Mountain Top-Based Atmospheric Radio Occultation Observations with Open/Closed Loop Tracking: Experiment and Validation
Abstract
:1. Introduction
2. Open-Loop Tracking and Inversion Algorithm
2.1. Open-Loop Tracking Algorithm
2.2. Open Open-Loop Data Processing
2.3. Mountain-Based Atmospheric Retrieval Algorithm
3. Mountain-Based Test Results
3.1. Analysis of GPS and BD Open-Loop Tracking Results
- (1)
- OL tracking time is longer than closed-loop, that is, for low-angle occultation events, OL has a better tracking effect.
- (2)
- The mountain-based occultation data can only detect the peak height and below. It can be seen from Figure 6 and Figure 7 that compared to closed-loop tracking, the OL tracking can capture a lower height, and has the same result as the closed-loop tracking. Hence, the continuity of the OL is relatively robust. From the curve, we can see that the excess phase changes obtained by GPS and BD are relatively robust, and there is no deterioration in signal capture quality due to drastic changes in the signal.
- (3)
- The OL tracking effect of GPS and BD are similar, and both have a greater improvement compared to closed-loop tracking.
3.2. Comparison of Closed-Loop Tracking and Open-Loop Tracking
3.3. Comparison of Open-Loop Tracking Inversion Results and Meteorological Observations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, D.L. Ionospheric S4 Scintillations from GNSS Radio Occultation (RO) at Slant Path. Remote Sens. 2020, 12, 2373. [Google Scholar] [CrossRef]
- Pilch Kedzierski, R.; Matthes, K.; Bumke, K. New insights into Rossby wave packet properties in the extratropical UTLS using GNSS radio occultations. Atmos. Chem. Phys. Discuss. 2020. [Google Scholar] [CrossRef]
- Cardellach, E.; Oliveras, S.; Rius, A.; Tomás, S.; Ao, C.O.; Franklin, G.W.; Iijima, B.A.; Kuang, D.; Meehan, T.K.; Padullés, R.; et al. Sensing heavy precipitation with GNSS polarimetric radio occultations. Geophys. Res. Lett. 2019, 46, 1024–1031. [Google Scholar] [CrossRef] [Green Version]
- Ershov, B.G. Radiation-chemical decomposition of seawater: The appearance and accumulation of oxygen in the Earth’s atmosphere. Radiat. Phys. Chem. 2020, 168, 108530. [Google Scholar] [CrossRef]
- Hordyniec, P.; Huang, C.Y.; Liu, C.Y.; Rohm, W.; Chen, S.Y. GNSS radio occultation profiles in the neutral atmosphere from inversion of excess phase data. Terr. Atmos. Ocean. Sci. 2019, 30. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.M.; Chang, C.P. Spectrum analysis of large-scale wave disturbances in the tropical lower troposphere. J. Atmos. Sci. 1969, 26, 1010–1025. [Google Scholar] [CrossRef] [Green Version]
- Fritts, D.C.; Tsuda, T.; Kato, S.; Sato, T.; Fukao, S. Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere. J. Atmos. Sci. 1988, 45, 1741–1759. [Google Scholar] [CrossRef] [Green Version]
- Ruston, B.; Healy, S. Forecast Impact of FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Measurements. Atmos. Sci. Lett. 2020, e1019. [Google Scholar] [CrossRef]
- Beyerle, G.; Zus, F. Open-loop GPS signal tracking at low elevation angles from a ground-based observation site. Atmos. Meas. Tech. 2017, 10, 359. [Google Scholar] [CrossRef] [Green Version]
- Collett, I.; Morton, Y.T.; Wang, Y.; Breitsch, B. Characterization and mitigation of interference between GNSS radio occultation and reflectometry signals for low-altitude occultations. Navig. J. Inst. Navig. 2020, 67, 537–546. [Google Scholar] [CrossRef]
- Mendillo, M.; Huang, C.L.; Pi, X.; Rishbeth, H.; Meier, R. The global ionospheric asymmetry in total electron content. J. Atmos. Solar-Terr. Phys. 2005, 67, 1377–1387. [Google Scholar] [CrossRef]
