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Abstract: We present in this comment a Multi-Temporal SAR Interferometry (MT-InSAR) analysis
showing that the results published by Milillo et al. (2019) in the Remote Sensing Journal, presenting
the evidence of space geodetic observations relevant to displacements occurring before the collapse of
the Morandi Bridge, happened in Genova (Italy) on the 14 August 2018, are questionable. In particular,
we focus on the InSAR results obtained by Milillo et al. (2019) by processing the 3 m × 3 m resolution
COSMO-SkyMed (CSK) data collected from ascending and descending orbits on the area of interest.
These results, thanks to the high spatial resolution and the short revisit time characterizing this
multi-orbit SAR dataset, represent the cornerstone of their analysis. The main findings of their study
allow Milillo et al. to conclude that the InSAR processing of this COSMO-SkyMed dataset reveals
the increased deformation magnitude over time of points located near the strands of the deck next
to the collapsed pier, between 12 March 2017 and August 2018. In this comment, we show the
results obtained by the IREA-CNR SAR team after processing the same ascending and descending
CSK dataset, but by using two alternative and independent processing techniques: the Small
BAseline Subset (SBAS) and the Advanced Tomographic SAR (TomoSAR) approaches, respectively.
Our analysis shows that, although both the SBAS and the TomoSAR analyses allow achieving denser
coherent pixel maps relevant to the Morandi bridge, nothing of the pre-collapse large displacements
reported in Milillo et al. (2019) appears in our results, leading us to deeply disagree with the findings
of their InSAR analysis.

Keywords: bridge collapse; infrastructures monitoring; InSAR; deformation time series;
SBAS; TomoSAR

1. Introduction

On the 14 August 2018, the Polcevera viaduct—known as the Morandi bridge—in the city of
Genova (Italy), which connects the eastern and western sides of the Genova metropolitan area and
represents the main highway to link Southern France and Northern Italy, suffered the collapse of a
section of the deck approximately 240 m long, adjacent to pier 9, close to the Polcevera river, causing
the death of 43 people, and leaving 11 injured [1].
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Following the bridge collapse, the Italian Civil Protection Department together with the Italian
Space Agency (ASI) asked some Italian research groups highly qualified in Synthetic Aperture
Radar Interferometry (InSAR) techniques to perform advanced InSAR analyses, based on the use
of SAR data collected by the European C-band Sentinel-1 and the Italian X-band COSMO-SkyMed
(CSK) constellations and relevant to the pre-event time interval, in order to capture any possible
early displacements associated with structural failures. Although performed in a very short time
frame, immediately after the bridge failure, such analyses did not reveal significant displacements in
correspondence to the collapsed pier.

More recently, in 2019 Milillo et al. [2] carried out an InSAR analysis based on the processing
of SAR data collected by the ENVISAT, Sentinel-1 and CSK sensors. In particular, their processing
of the 3 m × 3 m resolution CSK data collected from ascending and descending orbits represents the
cornerstone of their analysis thanks to the high spatial resolution and the short revisit time characterizing
this multi-orbit SAR dataset. The results presented in [2] allow the Authors to conclude that the
CSK-based InSAR analysis reveals an increased deformation magnitude over time in correspondence
to points located near the strands of the deck next to the collapsed pier, between 12 March 2017 and
the beginning of August 2018. These findings clearly disagree with those of the above-mentioned
expeditious analyses carried out immediately after the bridge collapse.

