Neural Network Approaches to Reconstruct Phytoplankton Time-Series in the Global Ocean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oceanic and Atmospheric Datasets
2.2. Machine Learning Models
2.2.1. Support Vector Regression (SVR)
2.2.2. Neural Networks
2.2.3. Data Preprocessing and Procedure
2.3. Statistical Diagnostics and Empirical Orthogonal Functions
3. Results
3.1. Statistical Performances
3.2. Seasonal to Interannual Variability and Trends
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sabine, C.L.; Feely, R.A.; Gruber, N.; Key, R.M.; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C.S.; Wallace, D.W.R.; Tilbrook, B.; et al. The oceanic sink for anthropogenic CO2. Science 2004, 305, 367–371. [Google Scholar] [CrossRef]
- Falkowski, P. Ocean science: The power of plankton. Nature 2012, 483, S17–S20. [Google Scholar] [CrossRef]
- Longhurst, A.; Sathyendranath, S.; Platt, T.; Caverhill, C. An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res. 1995, 17, 1245–1271. [Google Scholar] [CrossRef]
- Messié, M.; Chavez, F.P. A global analysis of ENSO synchrony: The oceans’ biological response to physical forcing. J. Geophys. Res. Oceans 2012, 117, C09001. [Google Scholar] [CrossRef]
- Dutkiewicz, S.; Follows, M.; Marshall, J.; Gregg, W.W. Interannual variability of phytoplankton abundances in the North Atlantic. Deep Sea Res. II Top. Stud. Oceanogr. 2001, 48, 2323–2344. [Google Scholar] [CrossRef]
- Aumont, O.; Ethé, C.; Tagliabue, A.; Bopp, L.; Gehlen, M. PISCESv2: An ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 2015, 8, 2465–2513. [Google Scholar] [CrossRef]
- Henson, S.A.; Dunne, J.P.; Sarmiento, J.L. Decadal variability in North Atlantic phytoplankton blooms. J. Geophys. Res. Ocean. 2009, 114, C04013. [Google Scholar] [CrossRef]
- Henson, S.A.; Raitsos, D.; Dunne, J.P.; McQuatters-Gollop, A. Decadal variability in biogeochemical models: Comparison with a 50-year ocean colour dataset. Geophys. Res. Lett. 2009, 36, L21061. [Google Scholar] [CrossRef]
- Patara, L.; Visbeck, M.; Masina, S.; Krahmann, G.; Vichi, M. Marine biogeochemical responses to the North Atlantic Oscillation in a coupled climate model. J. Geophys. Res. Ocean. 2011, 116, C07023. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T. An apparent hiatus in global warming? Earth’s Future 2013, 1, 19–32. [Google Scholar] [CrossRef]
- Wilson, C.; Adamec, D. A global view of bio-physical coupling from SeaWiFS and TOPEX satellite data, 1997–2001. Geophys. Res. Lett. 2002, 29, 1257. [Google Scholar] [CrossRef]
- Wilson, C.; Coles, V.J. Global climatological relationships between satellite biological and physical observations and upper ocean properties. J. Geophys. Res. Ocean. 2005, 110, C10001. [Google Scholar] [CrossRef]
- Kahru, M.; Gille, S.T.; Murtugudde, R.; Strutton, P.G.; Manzano-Sarabia, M.; Wang, H.; Mitchell, B.G. Global correlations between winds and ocean chlorophyll. J. Geophys. Res. Ocean. 2010, 115, C12040. [Google Scholar] [CrossRef]
- Messié, M.; Chavez, F.P. Seasonal regulation of primary production in eastern boundary upwelling systems. Prog. Oceanogr. 2015, 134, 1–18. [Google Scholar] [CrossRef]
- Uz, S.S.; Busalacchi, A.J.; Smith, T.M.; Evans, M.N.; Brown, C.W.; Hackert, E. Interannual and decadal variability in tropical pacific chlorophyll from a statistical reconstruction: 1958–2008. J. Clim. 2017, 30, 7293–7315. [Google Scholar] [CrossRef]
