Forecasting Sunflower Grain Yield by Assimilating Leaf Area Index into a Crop Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Network
2.2. Remote Sensing Data Processing
2.3. Crop Simulation with SUNFLO
2.4. Sensitivity Analysis
- Low production level: dry weather (2005), no nitrogen fertilization, low plant density (4.5 plants·m), early-maturing cultivar.
- High production level: wet weather (2002), application of 80 kg·N·ha, high plant density (6.5 plants·m), late-maturing cultivar.
- and , which are fractions, were kept between 0 and 1.
- ranged between 400 and 2000 mm according to our expertise on soil heterogeneity in the Toulouse region.
2.5. Data Assimilation
- raw LAI: no preprocessing is performed on measurements of LAI.
- smoothed LAI: LAI values were extracted at constant time intervals from a smoothed sequence of LAI using the Whittaker smoother.
- Open-loop simulation: a direct simulation with no LAI forcing.
- Direct insertion (DI): the simplest assimilation method that consists in replacing the model LAI state variable at each time of observation.
- EnKF: the ensemble Kalman filter method.
- LSE: the least square estimator.
- oracle (for comparison purpose): the true unknown weather series is used for the simulation between the day of forecast and the harvesting day. It is impracticable in an operational context but can be used to assess the impact of weather variables during this time interval.
- past weather: 24 past years weather series, at the location of the plot, are used to complete the simulation from the day of forecast to the harvesting day. The forecast grain yield is the average of the 24 simulations of grain yield.
2.6. Experiments Settings and Software
3. Results
3.1. Sensitivity Analysis of SUNFLO Crop Model
3.2. Data Assimilation Results
3.2.1. Impact of the Use of Past Weather Series
3.2.2. Forecasting Methods Comparison
3.2.3. Impact of Smoothing LAI
3.2.4. Impact of Yield Limiting Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NDVI | normalized difference vegetation Index |
LAI | leaf area index |
GY | grain yield |
TDM | total dry matter |
FTSW | fraction of transpirable water |
DI | direct insertion of LAI |
LSE | least square estimator |
EnKF | ensemble Kalman filter |
R2 | coefficient of determination |
MAE | mean absolute error |
RMSE | root mean square error |
DSSAT | decision support system for agrotechnology transfer |
CERES | crop environment resource synthesis |
SAFY | simple algorithm for yield |
STICS | simulateur multidisciplinaire pour les cultures standard |
SUCROS | simple and universal crop growth simulator |
SWAP | soil-water-atmosphere-plant |
WOFOST | world food studies |
Appendix A. Data Assimilation Methods
Algorithm A1 Direct insertion (DI) method for LAI assimilation |
Algorithm A2 EnKF for assimilation |
References
- Aggarwal, P. Uncertainties in crop, soil and weather inputs used in growth models: Implications for simulated outputs and their applications. Agric. Syst. 1995, 48, 361–384. [Google Scholar] [CrossRef]
- Launay, M.; Guerif, M. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Agric. Ecosyst. Environ. 2005, 111, 321–339. [Google Scholar] [CrossRef]
- Rui, L.I.; Li, C.J.; Dong, Y.Y.; Feng, L.I.U.; Wang, J.H.; Yang, X.D.; Pan, Y.C. Assimilation of Remote Sensing and Crop Model for LAI Estimation Based on Ensemble Kaiman Filter. Agric. Sci. China 2011, 10, 1595–1602. [Google Scholar] [CrossRef]
- Chen, Y.; Cournède, P.H. Data assimilation to reduce uncertainty of crop model prediction with Convolution Particle Filtering. Ecol. Model. 2014, 290, 165–177. [Google Scholar] [CrossRef] [Green Version]
- de Wit, A.; van Diepen, C. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts. Agric. For. Meteorol. 2007, 146, 38–56. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Qian, B.; Zhao, T.; Jing, Q.; Geng, X.; Wang, J.; Huffman, T.; Shang, J. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 63–74. [Google Scholar] [CrossRef]
