Assessment of Urban Land Surface Temperature and Vertical City Associated with Dengue Incidences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Medical Data
2.3. Methodology
2.3.1. Image Preprocessing
2.3.2. Conversion of Digital Numbers to Radiance and LST
2.3.3. Statistical Analysis
3. Results and Discussion
3.1. Dengue incidence map
3.2. Distribution of Buildings with Land Surface Temperature
3.3. Surface Temperature Variation and the Intensity of Urban Heat Island in BMA
3.4. Relationship between LST and UHII with High-Rise Buildings in Different Three Zones
3.5. Correlation Coefficients between LST, Number of Buildings, and Dengue Incidence Per District
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
No. of Building < 8Fl. | Average LST (°C) < 8Fl. | Dengue Incidence | No. of Building > 8Fl. | Average LST (°C) > 8Fl. | ||
---|---|---|---|---|---|---|
No. of Building <8Fl. | Pearson Correlation | 1 | −0.504 ** | −0.496 ** | −0.282 | −0.289 ** |
2009 | Sig. (2-tailed) | 0 | 0 | 0.047 | 0.042 | |
Average LST (°C) 2009 | Pearson Correlation | −0.504 ** | 1 | 0.299 * | 0.434 ** | 0.489 |
No. of Building <8Fl. | Sig. (2-tailed) | 0 | 0.035 | 0.002 | 0 | |
Dengue Incidence | Pearson Correlation | −0.496 ** | 0.299* | 1 | 0.425 ** | 0.112 * |
2009 | Sig. (2-tailed) | 0 | 0.035 | 0.002 | 0.439 | |
No. of Building >8Fl. | Pearson Correlation | −0.282 * | 0.434** | 0.425 ** | 1 * | 0.147 ** |
2009 | Sig. (2-tailed) | 0.047 | 0.002 | 0.002 | 0.309 | |
Average LST (°C) | Pearson Correlation | −0.289 * | 0.489 ** | 0.112 | 0.147 * | 1 ** |
No. of Building >8Fl. | Sig. (2-tailed) | 0.042 | 0 | 0.439 | 0.309 | |
2009 | ||||||
No. of Building <8Fl. | Pearson Correlation | 1 | −0.455 ** | −0.269 | −0.074 | −0.171 ** |
2014 | Sig. (2-tailed) | 0.001 | 0.059 | 0.609 | 0.235 | |
Average LST (°C) | Pearson Correlation | −0.455 ** | 1 | 0.333 * | 0.141 ** | 0.694 |
No. of Building <8Fl. | Sig. (2-tailed) | 0.001 | 0.018 | 0.327 | 0 | |
2014 | ||||||
Dengue Incidence | Pearson Correlation | −0.269 | 0.333 * | 1 | 0.367 | 0.024 * |
2014 | Sig. (2-tailed) | 0.059 | 0.018 | 0.009 | 0.866 | |
No. of Building >8Fl. | Pearson Correlation | −0.074 | 0.141 | 0.367 ** | 1 | 0.121 |
2014 | Sig. (2-tailed) | 0.609 | 0.327 | 0.009 | 0.401 | |
Average LST (°C) | Pearson Correlation | −0.171 | 0.694 ** | 0.024 | −0.121 | 1 ** |
No. of Building >8Fl. | Sig. (2-tailed) | 0.235 | 0 | 0.866 | 0.401 | |
2014 |
References
- World Health Organization. Global Vector Control Response 2017–2030; License: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-151297-8. [Google Scholar]
- World Health Organization. Dengue and Dengue Hemorrhagic Fever; Fact Sheet 117, Revised February 2015; World Health Organization: Geneva, Switzerland, 2015; Available online: http://www.who.int/mediacentre/factsheets/fs117/en/ (accessed on 22 January 2020).
