all datasets. The use of the auxiliary classifier made the loss to
converge at a slower rate, indicating that the gradient did not vanish in early iterations.

t —— GoogLeNet 25
1 —— Inceptionv3

—e - GooglLeNet_Auxiliary
=== Inceptionv3_Auxiliary

—— GooglLeNet
—— Inceptionv3
—e - GooglLeNet_Auxiliary
— - Inceptionv3_Auxiliary

2.04

2.0
15

15

Loss

1.0

0.5
0.5

Pt e Dot TS ST

0.0 4

0.0

0 5 10 15 20 25 30 35 40
Epochs

0 5 10 15 20 25 30 35 40
Epochs

(@ (b)

Figure 9. Loss versus the number of epochs obtained by Inception-v3 and GoogLeNet by training on
(a) Merced and (b) AID datasets.
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5.5. Sensitivity Analysis with Respect to the Training Size

In this experiment, we further analyzed the effect of the training set sizes on the performance of
both networks with/without an auxiliary classifier. As for the auxiliary classifier, we considered only
the second configuration based on (Conv+Softmax) as it yielded better improvements. We used the
Merced and Optimal-31 datasets to perform this experiment since they are small datasets requiring
less computational costs. Figures 10 and 11 show the OA for both GoogLeNet and Inception-v3 by
varying the training set size from 10% to 80%. These figures clearly illustrated that both networks
supplemented with an auxiliary classifier always provided improvements for all training set sizes.
For Inception-v3, we obtained an average improvement of 2.08% and 3.7% in accuracies for the Merced
and Optimal-31 datasets, respectively. On the other hand, GoogLeNet was found to be less sensitive to
the depth effect, but we always observed an increase in the accuracy. The average improvement in
accuracies for GoogLeNet was 0.8% and 0.92% for the Merced and Optimal-31 datasets, respectively.
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Figure 10. OA obtained on the Merced dataset for different training ratios by

fine-tuning (a) Inception-v3 and (b) GoogLeNet without and with an auxiliary classifier
(GAP+Conv+BN+ReLU+Dropout+Softmax).
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Figure 11. OA obtained on the Optimal-31 dataset for different training ratios by
fine-tuning (a) Inception-v3 and (b) GoogLeNet without and with an auxiliary softmax layer
(GAP+Conv+BN+ReLU+Dropout+Softmax).

5.6. Experiments using EfficientNets

In this experiment, we further analyzed the validity of the proposed solution using EfficientNets.
We considered the baseline version EfficientNet-B0 and its deeper version, EfficientNet-B3. As can be
seen from Table 8, EfficientNet-B0 was less sensitive compared to EfficientNet-B3; however, the inclusion
of the auxiliary classification allowed to increase the accuracy for both in most cases. By averaging
the results over the five datasets, we observed that the first network yielded 94.08% and 94.58% and
the second network yielded 93.74% and 94.74% without and with an auxiliary classification loss,
respectively. EfficientNets yielded slightly better accuracies compared to the inception-based ones. Yet
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our proposed solution for all four networks yielded better results compared to state-of-the-art methods
with low computational costs, which will be discussed in the next section.

Table 8. OA (%) bbtained by fine-tuning EfficientNet without and with an auxiliary classifier.

EfficeintNet-B0 EfficeintNet-B3
Dataset Without With Without With
atase Auxiliary Auxiliary Auxiliary Auxiliary

Merced (Train 50%) 97.69 + 0.41 98.01 + 0.45 97.33 + 0.48 98.22 + 0.49
AID (Train 20%) 93.61 + 0.27 93.69 +0.11 92.64 +0.24 94.19 + 0.15
NWPU (Train 10%) 89.83 + 0.15 89.96 + 0.27 89.46 + 0.17 91.08 + 0.14
Optimal-31 (Train 80%) 92.58 + 0.92 93.97 +0.13 93.92 +£0.73 94.51 + 0.75
KSA (Train 20%) 95.71 + 0.31 96.26 + 0.35 95.35 + 0.76 96.29 + 0.49
Average 94.08 + 0.26 94.58 + 0.24 93.74 + 0.47 94.85 + 0.40