- Martinez, E.; Gorgues, T.; Lengaigne, M.; Fontana, C.; Sauzède, R.; Menkes, C.; Uitz, J.; Di Lorenzo, E.; Fablet, R. Reconstructing Global Chlorophyll-a Variations Using a Non-linear Statistical Approach. Front. Mar. Sci. 2020, 7, 464. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; O’Malley, R.T.; Siegel, D.A.; McClain, C.R.; Sarmiento, J.L.; Feldman, G.C.; Milligan, A.J.; Falkowski, P.G.; Letelier, R.M.; Boss, E.S. Climate-driven trends in contemporary ocean productivity. Nature 2006, 444, 752–755. [Google Scholar] [CrossRef]
- Polovina, J.J.; Howell, E.A.; Abecassis, M. Ocean’s leastproductive waters are expanding. Geophys. Res. Lett. 2008, 35, L03618. [Google Scholar] [CrossRef]
- Martinez, E.; Antoine, D.; D’Ortenzio, F.; Gentili, B. Climate-driven basin-scale decadal oscillations of oceanic phytoplankton. Science 2009, 36, 1253–1256. [Google Scholar] [CrossRef]
- Thomas, A.C.; Strub, P.T.; Weatherbee, R.A.; James, C. Satellite views of Pacific chlorophyll variability: Comparisons to physical variability, local versus nonlocal influences and links to climate indices. Deep-Sea Res. II Top. Stud. Oceanogr. 2012, 77, 99–116. [Google Scholar] [CrossRef]
- Lewandowska, A.M.; Hillebrand, H.; Lengfellner, K.; Sommer, U. Temperature effects on phytoplankton diversity—The zooplankton link. J. Sea Res. 2014, 85, 359–364. [Google Scholar] [CrossRef]
- Available online: http://iridl.ldeo.columbia.edu/ (accessed on 18 December 2020).
- Wilson, C.; Adamec, D. Correlations between surface chlorophyll and sea surface height in the tropical Pacific during the 1997-1999 El Nino-Southern event. J. Geophys. Res. Ocean. 2001, 106, 31175–31188. [Google Scholar] [CrossRef]
- Radenac, M.H.; Léger, F.; Singh, A.; Delcroix, T. Sea surface chlorophyll signature in the tropical Pacific during eastern and central Pacific ENSO events. J. Geophys. Res. Ocean. 2012, 117, C04007. [Google Scholar] [CrossRef]
- Available online: https://resources.marine.copernicus.eu/?option=com_csw&task=results (accessed on 18 December 2020).
- Martinez, E.; Antoine, D.; D’Ortenzio, F.; de Boyer Montégut, C. Phytoplankton spring and fall blooms in the North Atlantic in the 1980s and 2000s. J. Geophys. Res. Ocean. 2011, 116, C11029. [Google Scholar] [CrossRef]
- Available online: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim (accessed on 18 December 2020).
- Radenac, M.H.; Messié, M.; Léger, F.; Bosc, C. A very oligotrophic zone observed from space in the equatorial Pacific warm pool. Remote Sens. Environ. 2013, 134, 224–233. [Google Scholar] [CrossRef]
- Available online: https://podaac.jpl.nasa.gov/dataset/OSCAR_L4_OC_third-deg (accessed on 18 December 2020).
- Available online: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.surfaceflux.html (accessed on 18 December 2020).
- Sauzède, R.; Claustre, H.; Jamet, C.; Uitz, J.; Ras, J.; Mignot, A.; D’Ortenzio, F. Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications. J. Geophys. Res. Ocean. 2015, 120, 451–470. [Google Scholar] [CrossRef]
- Available online: https://www.oceancolour.org (accessed on 18 December 2020).
- Belo Couto, A.; Brotas, V.; Mélin, F.; Groom, S.; Sathyendranath, S. Inter-comparison of OC-CCI chlorophyll—A estimates with precursor data sets. Int. J. Remote Sens. 2016, 37, 4337–4355. [Google Scholar] [CrossRef]
- Available online: www.esrl.noaa.gov/psd (accessed on 18 December 2020).