- Huang, J.; Ma, H.; Su, W.; Zhang, X.; Huang, Y.; Fan, J.; Wu, W. Jointly assimilating modis lai and et products into the swap model for winter wheat yield estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4060–4071. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, C.; Yang, G.; Chen, L.; Wang, J.; Feng, H. Integrating a very fast simulated annealing optimization algorithm for crop leaf area index variational assimilation. Math. Comput. Model. 2013, 58, 877–885. [Google Scholar] [CrossRef]
- Ma, H.; Huang, J.; Zhu, D.; Liu, J.; Su, W.; Zhang, C.; Fan, J. Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST–ACRM model with Ensemble Kalman Filter. Math. Comput. Model. 2013, 58, 759–770. [Google Scholar] [CrossRef]
- Cheng, Z.; Meng, J.; Wang, Y. Improving spring maize yield estimation at field scale by assimilating time-series hj-1 ccd data into the wofost model using a new method with fast algorithms. Remote Sens. 2016, 8, 303. [Google Scholar] [CrossRef] [Green Version]
- Ines, A.V.; Das, N.N.; Hansen, J.W.; Njoku, E.G. Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sens. Environ. 2013, 138, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhou, Q.; Zhou, J.; Zhang, G.; Chen, C.; Wang, J. Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions. Ecol. Model. 2014, 291, 15–27. [Google Scholar] [CrossRef]
- Battude, M.; Al Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Sicre, C.M.; Dantec, V.L.; Demarez, V. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sens. Environ. 2016, 184, 668–681. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, Z.; Chen, J.; Liu, J.; Ren, J.; Li, Z.; Sun, L.; Li, H. Application of Crop Model Data Assimilation With a Particle Filter for Estimating Regional Winter Wheat Yields. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4422–4431. [Google Scholar] [CrossRef]
- Jin, X.; Kumar, L.; Li, Z.; Feng, H.; Xu, X.; Yang, G.; Wang, J. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 2018, 92, 141–152. [Google Scholar] [CrossRef]
- Yao, F.; Tang, Y.; Wang, P.; Zhang, J. Estimation of maize yield by using a process-based model and remote sensing data in the Northeast China Plain. Phys. Chem. Earth Parts A/B/C 2015, 87–88, 142–152. [Google Scholar] [CrossRef]
- Claverie, M.; Demarez, V.; Duchemin, B.; Hagolle, O.; Ducrot, D.; Marais-Sicre, C.; Dejoux, J.F.; Huc, M.; Keravec, P.; Béziat, P.; et al. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sens. Environ. 2012, 124, 844–857. [Google Scholar] [CrossRef]
- Casadebaig, P.; Guilioni, L.; Lecoeur, J.; Christophe, A.; Champolivier, L.; Debaeke, P. SUNFLO, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments. Agric. For. Meteorol. 2011, 151, 163–178. [Google Scholar] [CrossRef]
- Lecoeur, J.; Poiré-Lassus, R.; Christophe, A.; Pallas, B.; Casadebaig, P.; Debaeke, P.; Vear, F.; Guilioni, L. Quantifying physiological determinants of genetic variation for yield potential in sunflower. SUNFLO: A model-based analysis. Funct. Plant Biol. 2011, 38, 246. [Google Scholar] [CrossRef]
- Hagolle, O.; Sylvander, S.; Huc, M.; Claverie, M.; Clesse, D.; Déchoz, C.; Lonjou, V.; Poulain, V. SPOT-4 (Take 5): Simulation of Sentinel-2 Time Series on 45 Large Sites. Remote Sens. 2015, 7, 12242–12264. [Google Scholar] [CrossRef] [Green Version]
- Hagolle, O.; Dedieu, G.; Mougenot, B.; Debaecker, V.; Duchemin, B.; Meygret, A. Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images. Remote Sens. Environ. 2008, 112, 1689–1701. [Google Scholar] [CrossRef] [Green Version]
- Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENμS and Sentinel-2 images. Remote Sens. 2015, 7, 2668–2691. [Google Scholar] [CrossRef] [Green Version]