6. Discussions

In this section, we compare the results of our method with the state-of-the-art results reported
so far in the literature of RS. Tables 9-12 show detailed comparisons for Merced, AID, NWPU, and
Optimal-31 datasets, respectively. The training—testing set splits were different from one dataset to
another depending on which splits were reported in the literature. In these comparisons, we reported
the OA for the second configuration of the classification loss (Conv+Softmax). We termed our method in
the different tables as GoogLeNet-aux, Inception-v3-aux, EfficientNet-B0-aux, and EfficientNet-B3-aux.
As can be seen, our results obtained for GoogLeNet-aux were better (up to 10% difference for the AID
and Optimal-31 datasets) than similar fine-tuning results reported in the literature using GoogLeNet,
which confirmed clearly that this network has not been exploited in an appropriate way. It was also
impressive to see that fine-tuning the different networks supplemented with an auxiliary classifier
settled new state-of-the-art results compared to recent methods with complex feature engineering.
For example, the recent state-of-the-art method in [5], based on VGG16 coupled with a complex module
based on bidirectional LSTM, achieved 98.57% and 97.05% for Merced with 80% and 50% training ratios,
respectively. Our proposed method yielded better results for the four networks, and the best result was
achieved by EfficientNetB3-aux with 99.09% and 98.22% for 80% and 50% training ratios, respectively.

Table 9. Comparison with state-of-the-art methods for the Merced dataset.

Method 80% Train 50% Train
ARCNet-VGG16 [11] 99.12 + 0.40 96.81 +0.14
VGG16+MSCP [39] 98.36 + 0.58 —
Siamese ResNet50+RD [40] 94.50 91.71
OverfeatL+IFK [41] 98.91 —
Triplet networks [13] 97.99 + 0.53 —
MCNN [23] 96.66 + 0.90
GoogLeNet+SVM [35] 94.31 + 0.89 92.70 + 0.60
AlexNet [42] 95.00 + 1.74 -
VGG16+IFK [25] 98.57 + 0.34
D-DSML-CaffeNet [24] 95.76 + 1.70
ResNet [42] 97.19 + 0.57
Fusion by addition [30] 97.42 +1.79
VGG16+EMR [28] 98.14
Fine-tuning VGG16 [5] 97.14 + 0.48 96.57 + 0.38
GBNet [5] 96.90 + 0.23 95.71 £ 0.19
GBNet+global feature [5] 98.57 +0.48 97.05 +0.19
Fine-tuning GoogLeNet [6] 97.10 —
Inception-v3-aux [ours] 98.80 + 0.26 97.63 +0.20
GooglLeNet-aux [ours] 99.00 + 0.46 97.90 + 0.34
EfficientNet-B0-aux [ours] 99.04 + 0.33 98.01 + 0.45

EfficientNet-B3-aux [ours] 99.09 = 0.17 98.22 + 0.49
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Table 10. Comparison with state-of-the-art methods for the AID dataset.

Method 50% Train 20% Train
ARCNet-VGG16 [11] 93.10 + 0.55 88.75 + 0.40
VGG16+MSCP [39] 9442 +0.17 91.52 + 0.21
MCNN [23] 91.80 + 0.22 —
Fusion by addition [30] 91.87 + 0.36
Multilevel fusion [25] 95.36 + 0.22
VGG16 (fine-tuning) [5] 93.60 + 0.64 89.49 + 0.34
GBNet+global feature [5] 95.48 +0.12 92.20 + 0.23
GoogLeNet+SVM [35] 86.39 + 0.55 83.44 + 0.40
CaffeNet [35] 89.53 + 0.31 86.86 + 0.47
VGG16 [35] 89.64 + 0.36 86.59 + 0.29
Inception-v3-aux [ours] 95.64 + 0.20 93.52 + 0.21
GoogLeNet-aux [ours] 95.54 +0.12 93.25 + 0.33
EfficientNet-B0O-aux [ours] 96.17 £ 0.16 93.69 + 0.11
EfficientNet-B3-aux [ours] 96.56 + 0.14 94.19 £ 0.15

Table 11. Comparison with state-of-the-art methods for the NWPU dataset.

Method 10% Train 20% Train
VGG16+MSCP [39] 85.33 + 0.17 88.93 +0.14
Triplet networks [13] — 92.33 + 0.20
Fine-tuning VGG16 [10] 87.15 + 0.45 90.36 + 0.18
Fine-tuning GoogLeNet [10] 82.57 +0.12 86.02 +0.18
Inception-v3-aux [ours] 89.32 +0.33 92.18 + 0.11
GoogLeNet-aux [ours] 89.22 + 0.25 91.63 £ 0.11
EfficientNet-B0O-aux [ours] 89.96 + 0.27 92.89 + 0.16
EfficientNet-B3-aux [ours] 91.08 + 0.14 93.81 + 0.07

Table 12. Comparison with state-of-the-art methods for the Optimal-31 dataset.

