Bi-Temporal Analysis of Spatial Changes of Boreal Forest Cover and Species in Siberia for the Years 1985 and 2015
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Data Process
3.1. Data Preprocess
3.2. Forest Classification Approach
3.2.1. Forest and Nonforest Land Classification by Decision Tree Method
3.2.2. Broad-Leaved and Coniferous Forest Classification by Random Forest Algorithm
3.2.3. Accuracy Assessment
4. Result and Analysis
4.1. Spatial Change of Boreal Forest Cover
4.2. Spatial Changes of Boreal Forest Species
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Trumbore, S.; Brando, P.; Hartmann, H. Forest health and global change. Science 2015, 349, 814–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bos, A.B.; Sy, V.D.; Duchelle, A.E.; Herold, M.; Martius, C.; Tsendbazar, N.E. Global data and tools for local forest cover loss and REDD+ performance assessment: Accuracy, uncertainty, complementarity and impact. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 295–311. [Google Scholar] [CrossRef]
- Price, D.T.; Alfaro, R.I.; Brown, K.J.; Flannigan, M.D.; Fleming, R.A.; Hogg, E.H. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems1. Environ. Rev. 2013, 21, 322–365. [Google Scholar] [CrossRef]
- IPCC. Summary for policy makers. In Climate Change 2014: Synthesis Report. Contibution of Working Groups I, II, and III to the Fifth Assessment Report if the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.C. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Folland, C.K.; Karl, T.R.; Christy, J.R.; Clarke, R.A.; Gruza, G.V.; Jouzel, J.; Mann, M.E.; Oerlemands, J.; Salinger, M.J.; Wang, S.W. Observed climate variability and change. In The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2001; pp. 99–181. [Google Scholar]
- Thuiller, W. Biodiversity: Climate change and the ecologist. Nature 2007, 448, 550–552. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, S.; Bernier, P.; Burton, P.J.; Edwards, J.; Isaac, K.; Isabel, N.; Jayen, K.; Le Goff, H.; Nelson, E.A. Climate change vulnerability and adaptation in the managed. Environ. Rev. 2014, 22, 256–285. [Google Scholar] [CrossRef]
- Lawal, S.; Lennard, C.; Hewitson, B. Response of southern African vegetation to climate change at 1.5 and 2.0° global warming above the pre-industrial level. Clim. Serv. 2019, 16, 1–16. [Google Scholar] [CrossRef]
- Engelbrecht, C.J.; Engelbrecht, F.A. Shifts in Köppen-Geiger climate zones over southern Africa in relation to key global temperature goals. Theor. Appl. Climatol. 2015, 123, 247–261. [Google Scholar] [CrossRef]
- Jones, P.D.; Osborn, T.J. Climate record: Surface temperature trends. In Reference Module in Earth Systems and Environmental Sciences; 2018; pp. 110–120. Available online: https://doi.org/10.1016/B978-0-12-382225-3.00005-0 (accessed on 16 December 2020).
- Kumar, A.; Yadav, J.; Mohan, R. Global warming leading to alarming recession of the Arctic sea-ice cover: Insights from remote sensing observations and model reanalysis. Heliyon 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Field, C.B. Changes in ecologically critical terrestrial climate conditions. Science 2013, 341, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, W.; Gao, X.; Hao, Z.; Liu, H.; Hao, F. Farmland shift due to climate warming and impacts on temporal-spatial distributions of water resources in a middle-high latitude agricultural watershed. J. Hydrol. 2017, 547, 156–167. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q. Projected changes in temperature and precipitation in ten river basins over China in 21st century. Int. J. Climatol. 2015, 35, 1125–1141. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, X.; Zhang, Q.; Lin, Y.; Hao, M.; Luo, Y.; Zhao, Z.; Yao, Y.; Chen, X.; Wang, L.; et al. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Chang. 2017, 7, 875–879. [Google Scholar] [CrossRef]