- Guzman, M.G.; Halstead, S.B.; Artsob, H.; Buchy, P.; Farrar, J.; Gubler, D.J.; Hunsperger, E.; Kroeger, A.; Margolis, H.S.; Martínez, E.; et al. Dengue: A continuing global threat. Nat. Rev. Microbiol. 2010, 8 (Suppl. S12), S7–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daudé, E.; Mazumdar, S.; Solanki, V. Widespread Fear of Dengue Transmission but Poor Practices of Dengue Prevention: A Study in the Slums of Delhi, India. PLoS ONE 2017, 12, e0171543. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Gubler, D.J. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 2002, 10, 100–103. [Google Scholar] [CrossRef]
- Kyle, J.L.; Harris, E. Global Spread and Persistence of Dengue. Annu. Rev. Microbiol. 2008, 62, 71–92. [Google Scholar] [CrossRef] [Green Version]
- Hii, Y.L.; Zhu, H.; Ng, N.; Ng, L.C.; Rocklöv, J. Forecast of Dengue Incidence Using Temperature and Rainfall. PLoS Negl. Trop. Dis. 2012, 6, e1908. [Google Scholar] [CrossRef] [Green Version]
- Paul, R.; Sousa, C.A.; Sakuntabhai, A.; Devine, G. Mosquito control might not bolster imperfect dengue vaccines. Lancet 2014, 384, 1747–1748. [Google Scholar] [CrossRef] [PubMed]
- Liu-Helmersson, J.; Stenlund, H.; Wilder-Smith, A.; Rocklöv, J. Vectorial capacity of Aedes aegypti: Effects of temperature and implications for global dengue epidemic potential. PLoS ONE 2014, 9, e89783. [Google Scholar] [CrossRef] [Green Version]
- Lowe, R.; Cazelles, B.; Paul, R.; Rodó, X. Quantifying the added value of climate information in a spatio-temporal dengue model. Stoch. Environ. Res. Risk Assess. 2016, 30, 2067–2078. [Google Scholar] [CrossRef]
- Misslin, R.; Telle, O.; Daudé, É.; Vaguet, A.; Paul, R.E. Urban climate versus global climate change-what makes the difference for dengue? Ann. N. Y. Acad. Sci. 2016, 1382, 56–72. [Google Scholar] [CrossRef]
- Misslin, R.; Daudé, É. An environmental suitability index based on the ecological constraints of Aedes aegypti, vector of dengue and Zika virus. RIG Int. Rev. Geomat. 2017, 27, 481–501. [Google Scholar] [CrossRef]
- Telle, O.; Vaguet, A.; Yadav, N.K.; Lefebvre, B.; Cebeillac, A.; Nagpal, B.N.; Daudé, E.; Paul, R.E. The Spread of Dengue in an Endemic Urban Milieu—The Case of Delhi, India. PLoS ONE 2016, 11, e0146539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019. [Google Scholar]
- Keeratikasikron, C.; Bonadoni, S. Urban heat island analysis over the land use zoning plan of Bangkok by means of Landsat 8 imagery. Remote Sens. 2018, 10, 440. [Google Scholar] [CrossRef]
- Montaner-Fernandez, D.; Morales-Salinas, L.; Rodriguez, J.S.; Cárdenas-Jirón, L.; Huete, A.; Fuentes-Jaque, G.; Pérez-Martínez, W.; Cabezas, J. Spatio-Temporal variation of the urban heat island in Santiago, Chile during summers 2005–2017. Remote Sens. 2020, 12, 3345. [Google Scholar] [CrossRef]
- Meng, C.; Dou, Y. Quantifying the anthropogenic footprint in Eastern China. Sci. Rep. 2016, 6, 24337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, L.; Renard, F. A new approach for understanding urban microclimate by integrating complementary predictors at different scales in regression and machine learning models. Remote Sens. 2020, 12, 2434. [Google Scholar] [CrossRef]
- Yang, J.; Santamouris, M. Urban heat island and mitigation technologies in Asian and Australian Cities—Impact and mitigation. Urban Sci. 2018, 2, 74. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Gao, C.; Li, J.; Wang, R.; Liu, J. Quantifying the effects of urban form on land surface temperature in subtropical high-density urban areas using machine learning. Remote Sens. 2019, 11, 959. [Google Scholar] [CrossRef] [Green Version]
- Jed Collins, J.; Dronova, I. Urban landscape change analysis using local climate zones and object-based classification in the Salt lake metro region, Utah, USA. Remote Sens. 2019, 11, 1615. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Zhou, Y.; Hu, M.; Zhou, Y. Influence of urban scale and urban expansion on the urban heat island effect in metropolitan areas: Case study of Beijing-Tianjin-Hebei urban agglomeration. Remote Sens. 2020, 12, 3491. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Guneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Feng, Y.; Gao, C.; Tong, X.; Chen, S.; Lei, Z.; Wang, J. Spatial Patterns of Land Surface Temperature and Their Influencing Factors: A Case Study in Suzhou, China. Remote Sens. 2019, 11, 182. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Liu, K.; Fang, J.-Y.; Zhao, D.; Liu, X.; Zhang, X.-H.; Wang, X.; Li, X.-K. An Assessment of Urban Surface Energy Fluxes Using a Sub-Pixel Remote Sensing Analysis: A Case Study in Suzhou, China. ISPRS Int. J. Geo-Inf. 2016, 5, 11. [Google Scholar] [CrossRef]
- Rotem-Mindali, O.; Michael, Y.; Helman, D.; Lensky, I.M. The role of local land-use on the urban heat island effect of Tel Aviv as assessed from satellite remote sensing. Appl. Geogr. 2015, 56, 145–153. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Buyantuev, A.; Stefanov, W.L.; Declet-Barreto, J.; Ruddell, B.L.; Myint, S.W.; Kaplan, S.; Li, X.X. Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landsc. Ecol. 2016, 31, 745–760. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Rivera, E.; Antonio-Némiga, X.; Origel-Gutiérrez, G.; Sarricolea, P.; Adame-Martínez, S. Spatiotemporal analysis of the atmospheric and surface urban heat islands of the Metropolitan Area of Toluca, Mexico. Environ. Earth Sci. 2017, 76, 137. [Google Scholar] [CrossRef]
- Heaviside, C.; Macintyre, H.; Vardoulakis, S. The Urban Heat Island: Implications for Health in a Changing Environment. Curr. Envir. Health Rep. 2017, 4, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-F.; Foody, G.M.; Cheng, K.-C. Spatial non-stationarity in the relationships between land cover and surface temperature in an urban heat island and its impacts on thermally sensitive populations. Landsc. Urban Plan. 2012, 107, 172–180. [Google Scholar] [CrossRef]
- Bangkok Information Center. Bangkok Nowadays. Available online: http://www.bangkokgis.com/gis_information/population/ (accessed on 20 January 2019). (In Thai).