- Vapnik, V. Statistics for engineering and information science. In The Nature of Statistical Learning Theory; Jordan, M.J., Lawless, J.F., Lauritzen, S.L., Nair, V., Eds.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Descloux, E.; Mangeas, M.; Menkes, C.E.; Lengaigne, M.; Leroy, A.; Tehei, T.; Guillaumot, L.; Teurlai, M.; Gourinat, A.-C.; Benzler, J.; et al. Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl. Trop. Dis. 2012, 6, e1470. [Google Scholar] [CrossRef]
- Elbisy, M.S. Sea wave parameters prediction by support vector machine using a genetic algorithm. J. Coast. Res. 2015, 31, 892–899. [Google Scholar] [CrossRef]
- Neetu, S.; Lengaigne, M.; Vialard, J.; Mangeas, M.; Menkes, C.; Suresh, I.; Leloup, J.; Knaff, J. Quantifying the benefits of non-linear methods for global statistical hindcasts of tropical cyclones intensity. Mon. Weather Rev. 2020, 35, 807–820. [Google Scholar] [CrossRef]
- Kim, Y.H.; Im, J.; Ha, H.K.; Choi, J.K.; Ha, S. Machine learning approaches to coastal water quality monitoring using GOCI satellite data. Gisci. Remote Sens. 2014, 51, 158–174. [Google Scholar] [CrossRef]
- Hu, S.; Liu, H.; Zhao, W.; Shi, T.; Hu, Z.; Li, Q.; Wu, G. Comparison of machine learning techniques in inferring phytoplankton size classes. Remote Sens. 2018, 10, 191. [Google Scholar] [CrossRef]
- Blix, K.; Eltoft, T. Machine learning automatic model selection algorithm for oceanic chlorophyll-a content retrieval. Remote Sens. 2018, 10, 775. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Ahmad, H. Machine learning applications in oceanography. Aquat. Res. 2019, 2, 161–169. [Google Scholar] [CrossRef]
- Sammartino, M.; Marullo, S.; Santoleri, R.; Scardi, M. Modelling the vertical distribution of phytoplankton biomass in the Mediterranean Sea from satellite data: A neural network approach. Remote Sens. 2018, 10, 1666. [Google Scholar] [CrossRef]
- Wang, C.; Tandeo, P.; Mouche, A.; Stopa, J.E.; Gressani, V.; Longepe, N.; VanDeMark, D.; Foster, R.C.; Chapron, B. Classification of the global Sentinel-1 SAR vignettes for ocean surface process studies. Remote Sens. Environ. 2019, 234, 111457. [Google Scholar] [CrossRef]
- Karpatne, A.; Atluri, G.; Faghmous, J.; Steinbach, M.; Banerjee, A.; Ganguly, A.; Shekhar, S.; Samatova, N.; Kumar, V. Theory-guided data science: A new paradigm for scientific discovery. arXiv 2016, arXiv:1612.08544. [Google Scholar] [CrossRef]
- Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Srivastva, N. System and Method for Addressing Overfitting in a Neural Network. US Patent 9,406,017, 2 August 2016. [Google Scholar]
- Emery, W.; Thomson, R. Data Analysis in Physical Oceanography; Pergamon: New York, NY, USA, 1997; p. 634. [Google Scholar]
- Laws, E.A.; Bannister, T.T. Nutrient-and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol. Oceanogr. 1980, 25, 457–473. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; O’Malley, R.T.; Boss, E.S.; Westberry, T.K.; Graff, J.R.; Halsey, K.H.; Milligan, A.J.; Siegel, D.A.; Brown, M.B. Revaluating ocean warming impacts on global phytoplankton. Nat. Clim. Chang. 2015, 6, 323–330. [Google Scholar] [CrossRef]
- Morel, A.; Gentili, B. The dissolved yellow substance and the shades of blue in the Mediterranean Sea. Biogeosciences 2009, 6, 2625–2636. [Google Scholar] [CrossRef]
- Del Vecchio, R.; Subramaniam, A. Influence of the Amazon River on the surface optical properties of the western tropical North Atlantic Ocean. J. Geophys. Res. Ocean. 2004, 109, C11. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Randerson, J.T.; McClain, C.R.; Feldman, G.C.; Los, S.O.; Tucker, C.J.; Falkowski, P.G.; Field, C.B.; Frouin, R.; Esaias, W.E.; et al. Biospheric primary production during an ENSO transition. Science 2001, 291, 2594–2597. [Google Scholar] [CrossRef] [PubMed]
- Yoder, J.A.; Kennelly, M.A. Seasonal and ENSO variability in global ocean phytoplankton chlorophyll derived from 4 years of SeaWiFS measurements. Glob. Biogeochem. Cycles 2003, 17, 1112. [Google Scholar] [CrossRef]
- Chavez, F.P.; Messié, M.; Pennington, J.T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 2011, 3, 227–260. [Google Scholar] [CrossRef] [PubMed]