Accordingly, in this study, we focus on the same ascending and descending CSK datasets
investigated in [2]. Note that they both have a rather long temporal extension (from January 2011
to August 2018), thus guaranteeing a very reliable quality of the InSAR products (deformation time
series and mean velocity maps). Moreover, the characteristics of the CSK SAR system, in particular,
the resolution and the transmitted radiation wavelength, have a large impact on the results retrieved
through the InSAR analysis, in terms of measurement density and mapping capabilities, as well as
sensitivity and accuracy. Indeed, the shorter wavelength of the X-Band CSK sensors (about 3.1 cm
wavelength) provides higher sensitivity to slighter surface displacements, like those related to thermal
dilation effects. Additionally, the fine spatial resolution (3 m × 3 m) characterizing the Stripmap
mode of the exploited CSK data leads to an improved density of measurement points (i.e., coherent
pixels) over built-up structures, thus allowing to carry out detailed deformation analyses relevant to
complex infrastructures like the Morandi bridge [3,4]. Moreover, thanks to the rather large orbital
baseline tube of the CSK constellation, the investigated coherent SAR pixels may be geolocalized
with a significant accuracy (on the order of a few meters). Finally, the availability of SAR data
collected from both ascending and descending orbits permits us to verify the consistency of the InSAR
results obtained from very different illumination geometries. In particular, in the presented study,
we reprocessed the overall ascending and descending CSK dataset analyzed in [2] by exploiting two
independent SAR processing techniques: the Small BAseline Subset (SBAS) [5–7] and the Advanced
Tomographic SAR (TomoSAR) [8,9] approaches, respectively. These two methods are nowadays
well-established tools for the investigation of the temporal evolution of displacements affecting
buildings and infrastructures [10–20].

Our findings, resulting from the independent processing of each dataset, lead us to conclude that
we do not find any evidence of the pre-collapse displacements reported in [2] in pixels located near the
strands of the deck next to the collapsed pier.

2. Exploited Data and Multi-Temporal SAR Techniques

In this section, we summarize the main characteristics of the exploited CSK dataset and briefly
present the main rationale of the two methods we applied in order to retrieve the deformation time
series which are the key objectives of the presented analysis.

2.1. CSK Dataset

The MT-InSAR analysis presented in this work involved the processing of two different datasets
acquired by the CSK constellation, both on ascending and descending orbits of the satellites (see Figure 1
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for the representation of the ground coverage of the two CSK frames), over the time interval extending
from January 2011 to August 2018 (immediately before the Morandi bridge collapse) on an area close
to the Morandi bridge, in the city of Genova (North Italy). More specifically, the two datasets are
composed of 132 and 134 images for the ascending and descending passes, respectively. For both
datasets, the acquisition mode is the H-IMAGE, corresponding to the standard Stripmap acquisition
mode [21], characterized by a ground spatial resolution of about 3 m × 3 m in azimuth (along-track) and
slant-range (cross-track) directions [22] The reference acquisition beam is the H4-05 for the ascending
dataset and H4-01 for the descending one, corresponding to an incidence angle at scene center of about
34◦ and 27◦, respectively. The key parameters for the two SAR datasets exploited in this work are
briefly summarized in Table 1.
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Figure 1. Representation of the two exploited COSMO-SkyMed (CSK) frames acquired from ascending
(black rectangle) and descending (red rectangle) orbits, superimposed on a Google Earth optical image.
Note that the white rectangle falling within the two frames represents the area of interest surrounding
the Polcevera viaduct close to the Morandi bridge.

Table 1. Main characteristics of the exploited CSK datasets.

Ascending Descending

Wavelength ~3,1 cm
Acquisition mode H-IMAGE

Average look angle ~34◦ ~27◦

Spatial resolution of the
interferometric data ~3 m × 3 m

Beam-ID H4-05 H4-01
Time interval 23 February 2011–5 August 2018 7 January 2011–6 August 2018

Number of acquisitions 132 134

The distributions of the selected interferometric SAR acquisitions in the temporal/perpendicular
baseline plane for the two CSK datasets are pictorially shown in Figure 2. It is worth remarking the
temporal correlation of the perpendicular baseline distribution (and thus of the corresponding orbits),
which has to be properly taken into account throughout the interferometric processing.
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Figure 2. SAR data representation in the temporal/perpendicular baseline plane for the two CSK
datasets relevant to the area of interest. The black triangles and the red diamonds represent the
ascending and descending acquisitions, respectively. The reference (master) images selected for the
processing of the ascending and descending CSK datasets, relevant to the 29 October 2014 and to the
3 February 2015 acquisitions, respectively, are identified by the arrows.

In this paper, we focus on the analysis of the pre-collapse displacements associated with the
Morandi bridge (see the white rectangle in Figure 1 for its location), which are extensively investigated
through two independent MT-InSAR techniques referred to as the Small BAseline Subset (SBAS) and
the Advanced Tomographic SAR (TomoSAR) approaches. A brief summary of these two techniques is
reported in the following two paragraphs.