- Sokolovskiy, S.V. Modeling and inverting radio occultation signals in the moist troposphere. Radio Sci. 2001, 36, 441–458. [Google Scholar] [CrossRef] [Green Version]
- Sokolovskiy, S.V. Effect of super refraction on inversions of radio occultation signals in the lower troposphere. Radio Sci. 2003, 38, 1058. [Google Scholar] [CrossRef] [Green Version]
- Jensen, A.S.; Lohmann, M.S.; Benzon, H.-H.; Nielsen, A.S. Full Spectrum Inversion of radio occultation signals. Radio Sci. 2003, 38, 1040. [Google Scholar] [CrossRef]
- Jensen, A.S.; Lohmann, M.S.; Nielsen, A.S.; Benzon, H.-H. Geometrical optics phase matching of radio occultation signals. Radio Sci. 2004, 39, RS3009. [Google Scholar] [CrossRef] [Green Version]
- Gorbunov, M.E. Radioholographic Methods for Processing Radio Occultation Data in Multipath Regions; Danish Meteorological Institute: Copenhagen, Denmark, 2001. [Google Scholar]
- Gorbunov, M.E. Canonical transform method for processing radio occultation data in lower troposphere. Radio Sci. 2002, 37, 1076. [Google Scholar] [CrossRef]
- Gorbunov, M.E. Radio-holographic analysis of Microlab-1 radio occultation data in the lower troposphere. J. Geophys. Res. 2002, 107, 4156. [Google Scholar] [CrossRef]
- Kan, V.; Gorbunov, M.E.; Shmakov, A.V.; Sofieva, V.F. Reconstruction of the Internal-Wave Parameters in the Atmosphere from Signal Amplitude Fluctuations in a Radio-Occultation Experiment. Izv. Atmos. Ocean. Phys. 2020, 56, 435–447. [Google Scholar] [CrossRef]
- Kan, V.; Gorbunov, M.E.; Sofieva, V.F. Fluctuations of radio occultation signals in sounding the Earth’s atmosphere. Atmos. Meas. Tech. 2018, 11, 663–680. [Google Scholar] [CrossRef] [Green Version]
- Sokolovskiy, S.; Schreiner, W.; Zeng, Z.; Hunt, D.; Lin, Y.C.; Kuo, Y.H. Observation, analysis, and modeling of deep radio occultation signals: Effects of tropospheric ducts and interfering signals. Radio Sci. 2014, 49, 954–970. [Google Scholar] [CrossRef]
- Ao, C.O.; Hajj, G.A.; Meehan, T.K.; Dong, D. Rising and setting GPS occultations by use of open-loop tracking. J. Geophys. Res. 2009, 114, D04101. [Google Scholar] [CrossRef] [Green Version]
- Chase, S.M.; Schwartz, A.B.; Kass, R.E. Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain–computer interface algorithms. Neural Netw. 2009, 22, 1203–1213. [Google Scholar] [CrossRef] [Green Version]
- Borovic, B.; Liu, A.Q.; Popa, D.; Cai, H.; Lewis, F.L. Open-loop versus closed-loop control of MEMS devices: Choices and issues. J. Micromech. Microeng. 2005, 15, 1917. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, M.S. Analysis of Global Positioning System (GPS) radio occultation measurement errors based on Satellite de Aplicaciones Cientificas-c (SAC-C) GPS radio occultation data recorded in open-loop and phase-locked-loop mode. J. Geophys. Res. Atmos. 2007, 112, 115. [Google Scholar] [CrossRef] [Green Version]
- Alexandru, C. A novel open-loop tracking strategy for photovoltaic systems. Sci. World J. 2013, 2013, 205396. [Google Scholar] [CrossRef] [Green Version]
- Sokolovskiy, S.; Schreiner, W.; Rocken, C.; Hunt, D. Optimal Noise Filtering for the Ionospheric Correction of GPS Radio Occultation Signals. J. Atmos. Ocean. Technol. 2009, 26, 1398–1403. [Google Scholar] [CrossRef]
- Rahman, M.; Shukla, S.K.; Prasad, K.N.; Ovejero, C.M.; Pati, B.K.; Tripathi, A.; Singh, A.; Srivastava, A.K.; Gonzalez-Zorn, B. Prevalence and molecular characterisation of New Delhi metallo-β-lactamases NDM-1, NDM-5, NDM-6 and NDM-7 in multidrug-resistant Enterobacteriaceae from India. Int. J. Antimicrob. Agents 2014, 44, 30–37. [Google Scholar] [CrossRef]
