A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM2.5 Concentrations across Great Britain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Period
2.2. PM2.5 and PM10 Observed Data
2.3. Spatially-Lagged and Nearest Monitor PM2.5 Variables
2.4. AOD Data: Satellite and Atmospheric Reanalysis Models
2.5. Other Spatio-Temporal Predictors
2.5.1. Modelled PM2.5 from Chemical Transport Models
2.5.2. Meteorological Variables from Climate Reanalysis Models
2.5.3. Normalized Difference Vegetation Index
2.6. Spatial Predictors
2.6.1. Land Variables and Night-Time Light Data from Earth Observation Satellites
2.6.2. Population Density
2.6.3. Road Density and Distance
2.6.4. Inverse Distance from Airports and Seashore
2.7. Statistical Methods
2.7.1. Random Forest Algorithm
2.7.2. Stage-1: Increasing PM2.5 Measurements Using Co-located PM10 Monitors
2.7.3. Stage-2: Imputing Missing Satellite-AOD from CAMS Modelled-AOD
2.7.4. Stage-3: Estimating PM2.5 Concentrations Using Spatial and Spatio-Temporal Variables
2.7.5. Stage-4: Reconstructing PM2.5 Time-Series at 1 km Grid
3. Results
3.1. Stage-1 Results
3.2. Stage-2 Results
3.3. Stage-3 Results
3.4. Stage-4 Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Word Health Organization (WHO). Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 20 March 2020).
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Lavigne, E.; Matus, P. Ambient particulate air pollution and daily mortality in 652 cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Basagaña, X.; Jacquemin, B.; Karanasiou, A.; Ostro, B.; Querol, X.; Agis, D.; Alessandrini, E.; Alguacil, J.; Artiñano, B.; Catrambone, M. Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: Results from the MED-PARTICLES project. Environ. Int. 2015, 75, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Raaschou-Nielsen, O.; Beelen, R.; Wang, M.; Hoek, G.; Andersen, Z.J.; Hoffmann, B.; Stafoggia, M.; Samoli, E.; Weinmayr, G.; Dimakopoulou, K. Particulate matter air pollution components and risk for lung cancer. Environ. Int. 2016, 87, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, E.; Lima, I.; Hatzopoulou, M.; Van Ryswyk, K.; Decou, M.L.; Luo, W.; van Donkelaar, A.; Martin, R.V.; Chen, H.; Stieb, D.M. Spatial variations in ambient ultrafine particle concentrations and risk of congenital heart defects. Environ. Int. 2019, 130, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, E.; Donelle, J.; Hatzopoulou, M.; Van Ryswyk, K.; van Donkelaar, A.; Martin, R.V.; Chen, H.; Stieb, D.M.; Gasparrini, A.; Crighton, E. Spatiotemporal variations in ambient ultrafine particles and the incidence of childhood asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 1487–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NASA Earth Observations. Available online: https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MODAL2_M_AER_OD (accessed on 20 March 2020).
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 2010, 118, 847–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koelemeijer, R.; Homan, C.; Matthijsen, J. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmos. Environ. 2006, 40, 5304–5315. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. J. Geophys. Res. Atmos. 2009, 114, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Beckerman, B.S.; Jerrett, M.; Martin, R.V.; van Donkelaar, A.; Ross, Z.; Burnett, R.T. Application of the deletion/substitution/addition algorithm to selecting land use regression models for interpolating air pollution measurements in California. Atmos. Environ. 2013, 77, 172–177. [Google Scholar] [CrossRef]
- Vienneau, D.; de Hoogh, K.; Beelen, R.; Fischer, P.; Hoek, G.; Briggs, D. Comparison of land-use regression models between Great Britain and the Netherlands. Atmos. Environ. 2010, 44, 688–696. [Google Scholar] [CrossRef]
- De Hoogh, K.; Héritier, H.; Stafoggia, M.; Künzli, N.; Kloog, I. Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland. Environ. Pollut. 2018, 233, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Kloog, I.; Koutrakis, P.; Coull, B.A.; Lee, H.J.; Schwartz, J. Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmos. Environ. 2011, 45, 6267–6275. [Google Scholar] [CrossRef]