2.2. The SBAS Technique

The available ascending and descending CSK datasets were processed through the SBAS
technique [5–7], which is an advanced SAR Interferometry method that allows retrieving useful
information on the spatial and temporal patterns of the detected radar Line of Sight (LOS)-projected
displacements, through the generation of deformation time series and mean velocity maps. The SBAS
approach relies on a proper selection of the SAR data pairs used to generate a multi-temporal sequence
of differential interferograms (i.e., the phase difference between two SAR images collected over the
same area at different epochs), which are characterized by a small separation between the acquisition
orbits (short temporal and perpendicular baselines).

The use of small spatial and temporal baselines of the generated interferograms permits mitigating
the noise effects (decorrelation phenomena) that affect the interferometric pairs [23], thus increasing
the spatial density of the retrieved InSAR measurements (number of coherent pixels), especially in
semi-urbanized and rural areas. The deformation time series (and the corresponding mean velocity
maps) are then computed by solving a linear system of equations in a least-squares sense, with a
minimum norm energy constraint (the Singular Value Decomposition—SVD technique is applied in
presence of independent acquisition subsets separated by large baselines), and with an accuracy of
about 1–2 mm/year for what concerns the mean deformation velocity information and 5–10 mm for
the single deformation measurement [3,24]. Moreover, within the SBAS processing chain, a filtering
operation is performed to detect and remove atmospheric artifacts from the displacement time series [5].

One key point of the SBAS algorithm is the capability of performing both multi-sensor [7,25]
and multi-scale [6,10] deformation analysis; in particular, the latter allows generating InSAR products
at two spatial resolution scales, referred to as a regional and a local one. This is accomplished by
dealing with multi-look interferograms (regional scale analysis with a typical spatial resolution of about
30–90 m), and full-resolution interferograms (local scale analysis, generated from the single-look data,
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with the full spatial resolution, 3 m for this CSK case), respectively. The regional scale is suitable to
detect low-pass signal components, such as deformation related to large areas or atmospheric artifacts,
whereas the local scale one is particularly appropriate to investigate high-pass signals, such as those
related to very small displacements associated with infrastructures or parts of them. Such a pioneer
peculiarity of the two-scale SBAS approach has influenced the development of various MT-InSAR
techniques and has deeply contributed to its wide dissemination within the Solid Earth science
community, since it reveals to be particularly suitable for a wide range of applications, from civil
protection scenarios (natural hazard risk prevention and mitigation, volcano, seismic events, landslides)
to anthropogenic contexts (extended urban areas, archaeological and historical sites, oil–gas extraction,
structures and transport infrastructures, mine activity, etc.) [13,14,26–34].

In this work, the two-scale SBAS approach [6] was exploited to process both the ascending and
descending CSK datasets of our case study, allowing us to deeply investigate the spatial and temporal
evolution of the possible pre-event displacements affecting the Morandi bridge. Moreover, additional
information on the residual topography (with respect to the used DEM) of the coherent pixels, as well
as on the thermal dilation components associated with the daily temperatures, is also retrieved.

2.3. The TomoSAR Technique

SAR Tomography (TomoSAR) [9] is a processing technology that extends the Persistent Scatterers
Interferometry (PSI) [35,36] method for the analysis of pixels at the full available resolution of
the data. It brings the imaging concept of the synthetic aperture in the along-track direction,
which allows achieving azimuth high-resolution SAR images, also in a third dimension, referred
to as elevation, associated with the spatial (perpendicular) separation of the orbits and orthogonal
to the azimuth/slant-range plane. SAR Tomography switches the processing from the matching of
the measured phases with the expected model related to the parameters of interest, i.e., height and
velocity, firstly introduced by PSI phase matching into the imaging of the backscattered profile [8,9].
SAR Tomography extends the synthetic aperture processing, which allows achieving high spatial
resolution images, to the height direction based on the availability of multiple observations from
slightly different orbits. Therefore, the signal backscattered from ground objects can be focused at high
resolution also in the third dimension (height), hence, the name 3D imaging [37–39]. By including in the
processing also the temporal diversity of the acquisitions, space/velocity model (4D imaging) is derived
by extending the 3D imaging concept into the time domain to measure the deformation parameters of
any temporal coherent Persistent Scatterer (PS) in the focused 3D space [8,40]. The imaging domain
can be further extended to even monitor the slight movements induced by the thermal dilation of the
imaged structures [19,41,42].

