Application of Reflectance Ratios on High-Resolution Satellite Imagery to Remotely Identify Eucalypt Vegetation
Abstract
1. Introduction
1.1. Satellite Selection
1.2. Area of Study
2. Materials and Methods
3. Results
3.1. ECARR Results
3.2. ECBRR Results
3.3. NDVI Results
4. Discussion
4.1. Eucalypt Chlorophyll-a Reflectance Ratio (ECARR)
4.2. Eucalypt Chlorophyll-b Reflectance Ratio (ECBRR)
4.3. Normalized Difference Vegetation Index (NDVI)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Díaz, S.; Fargione, J.; Chapin, F.S.; Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 2006, 4, 1300–1305. [Google Scholar] [CrossRef] [PubMed]
- Chapin, F.S.; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Gamfeldt, L.; Hillebrand, H.; Jonsson, P.R. Multiple Functions Increase the Importance of Biodiversity for Overall Ecosystem Functioning. Ecology 2008, 89, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Sturrock, R.N.; Frankel, S.J.; Brown, A.V.; Hennon, P.E.; Kliejunas, J.T.; Lewis, K.J.; Worrall, J.J.; Woods, A.J. Climate change and forest diseases. Plant. Pathol. 2011, 60, 133–149. [Google Scholar] [CrossRef]
- Chornesky, E.A.; Bartuska, A.M.; Aplet, G.H.; Britton, K.O.; Cummings-Carlson, J.; Davis, F.W.; Eskow, J.; Grodon, D.R.; Gottschalk, K.W.; Haack, R.A.; et al. Science Priorities for Reducing the Threat of Invasive Species to Sustainable Forestry. Bioscience 2005, 55, 335. [Google Scholar] [CrossRef]
- Cahill, A.E.; Aiello-Lammens, M.E.; Caitlin Fisher-Reid, M.; Hua, X.; Karanewsky, C.J.; Ryu, H.Y.; Sbeglia, G.C.; Spagnolo, F.; Waldron, J.B.; Wiens, J.J. Causes of warm-edge range limits: Systematic review, proximate factors and implications for climate change. J. Biogeogr. 2014, 41, 429–442. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.-C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity redistribution under climate change: {Impacts} on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef] [PubMed]
- Brook, B.W.; O’Grady, J.J.; Chapman, A.P.; Burgman, M.A.; Resit Akçakaya, H.; Frankham, R. Predictive accuracy of population viability analysis in conservation biology. Nature 2000, 404, 385–387. [Google Scholar] [CrossRef] [PubMed]
- Ehrlén, J.; Morris, W.F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 2015, 18, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Queensland Government. Queensland Herbarium Regional Ecosystem Description Database (REDD). Version 11.1 (April 2019); Queensland Government: Brisbane, Australia, 2019.
- Neldner, V.J.; Wilson, B.A.; Dillewaard, H.A.; Ryan, T.S.; Butler, D.W.; McDonald, W.J.F.; Addicott, E.P.; Appelman, C.N. Methodology for Survey and Mapping of Regional Ecosystems and Vegetation Communities in Queensland. Version 5.0., Updated March 2019; Queensland Government: Brisbane, Australia, 2019.
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- NASA Normalized Difference Vegetation Index (NDVI). Available online: https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php (accessed on 20 December 2019).
- Datt, B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves. Remote Sens. Environ. 1998, 66, 111–121. [Google Scholar] [CrossRef]
- Coops, N.C.; Stone, C.; Culvenor, D.S.; Chisholm, L.A.; Merton, R.N. Chlorophyll content in eucalypt vegetation at the leaf and canopy scales as derived from high resolution spectral data. Tree Physiol. 2003, 23, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Giles, J.R.; Plowright, R.K.; Peel, A.J.; Eby, P.; McCallum, H. Models of Eucalypt phenology predict bat population flux. Ecol. Evol. 2016, 6, 7230–7245. [Google Scholar] [CrossRef] [PubMed]
- Giles, J.R.; Eby, P.; Parry, H.; Peel, A.J.; Plowright, R.K.; Westcott, D.A.; McCallum, H. Environmental drivers of spatiotemporal foraging intensity in fruit bats and implications for Hendra virus ecology. Sci. Rep. 2018, 8, 9555. [Google Scholar] [CrossRef] [PubMed]
- Datt, B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves. J. Plant. Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Laperra, V.; Santos-Rodriguez, R. Spatial/Spectral Information Trade-off in Hyperspectral Images. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1124–1127. [Google Scholar]
- European Space Agency MultiSpetral Instrument (MSI) Overview. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument (accessed on 21 December 2019).
- Planet Team Planet Application Program Interface: In Space for Life on Earth. Available online: https://developers.planet.com/docs/data/ (accessed on 22 December 2019).
- Planet Team Understanding PlanetScope Instruments. Available online: https://developers.planet.com/docs/data/sensors/ (accessed on 21 December 2019).
- USGS Earth Explorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 2 November 2019).
- Planet Team Planet Explorer. Available online: https://www.planet.com/explorer/ (accessed on 22 September 2019).
- ESRI. ArcGIS Pro, Version 2.5; ESRI: Redlands, CA, USA, 2020. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Bureau of Meteorology. Special Climate Statements 72—Dangerous Bushfire Weather in Spring 2019; BOM: Melbourne, Australia, 2019; p. 28.