- Doney, S.C. Plankton in a warmer world. Nature 2006, 444, 695–696. [Google Scholar] [CrossRef] [PubMed]
- Irwin, A.J.; Oliver, M.J. Are ocean deserts getting larger? Geophys. Res. Lett. 2009, 36, L18609. [Google Scholar] [CrossRef]
- Mélin, F.; Vantrepotte, V.; Chuprin, A.; Grant, M.; Jackson, T.; Sathyendranath, S. Assessing the fitness-for-purpose of satellite multi-mission ocean color climate data records: A protocol applied to OC-CCI chlorophyll-a data. Remote Sens. Environ. 2017, 203, 139–151. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, H.C.; Han, D.; Lee, S.; Im, J. Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks. Cryosphere 2020, 14, 1083–1104. [Google Scholar]
- Siegel, D.A.; Maritorena, S.; Nelson, N.B.; Behrenfeld, M.J. Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption. J. Geophys. Res. Ocean. 2005, 110, C07011. [Google Scholar] [CrossRef]
- Westberry, T.; Behrenfeld, M.J.; Siegel, D.A.; Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 2008, 22, GB2024. [Google Scholar] [CrossRef]
- Beauchamp, M.; Fablet, R.; Ubelmann, C.; Ballarotta, M.; Chapron, B. Intercomparison of data-driven and learning-based interpolations of along-track Nadir and wide-swath Swot altimetry observations. Remote Sens. 2020, 12, 3806. [Google Scholar] [CrossRef]
- Nguyen, D.; Ouala, S.; Drumetz, L.; Fablet, R. Variational Deep Learning for the Identification and Reconstruction of Chaotic and Stochastic Dynamical Systems from Noisy and Partial Observations. arXiv 2020, arXiv:2009.02296. [Google Scholar]
Proxy Used as Predictors | Relevance to Chl Variations and Associated References | Products | Spatio-Temporal Resolutions |
---|---|---|---|
SST | Vertical mixing and upwelling [17,18,19,20] Impacts on phytoplankton metabolic rates [21] | Reyn_SmithOIv2 SST dataset [22] | Monthly on a 1° × 1° spatial grid |
Sea level anomaly | Thermocline/pycnocline depths [11,23,24] | Ssalto/Duacs merged product of CNES/SALP project [25] | Weekly on a 1/3° × 1/3° spatial grid |
Zonal and meridional surface winds | Surface momentum flux forcing and vertical motions driven by Ekman pumping [20,26] | Atmospheric model reanalysis ERA interim 4 [27] | Every 5-days on a 0.25° × 0.25° spatial grid |
Zonal and meridional surface total currents | Horizontal advective processes [4,28] | OSCAR unfiltered satellite product [29] | Every 5-days on a 0.25° × 0.25° spatial grid |
Short-wave radiations | Photosynthetically active radiation | NCEP/NCAR Numerical reanalysis [30] | Daily on a 2° grid |
Month (cos and sin) | Periodicity of the day of the year (day 1 is very similar to day 365 from a seasonal perspective) [31] | ||
Longitude (cos and sin) and Latitude (sin) | Periodicity (longitude 0° = longitude 360°) [31] |
Weight | Predictors |
---|---|
0.471 | Sin(lat) |
0.246 | Sea surface temperature |
0.052 | Cos(lon) |
0.05 | Sin(lon) |
0.03 | Short-wave radiations |
0.028 | Sin(month) |
0.025 | Zonal surface wind |
0.023 | Cos(month) |
0.021 | Meridional surface wind |
0.019 | Sea level anomaly |
0.018 | Zonal surface current |
0.017 | Meridional surface current |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, E.; Brini, A.; Gorgues, T.; Drumetz, L.; Roussillon, J.; Tandeo, P.; Maze, G.; Fablet, R. Neural Network Approaches to Reconstruct Phytoplankton Time-Series in the Global Ocean. Remote Sens. 2020, 12, 4156. https://doi.org/10.3390/rs12244156
Martinez E, Brini A, Gorgues T, Drumetz L, Roussillon J, Tandeo P, Maze G, Fablet R. Neural Network Approaches to Reconstruct Phytoplankton Time-Series in the Global Ocean. Remote Sensing. 2020; 12(24):4156. https://doi.org/10.3390/rs12244156
Chicago/Turabian StyleMartinez, Elodie, Anouar Brini, Thomas Gorgues, Lucas Drumetz, Joana Roussillon, Pierre Tandeo, Guillaume Maze, and Ronan Fablet. 2020. "Neural Network Approaches to Reconstruct Phytoplankton Time-Series in the Global Ocean" Remote Sensing 12, no. 24: 4156. https://doi.org/10.3390/rs12244156
APA StyleMartinez, E., Brini, A., Gorgues, T., Drumetz, L., Roussillon, J., Tandeo, P., Maze, G., & Fablet, R. (2020). Neural Network Approaches to Reconstruct Phytoplankton Time-Series in the Global Ocean. Remote Sensing, 12(24), 4156. https://doi.org/10.3390/rs12244156