In this paper, TomoSAR processing is performed according to the procedure described in [9]. It is
based on a cascade of two main blocks operating at different spatial scales: the first block, operating
on a set of spatially averaged interferograms belonging to a grid set according to the Small-Baseline
criteria [5,43], allows carrying out the estimation and compensation of the atmospheric phase patterns,
as well as an estimation of the non-linear deformation at a lower resolution. These two-phase component
estimates provide the necessary input for the phase calibration of the data which is mandatory for the
implementation of the TomoSAR imaging at the full resolution. This latter, which represents the second
and core step of the processing, is implemented through the procedure in [8] based on the exploitation
of the Beamforming filter, i.e., the matched filter, which measures the correlation of the measured phase
vector with the expected phase model accounting for the geophysical parameters of interest.

For this specific analysis, the TomoSAR processing was carried out through the implementation of
5D imaging, accounting for residual topography, linear temporal deformation and possible deformation
components correlated with the daily average temperature of the area induced by thermal dilation of
materials [41]. The analysis was limited to the single scatterers: the detection of output measurements
points was implemented by applying the Generalized Likelihood Ratio Test (GLRT) decision scheme [44]
which is based on the comparison of the normalized correlation among the measurement vector and
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the expected phase model, with a threshold set according to the designed probability of false alarm.
The test is applied to every image pixel: neither pre-processing candidates selection nor post-processing
outlier filtering is performed.

3. Results

The results of the CSK analysis at the full available spatial resolution obtained through the
independent implementation of the SBAS and of the TomoSAR processing techniques in the area of
interest, including the Morandi bridge, are reported in Figure 3.
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Figure 3. Mean deformation velocity maps over the area of interest for (a) Small BAseline Subset (SBAS)
and (b) TomoSAR processing results achieved for the ascending dataset, and (c) SBAS and (d) TomoSAR
results relevant to the descending dataset. Colormap is set according to the estimated velocity with the
convention that negative values correspond to departure from the sensor along the LOS. Reference
pixels for SBAS and TomoSAR processing are located at [44.4130◦, 8.8879◦] and [44.4160◦, 8.8738◦],
respectively, which are in stable areas far away from the bridge.

This figure shows the estimated LOS deformation mean velocity maps for the ascending (upper row)
and descending (bottom row) datasets relevant to both the SBAS (left column) and TomoSAR
(right column) processing techniques. The maps are represented in the North-oriented geometry; for all
the results, the colormap is set according to the estimated mean velocity with the typical convention
that negative velocities are associated with scatterers that are moving away from the sensor along the
LOS. The images show a very high density of measurement points, with a good agreement between
the results obtained through the two MT-InSAR processing techniques, both in terms of coverage and
density, and measured deformation. A comparable density of measurement points is finally achieved
on both ascending and descending datasets, thus proving a satisfactory sampling of the data over the
two orbits. Note also that the reference pixels for the two MT-InSAR processing are independently
selected in different stable areas far away from the bridge: the agreement of the achieved results
demonstrates the robustness of the applied processing approaches with respect to the spatial reference
selection. The position of the Morandi bridge is easily recognizable: being a raised structure, it causes
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the presence of a sort of straight strip, induced by the shadow effect, crossing the image from left to
right, characterized by the absence of measurement points. Bridge points are located on the southern
and northern boundaries of that strip for ascending and descending data, respectively. By analyzing
the maps, no significant deformation is, at that scale, identified.