- Bradshaw, C.J.A. Little left to lose: Deforestation and forest degradation in Australia since European colonization. J. Plant. Ecol. 2012, 5, 109–120. [Google Scholar] [CrossRef]
- Greaves, B.L.; Spencer, R.D. An evaluation of spectroradiometry and multispectral scanning for differentiating forest communities. Aust. For. 1993, 56, 68–79. [Google Scholar] [CrossRef]
Band | Spectral Range (nm) | Approximate Center Wavelength (nm) | Spatial Resolution |
---|---|---|---|
Band 1 | 464–517 | 490 | 3 m |
Band 2 | 547–585 | 566 | 3 m |
Band 3 | 650–682 | 666 | 3 m |
Band 4 | 846–888 | 867 | 3 m |
Band | Center Wavelength (nm) Sentinel-2A | Center Wavelength (nm) Sentinel-2B | Spatial Resolution |
---|---|---|---|
Band 3 | 559.8 | 559.0 | 10m |
Band 4 | 664.6 | 664.9 | 10m |
Band 5 | 704.1 | 703.8 | 10m |
Band 8 | 832.8 | 832.9 | 10m |
Band 8A | 864.7 | 864 | 20m |
Bounding Box Coordinates | Winter Imagery Date | Spring/Summer Imagery Date | ||||
---|---|---|---|---|---|---|
Site | Upper Right Coordinate | Lower Left Coordinate | Planet PS2.SD | Sentinel-2 | Planet PS2.SD | Sentinel-2 |
Large All-Eucalypt | −24.895, 148.193 | −24.980, 148.082 | 7 May 2019 | 1 April 2019 | * 15 November 2019 | 1 January 2019 |
All-Eucalypt Mid-dense | −23.786, 149.074 | −23.880, 149.008 | 17 May 2019 | 6 May 2019 | ||
Mixed Eucalypt | −20.982, 148.759 | −21.072, 148.655 | 7 May 2019 | 12 March 2019 | 8 November 2019 | 2 December 2018 |
Non-Eucalypt | −17.620, 145.800 | −17.704, 145.699 | * 24 July 2019 | 13 June 2018 | 16 October 2019 | 10 November 2019 |
Satellite | ECARR Values | Large All-Eucalypt Site | All-Eucalypt Mid-dense Site | Mixed Eucalypt Site | Non-Eucalypt Site |
---|---|---|---|---|---|
Sentinel-2 | Maximum | 0.243 | 0.206 | 0.264 | 0.252 |
Minimum | 0.019 | 0.017 | 0.014 | 0.005 | |
Mean | 0.077 | 0.094 | 0.148 | 0.140 | |
Planet | Maximum | 0.443 | 0.255 | 0.708 | 0.605 |
Minimum | 0.000 | 0.000 | 0.000 | 0.002 | |
Mean | 0.160 | 0.108 | 0.321 | 0.271 |
Satellite | ECBRR Value | Large All-Eucalypt Site | All-Eucalypt Mid-Dense Site | Mixed Eucalypt Site | Non-Eucalypt Site |
---|---|---|---|---|---|
Sentinel-2 | Maximum | 0.022 | 0.019 | 0.085 | 0.056 |
Minimum | 0.000 | 0.000 | 0.000 | 0.000 | |
Mean | 0.002 | 0.003 | 0.013 | 0.009 | |
Planet | Maximum | 0.021 | 0.012 | 0.050 | 0.055 |
Minimum | 0.000 | 0.000 | 0.000 | 0.000 | |
Mean | 0.002 | 0.002 | 0.007 | 0.007 |
Satellite | NDVI Value | Large All- Eucalypt Site | All-Eucalypt Mid-Dense Site | Mixed Eucalypt Site | Non-Eucalypt Site |
---|---|---|---|---|---|
Sentinel-2 | Maximum | 0.801 | 0.789 | 0.844 | 0.843 |
Minimum | −0.041 | 0.185 | 0.047 | −0.035 | |
Mean | 0.513 | 0.559 | 0.738 | 0.719 | |
Planet | Maximum | 0.830 | 0.752 | 0.873 | 0.867 |
Minimum | 0.157 | 0.208 | 0.005 | −0.101 | |
Mean | 0.600 | 0.549 | 0.754 | 0.727 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranowski, K.; Taylor, T.; Lambert, B.; Bharti, N. Application of Reflectance Ratios on High-Resolution Satellite Imagery to Remotely Identify Eucalypt Vegetation. Remote Sens. 2020, 12, 4079. https://doi.org/10.3390/rs12244079
Baranowski K, Taylor T, Lambert B, Bharti N. Application of Reflectance Ratios on High-Resolution Satellite Imagery to Remotely Identify Eucalypt Vegetation. Remote Sensing. 2020; 12(24):4079. https://doi.org/10.3390/rs12244079
Chicago/Turabian StyleBaranowski, Kelsee, Teairah Taylor, Brian Lambert, and Nita Bharti. 2020. "Application of Reflectance Ratios on High-Resolution Satellite Imagery to Remotely Identify Eucalypt Vegetation" Remote Sensing 12, no. 24: 4079. https://doi.org/10.3390/rs12244079
APA StyleBaranowski, K., Taylor, T., Lambert, B., & Bharti, N. (2020). Application of Reflectance Ratios on High-Resolution Satellite Imagery to Remotely Identify Eucalypt Vegetation. Remote Sensing, 12(24), 4079. https://doi.org/10.3390/rs12244079