- Gauthier, S.; Bernier, P.; Kuuluvainen, T.; Shvidenko, A.Z.; Schepaschenko, D.G. Boreal forest health and global change. Science 2015, 349, 819–822. [Google Scholar] [CrossRef]
- Reyer, C.P.O.; Brouwers, N.; Rammig, A.; Brook, B.W.; Epila, J.; Grant, R.F. Forest resilience and tipping points at different spatio-temporal scales: Approaches and challenges. J. Ecol. 2015, 103, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, C.; Wouter, G.; Andersson, J.; Gerten, D.; Pisacane, G.; Roudier, P.; Ludwig, F. Impacts of climate change on European hydrology at 1.5, 2 and 3 degree mean global warming above preindustrial level. Clim. Chang. 2017, 143, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Soja, A.J.; Tchebakova, N.M.; French, N.H.F.; Flannigan, M.D.; Shugart, H.H.; Stocks, B.J.; Sukhinin, A.I.; Parfenova, E.I.; Chapin, F.S.; Stackhouse, P.W. Climate-induced boreal forest change: Predictions versus current observations. Glob. Planet. Chang. 2007, 56, 274–296. [Google Scholar] [CrossRef] [Green Version]
- Toshichika, I.; Ramankutty, N. How do weather and climate influence cropping area and intensity? Glob. Food Secur. 2015, 4, 46–50. [Google Scholar]
- Brecka, A.F.J.; Shahi, C.; Chen, H.Y.H. Climate change impacts on boreal forest timber supply. For. Policy Econ. 2018, 92, 11–21. [Google Scholar] [CrossRef]
- Oboite, F.O.; Comeau, P.G. Competition and climate influence growth of black spruce in western boreal forests. For. Ecol. Manag. 2019, 443, 84–94. [Google Scholar] [CrossRef]
- Kivinen, S.; Koivisto, E.; Keski-Saari, S.; Poikolainen, L.; Tanhuanpää, T.; Kuzmin, A.; Viinikka, A.; Heikkinen, R.K.; Pykälä, J.; Virkkala, R.; et al. A keystone species, European aspen (Populus tremula L.), in boreal forests: Ecological role, knowledge needs and mapping using remote sensing. For. Ecol. Manag. 2020, 462, 118008. [Google Scholar] [CrossRef]
- Ols, C.; Kålås, I.H.; Drobyshev, I.; Söderström, L.; Hofgaard, A. Spatiotemporal variation in the relationship between boreal forest productivity proxies and climate data. Dendrochronologia 2019, 58, 125648. [Google Scholar] [CrossRef]
- Kato, A.; Thau, D.; Hudak, A.T.; Meigs, G.W.; Moskal, L.M. Quantifying fire trends in boreal forests with Landsat time series and self-organized criticality. Remote Sens. Environ. 2020, 237, 111525. [Google Scholar] [CrossRef]
- Moreno-Martínez, Á.; Camps-Valls, G.; Kattge, J.; Robinsona, N.; Reichstein, M.; van Bodegom, P.; Kramer, K.; Cornelissen, J.H.C.; Reich, P.; Bahn, M.; et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens. Environ. 2018, 218, 69–88. [Google Scholar] [CrossRef] [Green Version]
- Hou, M.; Venäläinen, A.K.; Wang, L.; Pirinen, I.P.; Gao, Y.; Jin, S.; Zhu, Y.; Qin, F.; Hu, Y. Spatio-temporal divergence in the responses of Finland’s boreal forests to climate variables. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 1–9. [Google Scholar] [CrossRef]
- Alibakhshi, S.; Naimi, B.; Hovi, A.; Crowther, T.W.; Rautiainen, M. Quantitative analysis of the links between forest structure and land surface albedo on a global scale. Remote Sens. Environ. 2020, 246, 1–12. [Google Scholar] [CrossRef]
- Rendenieks, Z.; Nita, M.D.; Nikodemus, O.; Radeloff, V.C. Half a century of forest cover change along the Latvian-Russian border captured by object-based image analysis of Corona and Landsat TM/OLI data. Remote Sens. Environ. 2020, 249, 1–14. [Google Scholar] [CrossRef]