The detailed analysis of the results over the Morandi bridge is now in order. To assess the bridge
deformation behavior in the observed period, we firstly isolated, from the overall results in Figure 3,
the measurement points located at the bridge deck. Specifically, we firstly isolated measurement
points located on the northern roadway, approximately framed within the yellow rectangle in Figure 4.
A threshold of 40 m on the estimated height, above the sea level, of the coherent pixels was also applied
to isolate the raised points, only. The distribution of the detected pixels shows a concentration near the
support towers. The lack of coherent points in the central part of the suspended deck may be induced
by large non-linear displacements possibly induced by vibration effects and wind.
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Figure 4. Highlight on the coherent pixels located within the yellow frame, corresponding to the
northern roadway, for (a) SBAS and (b) TomoSAR processing results achieved for the ascending dataset,
and (c) SBAS and (d) TomoSAR results relevant to the descending dataset. Colormap is set according
to the estimated velocity with the convention that negative values correspond to departure from the
sensor along the Line of Sight (LOS). The white graduated axis represents the longitudinal coordinate
of the yellow rectangle whose origin is set at the southern/eastern end of the bridge.

The estimated height of the selected pixels, represented by red diamonds, is provided in the plots
depicted in Figure 5. The horizontal axis represents the longitudinal coordinate of the yellow rectangle,
i.e., the length from its origin, conventionally set at its eastern end and approximately corresponding
to the initial part of the bridge, as also pointed out by the graduated scale in Figure 4. The straight
distribution of pixels at almost constant height on the bridge deck is easily recognizable; moreover,
the triangular shape, particularly evident in the descending dataset results, also allows recognizing
the first tower from East. Remarkably, the very high-resolution capability of the CSK sensors allows
monitoring even pixels located along the tie rods cables. In the same figure, the black diamonds
represent the coherent pixels that do not exceed the height threshold which likely belong to ground
structures: the rectangular shape determined by the pillars of the second tower is recognizable at about
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250–300 m from the origin of the line. By comparing the results of the first and second row, the different
coverage induced by the sensor LOS visibility over the two opposite orbits is evident. On the contrary,
no significant differences are met by the comparison of the coherent pixel distributions, for the same
dataset, achieved by the two processing techniques. Finally, the plot of the estimated deformation mean
velocity over the selected points, along the longitudinal coordinate of the yellow rectangle, is provided
in Figure 6: it confirms that no significant deformation was detected along the whole northern roadway
of the bridge deck. Results are very consistent among the different processing outputs and datasets.
Note that the coherent pixel detected in the results of the TomoSAR processing of the descending
dataset, i.e., the plot in Figure 6d, at approximately 450 m from the line origin, which exhibits a linear
deformation of more than 1.5 cm/year, is very likely related to a false alarm which, however low was
the desired probability of false alarm, passed the GLRT detection stage. It is worth remembering that,
as already mentioned, no further post-processing outlier filtering is performed.