- Jin, T.; Yuan, H.; Ling, K.V.; Qin, H.; Kang, J. Differential Kalman Filter Design for GNSS Open Loop Tracking. Remote Sens. 2020, 12, 812. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yang, X.; Dong, Q.; Dong, J.; Liu, X.; Pan, L. Research on Enhancement Scheme of GPS Occultation Open-Loop Tracking Strategy. In China Satellite Navigation Conference 2020 Proceedings; Springer: Singapore, 2020; pp. 576–584. [Google Scholar] [CrossRef]
- Sokolovskiy, S.V. Tracking tropospheric radio occultation signals from low Earth orbit. Radio Sci. 2001, 36, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Sokolovskiy, S.; Rocken, C.; Hunt, D.; Schreiner, W.; Johnson, J.; Masters, D.; Esterhuizen, S. GPS profiling of the lower troposphere from space: Inversion and demodulation of the open-loop radio occultation signals. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Tang, X.; Li, Z.; Li, C.; Wang, F. Cascaded interference and multipath suppression method using array antenna for GNSS receiver. IEEE Access 2019, 7, 69274–69282. [Google Scholar] [CrossRef]
- Sokolovskiy, S.; Rocken, C.; Schreiner, W.; Hunt, D.; Johnson, J. Postprocessing of L1 GPS radio occultation signals recorded in open-loop mode. Radio Sci. 2009, 44, RS2002. [Google Scholar] [CrossRef]
- Vagle, N.; Broumandan, A.; Jafarnia-Jahromi, A.; Lachapelle, G. Performance analysis of GNSS multipath mitigation using antenna arrays. J. Glob. Position. Syst. 2016, 14, 4. [Google Scholar] [CrossRef] [Green Version]
- Hegarty, C.J. GNSS signals—An overview. In Proceedings of the 2012 IEEE International Frequency Control Symposium Proceedings, Baltimore, MD, USA, 21–24 May 2012. [Google Scholar]
- Appleget, A.; Bartone, C. A Consolidated GNSS Multipath Analysis Considering Modern GNSS Signals, Antenna, Installation, and Boundary Conditions. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS), Miami, FL, USA, 16–20 September 2019; pp. 2855–2869. [Google Scholar] [CrossRef]
- Humphreys, T.E.; Ledvina, B.M.; Bencze, W.J.; Galusha, B.T.; Cohen, C.E. Assimilating GNSS Signals to Improve Accuracy, Robustness, and Resistance to Signal Interference. U.S. Patent Application No. 12/889,242, 24 March 2011. [Google Scholar]
- Yao, Z.; Lu, M.; Feng, Z.M. Quadrature multiplexed BOC modulation for interoperable GNSS signals. Electron. Lett. 2010, 46, 1234–1236. [Google Scholar] [CrossRef]
- Alhussein, F.; Liu, H. An Efficient Method for Multipath Mitigation Applicable to BOC Signals in GNSS. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 793–798. [Google Scholar] [CrossRef]
- Wood, V.T.; Brown, R.A.; Vasiloff, S.V. Improved detection using negative elevation angles for mountaintop WSR-88Ds. Part II: Simulations of the three radars covering Utah. Weather Forecast. 2003, 18, 393–403. [Google Scholar] [CrossRef]
- Hu, X.; Wu, X.C.; Gong, X.Y.; Xiao, C.Y.; Zhang, X.X.; Fu, Y.; Du, X.Y.; Li, H.; Fang, Z.Y.; Xia, Q.; et al. An introduction of mountain-based GPS radio occultation experiments in China. Adv. Space Res. 2008, 42, 1723–1729. [Google Scholar] [CrossRef]
- Cremers, C.J.; Birkebak, R.C. Application of the Abel integral equation to spectrographic data. Appl. Opt. 1996, 5, 1057–1064. [Google Scholar] [CrossRef]
- Morton, Y.; Bourne, H.; Taylor, S.; Xu, D.; Yang, R.; van Graas, F.; Pujara, N. Keynote: Mountain-top radio occultation with multi-GNSS signals: Experiment and preliminary results. In Proceedings of the ION 2017 Pacific PNT Meeting, Honolulu, HI, USA, 1–4 May 2017; pp. 490–499. [Google Scholar] [CrossRef]
- Wu, X.C.; Hu, X.; Gong, X.Y. Comparison of refractivity obtained with mountain-based GPS radio occultation and radiosonde. Prog. Geophys. 2008, 23, 1149–1155. [Google Scholar]