- Sanecharoen, W.; Nakhapakorn, K.; Mutchimwong, A.; Jirakajohnkool, S.; Onchang, R. Assessment of Urban Heat Island Patterns in Bangkok Metropolitan Area Using Time-Series of LANDSAT Thermal Infrared Data. Environ. Nat. Resour. J. 2019, 17, 87–102. [Google Scholar] [CrossRef]
- Department of City Planning. Final Report of the Project on BMA Central City Planning; Department of City Planning BMA: Bangkok, Thailand, 2011. (In Thai) [Google Scholar]
- Jaenisch, T.; Sakuntabhai, A.; Wilder-Smith, A.; DengueTools. Dengue research funded by the European Commission-scientific strategies of three European dengue research consortia. PLoS Negl. Trop. Dis. 2013, 7, e2320. [Google Scholar] [CrossRef] [PubMed]
- NASA (National Aeronautics and Space Administration). Landsat 7 Science Data User’s Handbook. 2011. Available online: https://www.usgs.gov/media/files/landsat-7-data-users-handbook (accessed on 18 October 2014).
- US Geological Survey. Landsat 8 Data Users Handbook. 2019. Available online: https://www.usgs.gov/media/files/landsat-8-data-users-handbook (accessed on 30 May 2019).
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogram. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Isaya Ndossi, M.; Avdan, U. Application of Open Source Coding Technologies in the Production of Land Surface Temperature (LST) Maps from Landsat: A PyQGIS Plugin. Remote Sens. 2016, 8, 413. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Gaiyan Ruan, X.M.; Gao, Z.; Li, L.; Yan, G. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. Int. J. Appl. Earth Obs. 2017, 58, 168–176. [Google Scholar] [CrossRef]
- Nakhapakorn, K.; Jirakajohnkool, S. Temporal and Spatial Autocorrelation Statistics of Dengue Fever. Dengue Bull. 2006, 30, 177–183. [Google Scholar]
- Jeefoo, P.; Tripathi, N.K.; Souris, M. Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao province, Thailand. Int. J. Environ. Res. Public Health 2011, 8, 51–74. [Google Scholar] [CrossRef] [Green Version]
- Nakhapakorn, K.; Tripathi, N.K. An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Int. J. Health Geogr. 2005, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Lai, P.C.; Low, C.T.; Wong, M.; Wong, W.C.; Chan, M.H. Spatial analysis of falls in an urban community of Hong Kong. Int. J. Health Geogr. 2009, 8, 14. [Google Scholar] [CrossRef]
- Besag, J.; York, J.; Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Statist. Math. 1991, 43, 1–20. [Google Scholar] [CrossRef]
- Lawson, A.B.; Banerjee, S.; Haining, R.P.; Ugarte, M.D. Handbook of Spatial Epidemiology; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781482253016. [Google Scholar]
- Costa, J.V.; Donalisio, M.R.; Silveira, L.V.d.A. Spatial distribution of dengue incidence and socio-environmental conditions in Campinas, São Paulo State, Brazil, 2007. Cadernos de Saude Publica 2013, 29, 1522–1532. [Google Scholar] [CrossRef] [PubMed]
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B 2009, 71, 319–392. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Reducing Urban Heat Islands: Compendium of Strategies—Chapter 1: Urban Heat Island Basics. 2014. Available online: http://www.epa.gov/heatisld/resources/pdf/BasicsCompendium.pdf (accessed on 15 October 2014).