The point is surrounded by a large density of coherent pixels concentrated in a few meters which
exhibit no significant deformation. It is very unlikely that, given this spatial distribution of close PSs,
a ground pixel could exhibit such a significantly different deformation behavior from its neighboring
PS. Moreover, this anomalous behavior is detected neither in the SBAS results on the same dataset,
nor in both SBAS and TomoSAR results related to the ascending dataset.
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A close-up analysis of the collapsed pillar is now in order: Figure 7 shows a zoom in the area
of interest of the collapsed pillar of the measurement points of Figure 4, i.e., located on the northern
roadway of the bridge for (a) SBAS and (b) TomoSAR processing techniques over the ascending dataset,
(c) SBAS and (d) TomoSAR processing ones over the descending dataset. For these selected points,
the time series of the estimated deformation are shown in Figure 8. Apart from a typical seasonal trend
limited to a 3 cm range, all measurement points do not undergo any significant deformation. Again,
a very high correlation of estimated time series is found. In Figure 8d the single anomalous deformation
trend is related to the false alarm point whose anomaly was previously discussed. The time series
associated with other neighboring points do not show any significant behavior: this further confirms
the hypothesis of the false alarm detection.
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A similar analysis was performed on the southern roadway of the bridge deck. Similar to the
northern roadway case, the coherent pixels located at the bridge deck on the southern roadway were
isolated. The results are provided in Figure 9, in which the analysis was limited to the points located
within the red rectangle and characterized by an estimated height greater than 40 m above the sea
level. The plots of the estimated height for the selected pixels, represented as red diamond, and for the
ground ones (black diamonds) are reported in Figure 10. Again, the very high CSK resolution allows
easily recognizing the first tower and, particularly on the descending dataset, the stay from the top of
the tower to the bridge deck, as well as pillars of second and third towers. These plots also highlight
the significant different coverage between the ascending and descending datasets on the southern
flank of the bridge: because of the significant shadow effect on the descending dataset, the density
is drastically reduced on the bridge deck whereas even almost no coherent pixel is detected on the
ground segment underling the southern roadway of the bridge. As for the northern roadway, the plots
of the estimated deformation mean velocity within the red rectangle, provided in Figure 11, do not
show any significant deformation of interest neither on the pillars, nor at the deck level and specifically
in correspondence with the connections of the stay-cables. It is worth noting that, despite the choice of
the reference pixels far away from the area of interest, the coverage over the bridge is fairly dense.
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Figure 9. Highlight on the measurement points located within the red frame, corresponding to the
southern roadway for (a) SBAS and (b) TomoSAR processing results related to the ascending dataset,
(c) SBAS and (d) TomoSAR results relevant to the descending dataset. Colormap is set according to the
estimated velocity with the convention that negative values correspond to departure from the sensor
along the LOS. The white graduated axis represents the longitudinal coordinate of the red rectangle
whose origin is set at the southern/eastern end of the bridge.
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Figure 10. Plots of the estimated height of the coherent pixels located within the red rectangle in Figure 9
for the (a) SBAS and (b) TomoSAR processing results related to the ascending dataset, and (c) SBAS
and (d) TomoSAR results relevant to the descending dataset. Red and black squares correspond to
measurement points located at the roadway, pillars and cables and at the ground level, respectively.
Horizontal axis corresponds to the longitudinal distance from the origin of the red rectangle located at
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Figure 11. Plots of the estimated mean deformation velocity of the coherent pixels located at the
southern roadway level within the red rectangle in Figure 9 for (a) SBAS and (b) TomoSAR processing
results of the ascending dataset, and (c) SBAS and (d) TomoSAR results relevant to the descending
dataset. The horizontal axis corresponds to the longitudinal distance from the origin of the red rectangle
located at its southern/eastern end, as reported by the white graduated scale in Figure 9.

The stable behavior is also confirmed by the close-up analysis in Figure 12, where the pixels
located in correspondence to the tower of interest were isolated. For each of these points, the estimated
time series depicted in Figure 13 confirm the prevailing seasonal behavior.
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of the collapsed pillar provided in Figure 12 for the (a) SBAS and (b) TomoSAR results achieved for the
ascending dataset, and (c) SBAS and (d) TomoSAR results related to the descending dataset.

In order to further provide information about a possible precursor, our displacement study also
includes the analysis of the detected PS located at the ground level in correspondence with the collapsed
tower. These results, provided in Figures S1 and S2 in the Supplementary Materials, further confirm
that no significant displacements were detected.



Remote Sens. 2020, 12, 4011 13 of 16

As a final point, it is once again worth remarking that the results achieved by exploiting the two
independent SBAS and TomoSAR approaches are in very good agreement, regardless of the reference
pixels selection, thus confirming the robustness of the applied MT-InSAR processing approaches.

In summary, our analysis of the PS detected on the bridge deck shows a great similarity of the
results in terms of coverage and measurements and specifically, all the results agree on the fact that,
apart from a seasonal trend, no significant deformation trend was observed. This is quite evident
by the analysis of the deformation time series and related mean velocities in correspondence to the
Morandi bridge obtained by exploiting both ascending and descending data and both the SBAS and
the TomoSAR MT-InSAR approaches.