- Senf, C.; Laštovička, J.; Okujeni, A.; Heurich, M.; Linden, S. A generalized regression-based unmixing model for mapping forest cover fractions throughout three decades of Landsat data. Remote Sens. Environ. 2020, 240, 1–10. [Google Scholar] [CrossRef]
- Wulder, M.; Loveland, T.; Roy, D.; Crawford, C.; Masek, J.; Woodcock, C. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Wu, Z.; Snyder, G.; Vadnais, C.; Arora, R.; Babcock, M.; Stensaas, G.; Doucette, P.; Newman, T. User needs for future Landsat missions. Remote Sens. Environ. 2019, 231, 1–13. [Google Scholar] [CrossRef]
- Jönsson, P.; Cai, Z.; Melaas, E.; Friedl, M.A.; Eklundh, L. A method for robust estimation of vegetation seasonality from Landsat and sentinel-2 time series data. Remote Sens. 2018, 10, 635. [Google Scholar] [CrossRef] [Green Version]
- Restrepo, A.M.C.; Yang, Y.R.; Hamm, N.A.; Gray, D.J.; Barnes, T.S.; Williams, G.M.; Clements, A.C. Land cover change during a period of extensive landscape restoration in Ningxia Hui autonomous region. China Sci. Total Environ. 2017, 598, 669–679. [Google Scholar] [CrossRef]
- Bolton, D.K.; Tompalski, P.; Coops, N.C.; White, J.C.; Wulder, M.A.; Hermosilla, T.; Queinnec, M.; Luther, J.E.; Lier, O.R.; Fournier, R.A.; et al. Optimizing Landsat time series length for regional mapping of lidar-derived forest structure. Remote Sens. Environ. 2020, 239, 111645. [Google Scholar] [CrossRef]
- Zhang, Y.; Guindon, B.; Cihlar, J. An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images. Remote Sens. Environ. 2002, 82, 173–187. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Chen, D.; Chan, J.C. Thin cloud removal with residual symmetrical concatenation network. ISPRS J. Photogramm. Remote Sens. 2019, 153, 137–150. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, X.; He, L.; Lu, W. Haze removal for a single visible remote sensing image. Signal Process. 2017, 137, 33–43. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, X.; Dong, J.; Zhang, G.; Shimada, M.; Liu, J. Forest cover maps of china in 2010 from multiple approaches and data sources: PALSAR, Landsat, MODIS, FRA, and NFI. ISPRS J. Photogramm. Remote Sens. 2015, 109, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Strobl, C.; Boulesteix, A.L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinform. 2007, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Cutler, D.R.; Edwards, J.T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forest for classification in ecology. ESA Online J. 2008. [Google Scholar] [CrossRef]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Assiri, A. Anomaly classification using genetic algorithm-based random forest model for network attack detection. Comput. Mater. Contin. 2021, 66, 769–778. [Google Scholar] [CrossRef]
- Climent, F.; Momparler, A.; Carmona, P. Anticipating bank distress in the Eurozone: An Extreme Gradient Boosting approach. J. Bus. Res. 2019, 101, 885–896. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.C.; Zhao, Y.Y.; Liang, L.; Niu, Z.G.; Huang, X.M.; Fu, H.H.; Liu, S.; et al. Fine resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Moreno, V.M.; Bullock, S.H. Vegetation response to hydrologic and geomorphic factors in an arid region of the Baja California Peninsula. Environ. Monit. Assess. 2014, 186, 1009–1021. [Google Scholar] [CrossRef] [Green Version]