- Kloog, I.; Sorek-Hamer, M.; Lyapustin, A.; Coull, B.; Wang, Y.; Just, A.C.; Schwartz, J.; Broday, D.M. Estimating daily PM2.5 and PM10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data. Atmos. Environ. 2015, 122, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Liu, Y.; Coull, B.; Schwartz, J.; Koutrakis, P. A novel calibration approach of MODIS AOD data to predict PM2. 5 concentrations. Atmos. Chem. Phys. 2011, 11, 7991–8002. [Google Scholar] [CrossRef] [Green Version]
- Stafoggia, M.; Schwartz, J.; Badaloni, C.; Bellander, T.; Alessandrini, E.; Cattani, G.; de’ Donato, F.; Gaeta, A.; Leone, G.; Lyapustin, A. Estimation of daily PM10 concentrations in Italy (2006–2012) using finely resolved satellite data, land use variables and meteorology. Environ. Int. 2016, 99, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, S.; Knibbs, L.D.; Hamm, N.; Cao, W.; Li, T.; Guo, J.; Ren, H.; Abramson, M.J.; Guo, Y. A machine learning method to estimate PM2.5 concentrations across China with remote sensing meteorological and land use information. Sci. Total Environ. 2018, 636, 52–60. [Google Scholar] [CrossRef]
- Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.; Sabath, M.B.; Choirat, C.; Koutrakis, P.; Lyapustin, A. An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environ. Int. 2019, 130, 1–13. [Google Scholar] [CrossRef]
- Stafoggia, M.; Bellander, T.; Bucci, S.; Davoli, M.; de Hoogh, K.; de’ Donato, F.; Gariazzo, C.; Lyapustinf, A.; Michelozzi, P.; Renzi, M. Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environ. Int. 2019, 124, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, M.D.; Kuang, Z.; Dimakopoulou, K.; Barratt, B.; Suel, E.; Amini, H.; Lyapustin, A.; Katsouyanni, K.; Schwartz, J. Predicting Fine Particulate Matter (PM2.5) in the Greater London Area: An Ensemble Approach using Machine Learning Methods. Remote Sens. 2020, 12, 914. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Huang, W.; Li, Z.; Xue, W.; Peng, Y.; Sune, L.; Cribb, M. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sens. Environ. 2019, 231, 1–14. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Zhang, T.H.; Zhang, R.; Zhu, Z.M.; Yang, J.; Chen, P.Y.; Ou, C.Q.; Guo, Y. Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China. Atmos. Environ. 2019, 202, 180–189. [Google Scholar] [CrossRef]
- Zhan, Y.; Luo, Y.; Deng, X.; Chen, H.; Grieneisen, M.L.; Shen, X.; Zhu, L.; Zhang, M. Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm. Atmos. Environ. 2017, 155, 129–139. [Google Scholar] [CrossRef]
- Polley, E.C.; Rose, S.; van der Laan, M.J. Super Learning. In Targeted Learning: Causal Inference for Observational and Experimental Data; Van der Laan, M.J., Rose, S., Eds.; Springer: New York, NY, USA, 2011; pp. 43–65. [Google Scholar]
- Office for National Statistics (ONS). Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates (accessed on 1 April 2020).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Digimap. Available online: https://digimap.edina.ac.uk/webhelp/os/data_information/os_data_issues/grid_references.htm (accessed on 1 April 2020).
- Openair R Package. Available online: https://cran.r-project.org/web/packages/openair/openair.pdf (accessed on 25 May 2020).
- Lyapustin, A.; Wang, Y. MCD19A2 MODIS/Terra+Aqua Land Aerosol Optical Depth Daily L2G Global 1km SIN Grid V006. 2018, distributed by NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MCD19A2.006 (accessed on 28 May 2020).
- Bozzo, A.; Remy, S.; Benedetti, A.; Flemming, J.; Bechtold, P.; Rodwell, M.J.; Morcrette, J.J. Implementation of a CAMS-Based Aerosol Climatology in the IFSA; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2017; Volume 801, pp. 1–33. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2017/17219-implementation-cams-based-aerosol-climatology-ifs.pdf (accessed on 3 November 2020).
- European Modelling and Evaluation Programme for the UK (EMEP4UK). Available online: http://www.emep4uk.ceh.ac.uk/ (accessed on 13 July 2020).
- Vieno, M.; Heal, M.R.; Twigg, M.M.; MacKenzie, I.A.; Braban, C.F.; Lingard, J.J.N.; Ritchie, S.; Beck, R.C.; Móring, A.; Ots, R.; et al. The UK particulate matter air pollution episode of March–April 2014: More than Saharan dust. Environ. Res. Lett. 2016, 11, 12. [Google Scholar] [CrossRef]
- Vieno, M.; Dore, A.J.; Stevenson, D.S.; Doherty, R.; Heal, M.R.; Reis, S.; Hallsworth, S.; Tarrason, L.; Wind, P.; Fowler, D.; et al. Modelling surface ozone during the 2003 heat-wave in the UK. Atmos. Chem. Phys. 2010, 10, 7963–7978. [Google Scholar] [CrossRef] [Green Version]
- ERA 5 Global Climate Reanalysis. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 28 May 2020).