4. Discussion and Conclusions

The monitoring of civil infrastructures as road and railroad bridges is envisaged in order to follow
their health conditions and to sort out possible actions for their safety and maintenance over time,
thus reducing material and economic losses and, most of all, preserving human lives. Recent estimates
demonstrate that the number of bridges in Italy to be assessed after a 50-year service life runs around
50,000 [45]. Currently, the structural health monitoring is mainly based on a visual inspection and
accurate in-situ and embedded measurement systems directly installed on the investigated structure,
resulting in complex and expensive surveys, which inevitably limit the surveillance to very restricted
areas or to single infrastructures. The widespread development of Earth Observation (EO) technologies
over the last decades has allowed the detection and monitoring from space of surface displacements
related to very large areas and with high accuracy. In this framework, the innovation brought by the
MT-InSAR techniques represents very valuable solutions to provide systematic, large scale displacement
measurements related to infrastructures, able to simultaneously detect and analyze the deformation of
hundreds of road and railroad bridges at relatively low costs. Such measurements, properly integrated
with in-situ investigations and damage assessment models derived from structural engineering, may
support actions for pre-emptive bridge rehabilitation and decision-making actors [11].

However, to properly move from a scientific context to a fully operative scenario, it is mandatory
to deal with consolidated integrated procedures that are able to reduce the false alarm probability
within the retrieved InSAR products, by minimizing the possible false positive and negative detections.
Indeed, the false alarm issues strongly impact the suitability of InSAR techniques in operative contexts
that can support the decision-makers. In particular, the false positives can make negligible the benefits
of EO-based techniques in supporting well-focused in-situ surveys and, furthermore, can generate a
strong impact on the population when not carefully verified information are disseminated, whereas
the false negatives strongly jeopardize the monitoring capability of this technology by leading, in the
worst cases, to the lack of identification of possible pre-event signals of future structural failures,
with consequent human casualties.

These issues have to be addressed with a twofold approach, involving both the maturity of the
exploited InSAR techniques and the related expertise of the end-users. The former concerns the
development of accurate and highly verified InSAR techniques, as well as a deep scientific assessment of
their maturity in a branched out number of use-cases to demonstrate their usefulness and effectiveness
in real operative scenarios. The latter requires knowledge and consolidated experience of the users
when dealing with InSAR techniques and products, at least in terms of technology limits, noise sources
and accuracy analyses, thus leading to properly identity possible anomalies and correctly interpret the
InSAR-derived results.

Unfortunately, the broad development of advanced InSAR techniques in the last decades has
fostered their massive exploitation among a wide community of end-users coming from different
scientific contexts, even not specifically experts in the InSAR field. Such a large variety of possible
users dealing with InSAR deformation measurements associated with built-on structures has to be
preliminarily qualified and, in some cases, guided by expert “eyes” throughout the interpretation
of the InSAR-derived products. This is particularly demanded in the case of man-made structures
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and infrastructures interested in failures or collapses that provoked casualties with serious legal
implications, as for the case of the Morandi bridge, where the InSAR analyses should be carefully
presented only after a deep and accurate assessment of the results and their interpretation.

In this study, we exploited the well established and extensively tested SBAS and TomoSAR
MT-InSAR techniques to reprocess the same ascending and descending CSK datasets, relevant to the
Morandi bridge, analyzed by Milillo et al. [2]. Our results show that, although we achieve denser
coherent pixel maps relevant to the Morandi bridge, there is no evidence at all, even not for the results
relevant to one of the processed orbits dataset or to the exploited SBAS and TomoSAR processing
techniques, of the pre-collapse displacements reported in [2] in pixels located near the strands of the
deck next to the collapsed pier. Accordingly, in our opinion, the pre-event InSAR study relevant to
the Morandi bridge carried out by Milillo et al. [2] is an example of an InSAR deformation analysis
affected by a false alarm.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/24/4011/s1,
Figure S1. Deformation mean velocity for the measurement points located at the ground level in correspondence
to the area of interest of the collapsed pillar, (a) SBAS and (b) TomoSAR processing over the ascending dataset,
(c) SBAS and (d) TomoSAR processing over the descending dataset; Figure S2. Plots of the estimated deformation
time series for the measurement points at the ground level in correspondence to the area of interest of the collapsed
pillar provided in Figure S1 for (a) SBAS and (b) TomoSAR processing over the ascending dataset, (c) SBAS and
(d) TomoSAR processing over the descending dataset.
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