- Pontius, R.G., Jr.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Zhao, K.; Jin, B.; Fan, H.; Song, W.; Zhou, S.; Jiang, Y. High-performance overlay analysis of massive geographic polygons that considers shape complexity in a cloud environment. ISPRS Int. J. Geo-Inf. 2019, 8, 290. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; Kommareddy, A.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
Latitude Zones (°N) | Area (km2) |
67–69 | 19,596.45 |
65–67 | 58,813.18 |
63–65 | 58,364.09 |
61–63 | 66,364.15 |
59–61 | 130,507.24 |
57–59 | 155,232.73 |
55–57 | 114,456.67 |
53–55 | 77,579.58 |
51–53 | 33,564.27 |
Total | 714,478.36 |
Land Classification | GF-2 Results | ||||
---|---|---|---|---|---|
Broad-Leaved Forest | Coniferous Forest | Nonforest Land | Total | ||
Landsat Results | Broad-leaved forest | 202 | 12 | 22 | 236 |
Coniferous forest | 29 | 421 | 24 | 474 | |
Nonforest land | 8 | 0 | 269 | 277 | |
Total | 239 | 433 | 315 | 987 | |
F1-score | 0.85 | 0.93 | 0.91 | ||
Overall accuracy = 90.37% |
Latitude Zone (°N) | 1985 | 2015 | 1985–2015 | |
---|---|---|---|---|
Rfl | Rfl | ΔRfl | ΔRfo | |
67–69 | 29.80% | 34.35% | 4.55% | 15.28% |
65–67 | 54.84% | 68.34% | 13.50% | 24.61% |
63–65 | 68.68% | 77.52% | 8.84% | 12.87% |
61–63 | 84.25% | 85.82% | 1.57% | 1.86% |
59–61 | 81.73% | 84.97% | 3.24% | 3.96% |
57–59 | 89.99% | 90.99% | 1.00% | 1.11% |
55–57 | 69.07% | 77.03% | 7.96% | 11.52% |
53–55 | 68.65% | 74.93% | 6.28% | 9.14% |
51–53 | 77.64% | 82.66% | 5.02% | 6.47% |
Total | 75.42% | 80.52% | 5.11% | 6.77% |
Latitude Zone (°N) | Broad-Leaved Forest | Coniferous Forest | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1985 | 2015 | 1985–2015 | 1985 | 2015 | 1985–2015 | ||||||
Rbl | Rbo | Rbl | Rbo | ΔRbl | ΔRbo | Rcl | Rco | Rcl | Rco | ΔRcl | |
67–69 | 4.91% | 16.47% | 5.35% | 15.59% | 0.45% | −0.89% | 24.89% | 83.53% | 29.00% | 84.41% | 4.11% |
65–67 | 14.08% | 25.68% | 17.97% | 26.29% | 3.89% | 0.62% | 40.76% | 74.32% | 50.37% | 73.71% | 9.61% |
63–65 | 17.51% | 25.50% | 21.41% | 27.61% | 3.89% | 2.11% | 51.17% | 74.50% | 56.11% | 72.39% | 4.95% |
61–63 | 14.47% | 17.18% | 18.22% | 21.23% | 3.74% | 4.05% | 69.77% | 82.82% | 67.60% | 78.77% | −2.18% |
59–61 | 12.03% | 14.71% | 13.36% | 15.72% | 1.33% | 1.01% | 69.71% | 85.29% | 71.62% | 84.28% | 1.91% |
57–59 | 28.20% | 31.34% | 31.92% | 35.08% | 3.72% | 3.74% | 61.79% | 68.66% | 59.07% | 64.92% | −2.72% |
55–57 | 39.22% | 56.78% | 44.99% | 58.41% | 5.77% | 1.63% | 29.85% | 43.22% | 32.04% | 41.59% | 2.19% |
53–55 | 36.50% | 53.17% | 39.98% | 53.35% | 3.47% | 0.18% | 32.15% | 46.83% | 34.96% | 46.65% | 2.80% |
51–53 | 25.46% | 32.79% | 29.42% | 35.59% | 3.96% | 2.79% | 52.18% | 67.21% | 53.25% | 64.41% | 1.06% |
Total | 23.83% | 31.60% | 27.37% | 33.99% | 3.54% | 2.39% | 51.58% | 68.40% | 53.15% | 66.01% | 1.57% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, L.; Fu, W. Bi-Temporal Analysis of Spatial Changes of Boreal Forest Cover and Species in Siberia for the Years 1985 and 2015. Remote Sens. 2020, 12, 4116. https://doi.org/10.3390/rs12244116
Tian L, Fu W. Bi-Temporal Analysis of Spatial Changes of Boreal Forest Cover and Species in Siberia for the Years 1985 and 2015. Remote Sensing. 2020; 12(24):4116. https://doi.org/10.3390/rs12244116
Chicago/Turabian StyleTian, Lei, and Wenxue Fu. 2020. "Bi-Temporal Analysis of Spatial Changes of Boreal Forest Cover and Species in Siberia for the Years 1985 and 2015" Remote Sensing 12, no. 24: 4116. https://doi.org/10.3390/rs12244116
APA StyleTian, L., & Fu, W. (2020). Bi-Temporal Analysis of Spatial Changes of Boreal Forest Cover and Species in Siberia for the Years 1985 and 2015. Remote Sensing, 12(24), 4116. https://doi.org/10.3390/rs12244116