- Hagolle, O.; Huc, M.; Pascual, D.V.; Dedieu, G. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENμS, LANDSAT and SENTINEL-2 images. Remote Sens. Environ. 2010, 114, 1747–1755. [Google Scholar] [CrossRef] [Green Version]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O.; et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Baret, F.; Jacquemoud, S.; Guyot, G.; Leprieur, C. Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands. Remote Sens. Environ. 1992, 41, 133–142. [Google Scholar] [CrossRef]
- Monteith, J.L. Climate and the Efficiency of Crop Production in Britain. R. Soc. Lond. Philos. Trans. Ser. B 1977, 281, 277–294. [Google Scholar] [CrossRef]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An overview of the crop model stics. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Jones, J.; Hoogenboom, G.; Porter, C.; Boote, K.; Batchelor, W.; Hunt, L.; Wilkens, P.; Singh, U.; Gijsman, A.; Ritchie, J. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Duchemin, B.; Maisongrande, P.; Boulet, G.; Benhadj, I. A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environ. Model. Softw. 2008, 23, 876–892. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J. Validity of the correlation between intercepted radiation and biomass. Agric. For. Meteorol. 1994, 68, 213–220. [Google Scholar] [CrossRef]
- Andrianasolo, F.N.; Casadebaig, P.; Maza, E.; Champolivier, L.; Maury, P.; Debaeke, P. Prediction of sunflower grain oil concentration as a function of variety, crop management and environment using statistical models. Eur. J. Agron. 2014, 54, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Picheny, V.; Casadebaig, P.; Trépos, R.; Faivre, R.; Da Silva, D.; Vincourt, P.; Costes, E. Using numerical plant models and phenotypic correlation space to design achievable ideotypes. Plant Cell Environ. 2017, 40, 1926–1939. [Google Scholar] [CrossRef] [PubMed]
- Wallach, D.; Makowski, D.; Jones, J. Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Morris, M.D. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- He, L.I.; Jiang, Z.W.; Chen, Z.X.; Ren, J.Q.; Bin, L.I.U. Assimilation of temporal-spatial leaf area index into the CERES-Wheat model with ensemble Kalman filter and uncertainty assessment for improving winter wheat yield estimation. J. Integr. Agric. 2017, 16, 2283–2299. [Google Scholar] [CrossRef]
- Atzberger, C.; Eilers, P.H. A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America. Int. J. Digit. Earth 2011, 4, 365–386. [Google Scholar] [CrossRef]
- Geng, L.; Ma, M.; Wang, X.; Yu, W.; Jia, S.; Wang, H. Comparison of Eight Techniques for Reconstructing Multi-Satellite Sensor Time-Series NDVI Data Sets in the Heihe River Basin, China. Remote Sens. 2014, 6, 2024–2049. [Google Scholar] [CrossRef] [Green Version]
- Quesnel, G.; Duboz, R.; Ramat, E. The Virtual Laboratory Environment—An operational framework for multi-modelling, simulation and analysis of complex dynamical systems. Simul. Model. Pract. Theory 2009, 17, 641–653. [Google Scholar] [CrossRef] [Green Version]
- Bergez, J.E.; Chabrier, P.; Gary, C.; Jeuffroy, M.; Makowski, D.; Quesnel, G.; Ramat, E.; Raynal, H.; Rousse, N.; Wallach, D.; et al. An open platform to build, evaluate and simulate integrated models of farming and agro-ecosystems. Environ. Model. Softw. 2013, 39, 39–49. [Google Scholar] [CrossRef]
- Guennebaud, G.; Jacob, B. Eigen v3. Available online: http://eigen.tuxfamily.org (accessed on 19 November 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Iooss, B.; Janon, A.; Pujol, G.; with contributions from Baptiste Broto; Boumhaout, K.; Veiga, S.D.; Delage, T.; Fruth, J.; Gilquin, L.; Guillaume, J.; et al. Sensitivity: Global Sensitivity Analysis of Model Outputs, R package version 1.16.3; 2019; Available online: https://cran.r-project.org/web/packages/sensitivity/index.html (accessed on 22 October 2020).
- Borchers, H.W. Pracma: Practical Numerical Math Functions, R package version 2.2.5; 2019; Available online: https://cran.r-project.org/web/packages/pracma/index.html (accessed on 22 October 2020).