- ERA 5 Land Global Climate Reanalysis. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview (accessed on 28 May 2020).
- UERRA Regional Reanalysis. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-uerra-europe-soil-levels?tab=overview (accessed on 28 May 2020).
- Didan, K. MOD13A3 MODIS/Terra Vegetation Indices Monthly L3 Global 1 km SIN Grid V006 [Data set]. NASA EOSDIS LP DAAC, 2015. Available online: https://lpdaac.usgs.gov/products/mod13a3v006/ (accessed on 3 November 2020).
- Copernicus Land Monitoring Service (CLMS). Available online: https://land.copernicus.eu/pan-european (accessed on 29 May 2020).
- Earth Observation Group (EOG). Available online: https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html (accessed on 1 July 2020).
- Ordnance Survey Open Roads. Available online: https://www.ordnancesurvey.co.uk/documents/os-open-roads-user-guide.pdf. (accessed on 29 May 2020).
- Civil Aviation Authority (CAA). Available online: caa.co.uk/home (accessed on 29 May 2020).
- UK Data Service. Available online: https://www.ukdataservice.ac.uk/ (accessed on 29 May 2020).
- Schneider dos Santos, R. Estimating spatio-temporal air temperature in London (UK) using machine learning and earth observation satellite data. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 1–10. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An introduction to statistical learning; Springer: Berlin, Germany, 2013; 430p. [Google Scholar]
- Department for Environment, Food & Rural Affairs (DEFRA). Fine Particulate Matter (PM2.5) in the UK 2012. Available online: https://www.gov.uk/government/publications/fine-particulate-matter-pm2-5-in-the-uk (accessed on 25 May 2020).
- DEFRA. Modelled Background Pollution Data. Available online: https://uk-air.defra.gov.uk/data/pcm-data (accessed on 13 July 2020).
- Savage, N.H.; Agnew, P.; Davis, L.S.; Ordonez, C. Air quality modelling using the Met Office Unified Model (AQUM OS24-26): Model description and initial evaluation. Geosci. Model Dev. 2013, 6, 353–372. [Google Scholar] [CrossRef] [Green Version]
- Hood, C.; MacKenzie, I.; Stocker, J.; Johnson, K.; Carruthers, D.; Vieno, M.; Doherty, R. Air quality simulations for London using a coupled regional-to-local modelling system. Atmos. Chem. Phys. 2018, 18, 11221–11245. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Heal, M.R.; Vieno, M.; MacKenzie, I.A.; Armstrong, B.G.; Butland, B.K.; Milojevic, A.; Chalabi, Z.; Atkinson, R.W.; Stevenson, D.S.; et al. Spatiotemporal evaluation of EMEP4UK-WRF v4.3 atmospheric chemistry transport simulations of health-related metrics for NO2, O3, PM10, and PM2. 5 for 2001–2010. Geosci. Model Dev. 2017, 10, 1767–1787. [Google Scholar] [CrossRef] [Green Version]
- Brookes, D.M.; Stedman, J.R.; Grice, S.E.; Kent, A.J.; Walker, H.L.; Cooke, S.L.; Vincent, K.J.; Lingard, J.J.N.; Bush, T.J.; Abbott, J. UK Air Quality Modelling under the Air Quality Directive (2008/50/EC) for 2010 Covering the Following Air Quality Pollutants: SO2, NOx, NO2, PM10, PM2.5, Lead, Benzene, CO, and Ozone. Report for the Department for Environment, Food and Rural Affairs (Defra), Welsh Government, Scottish Government and the Department of the Environment in Northern Ireland. AEA report. AEAT/ENV/R/3215 Issue 1. 2011. Available online: http://uk-air.defra.gov.uk/reports/cat09/1204301513_AQD2010mapsrep_master_v0.pdf (accessed on 6 July 2020).
- Air Quality Expert Group (AQEG). Mitigation of United Kingdom PM2.5 Concentrations 2013. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat11/1508060903_DEF-PB14161_Mitigation_of_UK_PM25.pdf (accessed on 6 July 2020).
- European Space Agency. Copernicus Sentinel-5 Precursor Mission. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-5p. (accessed on 15 October 2020).
- European Space Agency. Copernicus Sentinel-4 Mission. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-4. (accessed on 16 October 2020).