Method 80% Train
ARCNet-VGG16 [11] 92.70 + 0.35
ARCNet-AlexNet [11] 85.75 + 0.35
ARCNet-ResNet [11] 91.28 + 0.45

Fine-tuning GoogLeNet [11] 82.57 +0.12
Fine-tuning VGG16 [11] 87.45 + 0.45
Fine-tuning AlexNet [11] 81.22 + 0.19

VGG16 [35] 89.12 + 0.35
Fine-tuning VGG16 [5] 89.52 + 0.26
GBNet [5] 91.40 + 0.27
GBNet+global feature [5] 93.28 + 0.27
Inception-v3-aux [ours] 94.13 £ 0.35
GoogLeNet-aux [ours] 93.11 £ 0.55
EfficientNet-B0-aux [ours] 93.97 £ 0.13
EfficientNet-B3-aux [ours] 94.51 + 0.75

For further analysis, we carried out another experiment using data augmentation techniques.
To this end, we augmented the datasets during the training phase by flipping the images vertically
and horizontally. Table 13 reports the new accuracies obtained for EfficientNetB3-aux-aug with 100%
augmentation. That is, we augmented each datasets by adding a set of images to the original training
set by randomly flipping horizontally or vertically each image in the training set. This operation was
done online for each mini-batch during the training phase. It is worth noting that more advanced
augmentation methods could be adopted as well. As can be seen from Table 13, augmentation improved
the accuracy and increased the computation cost.
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Table 13. Classification results obtained without and with data augmentation (100%) using simple
vertical and horizontal flips of the images.

Merced Optimal-31 AID
50% Train 80% Train 20% Train
.. 98.22 +0.49 9451 +0.75 94.19 + 0.15
EfficientNet-B3-aux 14 minutes 20 minutes 27 minutes
.. 98.38 + 0.30 95.26 + 0.46 95.56 +0.23
EfficientNet-B3-aux-aug 42 minutes 46 minutes 1 hour

For additional comparison purposes, we carried out other experiments for EffientNet-B3 using
feature extraction techniques. We froze the network weights and ran on the top three types of classifiers:
a simple softmax, one fully-connected layer plus softmax, and two fully-connected layers plus softmax.
The results, reported in Table 14, confirmed the superiority of the proposed fine-tuning method.

Table 14. Comparison with feature extraction methods using EfficientNet-B3: Freeze the weights of the
pre-trained CNN and train an external classifier.

Merced Optimal-31

50% Train 80% Train

Softmax 93.90 + 0.62 85.86 + 1.67
Dense(128)+Softmax 94.34 + 0.46 85.06 + 1.70
Dense(128)+Dense(128)+Softmax 94.03 £ 0.71 86.02 + 1.57
EfficientNet-B0-aux 98.01 + 0.45 94.51 + 0.75

Finally, to further assess the performance of the proposed fine-tuning method, we investigated an
additional network called DenseNet [43]. This network (Figure 12) relies on the idea of connecting
each layer to every other layer in a feed-forward fashion. That is for each layer, the feature maps of
all preceding layers are used as inputs, while its own feature maps are used as inputs into all the
subsequent layers. In this work, we placed the auxiliary classification loss on the top of the “pool4_conv”
layer of DenseNet169 (with an output of 16 X 16 x 640) and the main softmax classification layer
on the top of network output of dimension 8 X 8 x 1664. This network was fine-tuned by using the
RMSprop optimizer with the parameters given in Table 4 without/with an auxiliary loss function and
with data augmentation as for EfficientNet-B3. Table 15 shows the classification results for this network.
These results again confirmed the promising capabilities of the fine-tuning approach when carried out
in an appropriate way.

Figure 12. Example of a five-layer dense block, where each layer takes all preceding feature input maps
as input [43].
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Table 15. Classification reults obtained by fine-tuining the DenseNet169 network.

Merced Optimal-31 AID
50% Train 80% Train 20% Train
DensNets169 9181 11{511?11?’(:55 91:;161;111:[356 Z%?ﬁ;féj
DensNets169-aux 9187121;&554 91£é6n21§1?t381 %%)?i;l?t;:
DensNets169-aux-aug 94886111?11(1123 154?;;&259 915. 2802 }:togfs2

7. Conclusions

In this paper, we presented a simple yet effective method to combat the vanishing gradient problem
for deeper CNNs with relatively small weights. We showed that supplementing the network with an
additional auxiliary classification loss placed on the top of a hidden layer and the utilization of an
appropriate optimization method can produce state-of-the-art results in terms of OA and convergence
times compared to the complex methods based on complex feature extraction techniques. For future
developments, we suggest to: (1) assess the method for other types of deeper networks, (2) investigate
alternative solutions for combatting the vanishing gradient problem, and (3) improve the results by
optimizing the CNN architecture by pruning redundant layers irrelevant to the classification task.
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