- Mebane, W.R.; Sekhon, J.S. Genetic Optimization Using Derivatives: The rgenoud package for R. J. Stat. Softw. 2010, 42, 473–487. [Google Scholar]
- Champolivier, L.; Debaeke, P.; Merrien, A. Pourquoi irriguer le tournesol, une culture réputée tolérante à la sécheresse? Innov. Agron. 2011, 14, 151–164. [Google Scholar]
- Pique, G.; Fieuzal, R.; Debaeke, P.; Bitar, A.A.; Tallec, T.; Ceschia, E. Combining High-Resolution Remote Sensing Products with a Crop Model to Estimate Carbon and Water Budget Components: Application to Sunflower. Remote Sens. 2020, 12, 2967. [Google Scholar] [CrossRef]
- Micheneau, A.; Champolivier, L.; Dejoux, J.F.; Bitar, A.A.; Trépos, R.; Casadebaig, P.; Pontet, C.; Debaeke, P. Predicting sunflower grain yield using remote sensing data and models. In Proceedings of the 15th ESA Congress, Geneva, Switzerland, 27–30 August 2018; p. 44. [Google Scholar]
- Fieuzal, R.; Bustillo, V.; Collado, D.; Dedieu, G. Estimation of Sunflower Yields at a Decametric Spatial Scale—A Statistical Approach Based on Multi-Temporal Satellite Images. In Proceedings of the 3rd International Electronic Conference on Remote Sensing, 22 March–5 April 2019; Volume 18. [Google Scholar]
- Debaeke, P.; Casadebaig, P.; Haquin, B.; Mestries, E.; Palleau, J.P.; Salvi, F. Simulation de la réponse variétale du tournesol à l’environnement à l’aide du modèle SUNFLO. Oilseeds Fats Crop. Lipids 2010, 17, 143–151. [Google Scholar] [CrossRef]
- Casadebaig, P.; Mestries, E.; Debaeke, P. A model-based approach to assist variety evaluation in sunflower crop. Eur. J. Agron. 2016, 81, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Casadebaig, P.; Debaeke, P.; Wallach, D. A new approach to crop model calibration: Phenotyping plus post-processing. Crop. Sci. 2020, 60, 709–720. [Google Scholar] [CrossRef]
- López-Granados, F.; Jurado-Expósito, M.; Peña-Barragán, J.M.; García-Torres, L. Using remote sensing for identification of late-season grass weed patches in wheat. Weed Sci. 2006, 54, 346–353. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Monasterio, J.I.; Lobell, D.B. Remote sensing assessment of regional yield losses due to sub-optimal planting dates and fallow period weed management. Field Crop. Res. 2007, 101, 80–87. [Google Scholar] [CrossRef]
- Aguirrezábal, L.A.N.; Lavaud, Y.; Dosio, G.A.A.; Izquierdo, N.G.; Andrade, F.H.; González, L.M. Intercepted Solar Radiation during Seed Filling Determines Sunflower Weight per Seed and Oil Concentration. Crop. Sci. 2003, 43, 152–161. [Google Scholar] [CrossRef]
Sensor | Spatial Resolution for VNIR (m) | Acquisition Mode | Red Band (nm) | NIR Band (nm) | Exploited Year(s) |
---|---|---|---|---|---|
Landsat-8 | 30 | systematic | [636–673] | [851–879] | 2014 to 2016 |
Formosat-2 | 8 | programmed | [630–690] | [760–900] | 2014 |
Deimos-1 | 22 | programmed | [630–690] | [770–900] | 2014 |
Spot-5 Take-5 | 10 | systematic | [610–680] | [780–890] | 2015 |
Sentinel-2A | 10 | systematic | [650–680] | [785–899] | 2016 |
Input Name: Description (Units) | Default Value |
---|---|
rootDepth: maximum soil rooting depth (mm) | 1000 |