- Gong, X.Y.; Hu, X.; Wu, X.C. Comparison between mountain-based GPS occultation observations and results from automatic weather station. Prog. Geophys. 2008, 23, 1480–1486. [Google Scholar]
- Hu, X.; Zhang, X.X.; Wu, X.C.; Xiao, C.Y.; Zeng, Z.; Gong, X.Y. Mountain-based GPS observations of occultation and its inversion theory. Chin. J. Geophys. 2006, 49, 22–27. [Google Scholar] [CrossRef]
- Fu, E.J.; Zhang, K.F.; Marion, K.Y. Assessing COSMIC GPS radio occultation derived atmospheric parameters using Australian radiosonde network data. Procedia Earth Planet. Sci. 2009, 1, 1054–1059. [Google Scholar] [CrossRef] [Green Version]
NO | GPS PRN | Data/UTC | CLIPA/° | CLEPA/° | OLIPA/° | OLEPA/° | SA/° | EA/° |
---|---|---|---|---|---|---|---|---|
1. | 30 | 2020-9-1 0:10:43.20 | 4.98 | −0.99 | 4.98 | −1.87 | 201.34 | 195.87 |
2. | 5 | 2020-9-1 1:46:43.5 | −0.91 | 4.99 | −2.54 | 5.02 | 212.47 | 175.49 |
3. | 28 | 2020-9-1 2:37:45.60 | 4.97 | −1.23 | 4.98 | −2.13 | 175.49 | 173.51 |
4. | 13 | 2020-9-1 3:46:13.2 | −1.11 | 4.98 | −2.87 | 5.02 | 184.44 | 151.35 |
5. | 17 | 2020-9-1 4:27:38.30 | 4.97 | −0.97 | 4.98 | −1.96 | 151.35 | 152.57 |
6. | 19 | 2020-9-1 5:7:12.70 | 4.97 | −2.18 | 4.98 | −3.08 | 156.96 | 157.57 |
7. | 24 | 2020-9-1 6:43:14.70 | −1.93 | 4.99 | −2.63 | 5.02 | 183.66 | 149.86 |
8. | 2 | 2020-9-1 7:53:44.20 | 4.98 | −1.35 | 4.98 | −2.34 | 149.86 | 151.07 |
9. | 17 | 2020-9-2 4:23:38.40 | 4.97 | −1.51 | 4.98 | −2.45 | 151.37 | 152.65 |
10. | 19 | 2020-9-2 5:3:9.70 | 4.97 | −1.91 | 4.98 | −3.07 | 159.96 | 157.57 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
57. | 1 | 2020-9-7 18:39:1.50 | −1.53 | 4.99 | −2.6 | 5.03 | 181.63 | 177.46 |
58. | 4 | 2020-9-7 19:36:49.00 | 4.96 | −1.37 | 4.96 | −2.52 | 200.61 | 195.33 |
59. | 22 | 2020-9-7 20:12:19.00 | −1.67 | 4.99 | −2.84 | 4.99 | 151.94 | 144.3 |
60. | 3 | 2020-9-7 20:54:48.60 | −1.51 | 4.99 | −2.68 | 5.03 | 156.9 | 146.99 |
No | GPS PRN | Time | Ascending/Descending Occultation | BIAS (%) | MSER (%) |
---|---|---|---|---|---|
1. | 30 | 2020/9/01 | Down | 0.10 | 0.19 |
2. | 5 | 2020/9/01 | Up | 0.29 | 2.36 |
3. | 17 | 2020/9/02 | Down | 0.24 | 1.92 |
4. | 5 | 2020/9/02 | Up | 0.22 | 1.32 |
5. | 28 | 2020/9/03 | Down | 0.23 | 2.14 |
6. | 13 | 2020/9/03 | Up | 0.30 | 4.01 |
7. | 13 | 2020/9/04 | Up | 0.23 | 3.06 |
8. | 17 | 2020/9/04 | Down | 0.21 | 1.22 |
9. | 24 | 2020/9/06 | Up | 0.25 | 2.35 |
10. | 29 | 2020/9/06 | Down | 0.10 | 0.10 |
11. | 18 | 2020/9/06 | Down | 0.20 | 1.37 |
12. | 17 | 2020/9/07 | Down | 0.11 | 1.02 |
13. | 19 | 2020/9/07 | Down | 0.27 | 2.94 |
14. | 24 | 2020/9/07 | Up | 0.21 | 1.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Hou, C.; Kan, L.; Fu, N.; Wang, M.; Wang, Z. Mountain Top-Based Atmospheric Radio Occultation Observations with Open/Closed Loop Tracking: Experiment and Validation. Remote Sens. 2020, 12, 4078. https://doi.org/10.3390/rs12244078
Li F, Hou C, Kan L, Fu N, Wang M, Wang Z. Mountain Top-Based Atmospheric Radio Occultation Observations with Open/Closed Loop Tracking: Experiment and Validation. Remote Sensing. 2020; 12(24):4078. https://doi.org/10.3390/rs12244078
Chicago/Turabian StyleLi, Fenghui, Chunping Hou, Liang Kan, Naifeng Fu, Meng Wang, and Zhipeng Wang. 2020. "Mountain Top-Based Atmospheric Radio Occultation Observations with Open/Closed Loop Tracking: Experiment and Validation" Remote Sensing 12, no. 24: 4078. https://doi.org/10.3390/rs12244078
APA StyleLi, F., Hou, C., Kan, L., Fu, N., Wang, M., & Wang, Z. (2020). Mountain Top-Based Atmospheric Radio Occultation Observations with Open/Closed Loop Tracking: Experiment and Validation. Remote Sensing, 12(24), 4078. https://doi.org/10.3390/rs12244078