- European Space Agency. Copernicus Sentinel-5 Mission. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-5. (accessed on 16 October 2020).
Stage-1 | ||||||||
---|---|---|---|---|---|---|---|---|
OOB-CV | 10-Fold CV | |||||||
R2 | RMSE | Inter. | Slope | R2 | RMSE | Inter. | Slope | |
2008 | 0.918 | 1.196 | −0.417 | 1.033 | 0.707 | 4.954 | 0.803 | 0.886 |
2009 | 0.921 | 1.110 | −0.390 | 1.030 | 0.791 | 3.996 | 0.410 | 0.937 |
2010 | 0.919 | 1.122 | −0.401 | 1.029 | 0.843 | 3.496 | 0.043 | 0.983 |
2011 | 0.949 | 1.124 | −0.266 | 1.019 | 0.902 | 3.439 | −0.087 | 0.997 |
2012 | 0.942 | 1.058 | −0.274 | 1.021 | 0.889 | 3.218 | −0.035 | 0.986 |
2013 | 0.929 | 1.087 | −0.368 | 1.028 | 0.847 | 3.584 | 0.218 | 0.972 |
2014 | 0.944 | 0.963 | −0.267 | 1.022 | 0.891 | 3.003 | −0.007 | 0.995 |
2015 | 0.933 | 0.865 | −0.265 | 1.026 | 0.871 | 2.662 | −0.003 | 0.983 |
2016 | 0.935 | 0.896 | −0.251 | 1.025 | 0.885 | 2.654 | −0.050 | 0.996 |
2017 | 0.939 | 0.828 | −0.196 | 1.022 | 0.895 | 2.430 | 0.010 | 0.985 |
2018 | 0.928 | 0.791 | −0.248 | 1.028 | 0.886 | 2.235 | −0.019 | 0.993 |
Mean | 0.932 | 1.003 | −0.304 | 1.026 | 0.855 | 3.243 | 0.117 | 0.974 |
Stage-2 OOB CV | ||||||||
---|---|---|---|---|---|---|---|---|
Predicted-AOD 0.47 µm | Predicted-AOD 0.55 µm | |||||||
R2 | RMSE | Inter. | Slope | R2 | RMSE | Inter. | Slope | |
2008 | 0.977 | 0.010 | −0.001 | 1.009 | 0.977 | 0.007 | −0.001 | 1.009 |
2009 | 0.976 | 0.010 | −0.001 | 1.010 | 0.976 | 0.007 | −0.001 | 1.010 |
2010 | 0.968 | 0.009 | −0.001 | 1.013 | 0.968 | 0.007 | −0.001 | 1.013 |
2011 | 0.988 | 0.010 | −0.001 | 1.005 | 0.988 | 0.007 | 0.000 | 1.005 |
2012 | 0.980 | 0.010 | −0.001 | 1.008 | 0.981 | 0.007 | −0.001 | 1.008 |
2013 | 0.984 | 0.010 | −0.001 | 1.007 | 0.984 | 0.007 | −0.001 | 1.006 |
2014 | 0.970 | 0.009 | −0.001 | 1.012 | 0.970 | 0.007 | −0.001 | 1.012 |
2015 | 0.972 | 0.009 | −0.001 | 1.011 | 0.973 | 0.007 | −0.001 | 1.011 |
2016 | 0.975 | 0.009 | −0.001 | 1.010 | 0.975 | 0.007 | −0.001 | 1.010 |
2017 | 0.963 | 0.009 | −0.001 | 1.015 | 0.963 | 0.007 | −0.001 | 1.014 |
2018 | 0.969 | 0.010 | −0.001 | 1.013 | 0.969 | 0.007 | −0.001 | 1.013 |
Mean | 0.978 | 0.010 | −0.001 | 1.009 | 0.978 | 0.007 | −0.001 | 1.009 |
Stage-3 Predictors | 2008 | 2013 | 2018 |
---|---|---|---|
EMEP4UK PM2.5 | 32.41 | 32.83 | 36.74 |
Spatially-lagged hotspot-PM2.5 regional | 2.55 | 2.49 | 6.77 |
Wind direction | 6.35 | 7.33 | 5.34 |
Spatially-lagged background-PM2.5 regional | 1.14 | 6.06 | 4.93 |
Day of the year | 3.22 | 4.33 | 3.73 |
Spatially-lagged hotspot-PM2.5 local | 3.97 | 1.65 | 3.66 |
Precipitation | 6.63 | 2.42 | 3.25 |
BLH 0h | 2.28 | 2.91 | 2.79 |
Spatially-lagged background-PM2.5 local | 0.94 | 3.07 | 2.75 |
Month | 1.76 | 2.72 | 2.68 |
2m Air temperature | 2.60 | 2.93 | 2.65 |
Wind speed | 3.08 | 3.75 | 2.53 |
Sea-level pressure | 3.09 | 2.60 | 2.49 |