stoneContent: stone content ratio (0:1) | 0.1 |
fieldCapacity: gravimetric water content at field capacity (%) | 21.5 |
wiltingPoint: gravimetric water content at wilting point (%) | 10 |
waterInitial: initial water content ratio (0:1) | 0.69 |
soilDensity: soil apparent density (g·cm) | 1.5 |
mineralization: potential mineralization rate (kg·hadays) | 0.5 |
ninit1: mineral nitrogen content of 1st soil layer (kg·ha) | 30 |
ninit2: mineral nitrogen content of 2nd soil layer (kg·ha) | 20 |
cropDensity: sowing density (plant·m) | 7 |
cropSowingDepth: sowing depth (mm) | 30 |
TLN: Potential number of leaves at flowering (leaf) | 29 |
LLH: Potential rank of the plant largest leaf at flowering (leaf) | 17 |
LLS: Potential area of the plant largest leaf at flowering (cm) | 448 |
k: Light extinction coefficient during vegetative growth (-) | 0.88 |
TDE1: Temperature sum from emergence to floral initiation (C.d) | 482 |
TDF1: Temperature sum from floral initiation to beginning of flowering (C.d) | 354 |
TDM0: Temperature sum from beginning of flowering to beginning of grain filling (C.d) | 247 |
TDM3: Temperature sum from beginning of grain filling to seed physiological maturity (C.d) | 590 |
HI: potential harvest index (0:1) | 0.398 |
LE: Threshold for leaf expansion response to water stress (dimensionless) | −4.42 |
TR: Threshold for stomatal conductance response to water stress (dimensionless) | −9.3 |
Name | Experiment Data | Low Production Level | High Production Level | ||
---|---|---|---|---|---|
Range | Value | Range | Value | Range | |
rootDepth | [400, 2000] | 1000 | [700, 1300] | 1000 | [700, 1300] |
stoneContent | [0, 0.2] | 0.1 | [0.07, 0.13] | 0.1 | [0.07, 0.13] |
fieldCapacity | [21.5, 21.5] | 21.5 | [15.05, 27.95] | 21.5 | [15.05, 27.95] |
wiltingPoint | [10, 10] | 10 | [7, 13] | 10 | [7, 13] |
waterInitial | [0.69, 0.69] | 0.69 | [0.483, 0.897] | 0.69 | [0.483, 0.897] |
soilDensity | [1.5, 1.5] | 1.5 | [1.05, 1.95] | 1.5 | [1.05, 1.95] |
mineralization | [0.5, 0.5] | 0.5 | [0.35, 0.65] | 0.5 | [0.35, 0.65] |
ninit1 | [30, 30] | 30 | [21, 39] | 30 | [21, 39] |
ninit2 | [20, 20] | 20 | [14, 26] | 20 | [14, 26] |
cropDensity | [1.3, 7.3] | 4.5 | [3.15, 5.85] | 6.5 | [4.55, 8.45] |
cropSowingDepth | [30, 50] | 30 | [21, 39] | 30 | [21, 39] |
TLN | [24.33, 35.6] | 29 | [20.3, 37.7] | 29 | [20.3, 37.7] |
LLH | [13.5, 23.1] | 17 | [11.9, 22.1] | 17 | [11.9, 22.1] |
LLS | [199.96, 590] | 439 | [307.3, 570.7] | 474 | [331.8, 616.2] |
k | [0.85, 0.95] | 0.88 | [0.616, 1.144] | 0.88 | [0.616, 1.144] |
TDE1 | [446.63, 522.2] | 444 | [310.8, 577.2] | 508 | [355.6, 660.4] |
TDF1 | [328.77, 384.4] | 321 | [224.7, 417.3] | 368 | [257.6, 478.4] |
TDM0 | [246.5, 246.5] | 250 | [175, 325] | 252 | [176.4, 327.6] |
TDM3 | [499.55, 933.9] | 560 | [392, 728] | 563 | [394.1, 731.9] |
HI | [0.32, 0.51] | 0.4 | [0.28, 0.52] | 0.45 | [0.315, 0.585] |
LE | [−5.79, −2.4] | −4.42 | [−5.746, −3.094] | −4.42 | [−5.746, −3.094] |
TR | [−14.21, −7.64] | −9.3 | [−12.09, −6.51] | −9.3 | [−12.09, −6.51] |
Bias | raw LAI | smoothed LAI | |||||
---|---|---|---|---|---|---|---|
(q·ha) | Open-loop | DI | EnKF | LSE | DI | EnKF | LSE |
oracle | 7.3 | 6.08 | 5.03 | 3.32 | 5.9 | 3.82 | 2.23 |
past weather | 7.33 | 6.07 | 5.02 | 3.39 | 5.87 | 3.8 | 2.29 |
RMSE | raw LAI | smoothed LAI | |||||
(q·ha) | Open-loop | DI | EnKF | LSE | DI | EnKF | LSE |
oracle | 9.81 | 8.84 | 8.28 | 8.6 | 8.55 | 7.5 | 7.86 |
past weather | 9.88 | 8.83 | 8.27 | 8.66 | 8.53 | 7.49 | 7.92 |
RRMSE | raw LAI | smoothed LAI | |||||
(-) | Open-loop | DI | EnKF | LSE | DI | EnKF | LSE |
oracle | 0.453 | 0.408 | 0.382 | 0.397 | 0.394 | 0.346 | 0.363 |
past climate | 0.456 | 0.407 | 0.382 | 0.4 | 0.394 | 0.346 | 0.365 |
MAE | raw LAI | smoothed LAI | |||||
(q·ha) | Open-loop | DI | EnKF | LSE | DI | EnKF | LSE |
oracle | 8.19 | 7.19 | 6.84 | 6.99 | 7.02 | 6.13 | 6.34 |
past weather | 8.24 | 7.18 | 6.83 | 7.04 | 6.99 | 6.11 | 6.38 |
R2 | raw LAI | smoothed LAI | |||||
(-) | Open-loop | DI | EnKF | LSE | DI | EnKF | LSE |
oracle | 0.18 | 0.21 | 0.23 | 0.18 | 0.24 | 0.27 | 0.21 |
past weather | 0.18 | 0.21 | 0.23 | 0.18 | 0.24 | 0.27 | 0.22 |
MAE Difference | Raw LAI | Smoothed LAI | ||||
---|---|---|---|---|---|---|
(q.ha) | Open-Loop | DI | EnKF | LSE | DI | EnKF |
Open-loop | ||||||
DI, raw LAI | 1.05 ** | |||||
EnKF, raw LAI | 1.41 ** | 0.353 | ||||
LSE, raw LAI | 1.2 ** | 0.146 | −0.207 | |||
DI, smoothed LAI | 1.24 ** | 0.192 ** | −0.162 | 0.0456 | ||
EnKF, smoothed LAI | 2.13 ** | 1.08 ** | 0.724 ** | 0.931 ** | 0.886 ** | |
LSE, smoothed LAI | 1.85 ** | 0.802 | 0.449 | 0.656 ** | 0.61 | −0.275 |
Weeds | Diseases | Cover Irregularities | Number of Plots | RMSE | |||
---|---|---|---|---|---|---|---|
Open-Loop | DI | EnKF | LSE | ||||
Yes | Yes | Yes | 281 | 9.88 | 8.53 | 7.49 | 7.92 |
Yes | Yes | No | 159 | 9.79 | 8.53 | 7.65 | 7.97 |
Yes | No | Yes | 165 | 9.14 | 8.13 | 7.22 | 8.3 |
Yes | No | No | 88 | 9.1 | 8.28 | 7.71 | 8.8 |
No | Yes | Yes | 54 | 9.7 | 7.6 | 6.47 | 7.02 |
No | Yes | No | 32 | 10.11 | 7.89 | 6.79 | 6.8 |
No | No | Yes | 33 | 7.39 | 6.18 | 5.51 | 6.72 |
No | No | No | 18 | 7.11 | 6.5 | 5.87 | 6.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trépos, R.; Champolivier, L.; Dejoux, J.-F.; Al Bitar, A.; Casadebaig, P.; Debaeke, P. Forecasting Sunflower Grain Yield by Assimilating Leaf Area Index into a Crop Model. Remote Sens. 2020, 12, 3816. https://doi.org/10.3390/rs12223816
Trépos R, Champolivier L, Dejoux J-F, Al Bitar A, Casadebaig P, Debaeke P. Forecasting Sunflower Grain Yield by Assimilating Leaf Area Index into a Crop Model. Remote Sensing. 2020; 12(22):3816. https://doi.org/10.3390/rs12223816
Chicago/Turabian StyleTrépos, Ronan, Luc Champolivier, Jean-François Dejoux, Ahmad Al Bitar, Pierre Casadebaig, and Philippe Debaeke. 2020. "Forecasting Sunflower Grain Yield by Assimilating Leaf Area Index into a Crop Model" Remote Sensing 12, no. 22: 3816. https://doi.org/10.3390/rs12223816
APA StyleTrépos, R., Champolivier, L., Dejoux, J. -F., Al Bitar, A., Casadebaig, P., & Debaeke, P. (2020). Forecasting Sunflower Grain Yield by Assimilating Leaf Area Index into a Crop Model. Remote Sensing, 12(22), 3816. https://doi.org/10.3390/rs12223816