Relative humidity | 1.77 | 1.56 | 1.81 |
Nearest non-traffic monitor distance | 3.10 | 2.30 | 1.78 |
Stage-3 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall | Spatial | Temporal | ||||||||||
R2 | RMSE | Inter. | Slope | R2 | RMSE | Inter. | Slope | R2 | RMSE | Inter. | Slope | |
2008 | 0.704 | 4.547 | −1.251 | 1.064 | 0.486 | 2.698 | −0.749 | 1.026 | 0.760 | 3.677 | 0.000 | 1.074 |
2009 | 0.742 | 4.247 | −1.104 | 1.042 | 0.680 | 2.255 | −0.203 | 0.982 | 0.762 | 3.593 | 0.000 | 1.055 |
2010 | 0.709 | 4.330 | −1.424 | 1.075 | 0.627 | 2.342 | 0.137 | 0.972 | 0.738 | 3.628 | 0.000 | 1.102 |
2011 | 0.821 | 4.421 | −0.898 | 1.029 | 0.733 | 2.280 | −0.509 | 1.003 | 0.843 | 3.756 | 0.000 | 1.035 |
2012 | 0.786 | 4.354 | −0.749 | 1.027 | 0.661 | 2.527 | 0.073 | 0.966 | 0.823 | 3.552 | 0.000 | 1.043 |
2013 | 0.764 | 4.305 | −1.093 | 1.047 | 0.637 | 2.616 | −0.565 | 1.013 | 0.791 | 3.604 | 0.000 | 1.061 |
2014 | 0.784 | 4.140 | −1.044 | 1.051 | 0.632 | 2.292 | −0.145 | 0.983 | 0.815 | 3.478 | 0.000 | 1.062 |
2015 | 0.736 | 3.792 | −1.194 | 1.072 | 0.579 | 2.139 | −0.026 | 0.969 | 0.776 | 3.127 | 0.000 | 1.095 |
2016 | 0.781 | 3.702 | −0.980 | 1.050 | 0.725 | 1.964 | −0.532 | 1.010 | 0.796 | 3.149 | 0.000 | 1.061 |
2017 | 0.816 | 3.343 | −0.933 | 1.041 | 0.746 | 1.720 | −0.406 | 0.994 | 0.834 | 2.860 | 0.000 | 1.055 |
2018 | 0.790 | 3.275 | −1.030 | 1.046 | 0.726 | 1.776 | −0.745 | 1.015 | 0.807 | 2.775 | 0.000 | 1.056 |
Mean | 0.767 | 4.042 | −1.064 | 1.049 | 0.658 | 2.237 | −0.334 | 0.994 | 0.795 | 3.382 | 0.000 | 1.063 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, R.; Vicedo-Cabrera, A.M.; Sera, F.; Masselot, P.; Stafoggia, M.; de Hoogh, K.; Kloog, I.; Reis, S.; Vieno, M.; Gasparrini, A. A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM2.5 Concentrations across Great Britain. Remote Sens. 2020, 12, 3803. https://doi.org/10.3390/rs12223803
Schneider R, Vicedo-Cabrera AM, Sera F, Masselot P, Stafoggia M, de Hoogh K, Kloog I, Reis S, Vieno M, Gasparrini A. A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM2.5 Concentrations across Great Britain. Remote Sensing. 2020; 12(22):3803. https://doi.org/10.3390/rs12223803
Chicago/Turabian StyleSchneider, Rochelle, Ana M. Vicedo-Cabrera, Francesco Sera, Pierre Masselot, Massimo Stafoggia, Kees de Hoogh, Itai Kloog, Stefan Reis, Massimo Vieno, and Antonio Gasparrini. 2020. "A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM2.5 Concentrations across Great Britain" Remote Sensing 12, no. 22: 3803. https://doi.org/10.3390/rs12223803
APA StyleSchneider, R., Vicedo-Cabrera, A. M., Sera, F., Masselot, P., Stafoggia, M., de Hoogh, K., Kloog, I., Reis, S., Vieno, M., & Gasparrini, A. (2020). A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM2.5 Concentrations across Great Britain. Remote Sensing, 12(22), 3803. https://doi.org/10.3390/rs12223803