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Chen, M.; Ban-Weiss, G.A.; Sanders, K.T. The role of household level electricity data in improving estimates of the impacts of climate on building electricity use. Energy Build. 2018, 180, 146–158. [Google Scholar] [CrossRef]
- Parselia, E.; Kontoes, C.; Tsouni, A.; Hadjichristodoulou, C.; Kioutsioukis, I.; Magiorkinis, G.; Stilianakis, N.I. Satellite Earth Observation Data in Epidemiological Modeling of Malaria, Dengue and West Nile Virus: A Scoping Review. Remote Sens. 2019, 11, 1862. [Google Scholar] [CrossRef] [Green Version]
- Sarfraz, M.S.; Tripathi, N.K.; Faruque, F.S.; Bajwa, U.I.; Kitamoto, A.; Souris, M. Mapping urban and peri-urban breeding habitats of Aedes mosquitoes using a fuzzy analytical hierarchical process based on climatic and physical parameters. Geospat. Health 2014, 8, S685–S697. [Google Scholar] [CrossRef]
- Méndez-Lázaro, P.; Muller-Karger, F.E.; Otis, D.; McCarthy, M.J.; Peña-Orellana, M.; Méndez-Lázaro, P.; Muller-Karger, F.E.; Otis, D.; McCarthy, M.J.; Peña-Orellana, M. Assessing Climate Variability Effects on Dengue Incidence in San Juan, Puerto Rico. Int. J. Environ. Res. Public Health 2014, 11, 9409–9428. [Google Scholar] [CrossRef] [Green Version]
- Ashby, J.; Moreno-Madriñán, M.M.J.; Yiannoutsos, C.T.C.; Stanforth, A. Niche modeling of dengue fever using remotely sensed environmental factors and boosted regression trees. Remote Sens. 2017, 9, 328. [Google Scholar] [CrossRef] [Green Version]
- Ruangudomsakul, C.; Duangsin, A.; Kerdprasop, K.; Kerdprasop, N. Application of Remote Sensing Data for Dengue Outbreak Estimation Using Bayesian Network. Int. J. Mach. Learn. Comput. 2018, 8, 394–398. [Google Scholar] [CrossRef]
- Ssempiira, J.; Kissa, J.; Nambuusi, B.; Mukooyo, E.; Opigo, J.; Makumbi, F.; Kasasa, S.; Vounatsou, P. Interactions between climatic changes and intervention effects on malaria spatio-temporal dynamics in Uganda. Parasite Epidemiol. Control 2018, 3, e00070. [Google Scholar] [CrossRef] [PubMed]
No. of Floor | No. of Building | Average LST (°C) | Δ Temp. (°C) | Δ No. of Building | |||
---|---|---|---|---|---|---|---|
Zone | 2009 | 2014 | 2009 | 2014 | |||
Inner City | <8 Fl. | 791,387 | 814,438 | 23.4 | 27.4 | 4.0 | 23,051 |
≥8 Fl. | 2007 | 3088 | 27.8 | 26.9 | −0.9 | 1081 | |
Urban Fringe | <8 Fl. | 991,713 | 1041,541 | 22.8 | 27.4 | 4.6 | 49,828 |
≥8 Fl. | 2106 | 3538 | 26.7 | 27.0 | 0.3 | 1432 | |
Suburban | <8 Fl. | 235,767 | 244,341 | 23.5 | 27.7 | 4.2 | 8574 |
≥8 Fl. | 448 | 647 | 27.8 | 27.2 | −0.6 | 199 |
Date | Fitted Regression Model | R2 |
---|---|---|
19 November 2009 | LST = −19.29(Fr) + 23.70 | 0.83 |
17 November 2014 | LST = −27.27(Fr) + 27.30 | 0.79 |
Date | Average LST (°C) | UHII | UHII | ||
---|---|---|---|---|---|
Inner City | Urban Fringe | Suburb | (inner − suburb) | (urban fringe − suburb) | |
19 November 2009 | 23.9 | 21.4 | 20.8 | 3.1 | 0.5 |
17 November 2014 | 28.1 | 27.3 | 25.8 | 2.6 | 1.7 |
Year 2009 | Mean | SD | 95%CrI Lower | Median | 95%CrI Upper |
(Intercept) | 5.3208 | 0.509 | 4.3171 | 5.3205 | 6.3244 |
LB09 | −0.0061 | 0.002 | −0.0101 | −0.0061 | −0.0022 |
HB09 | 0.7857 | 0.3243 | 0.1475 | 0.7852 | 1.4258 |
LBT09 | −0.0051 | 0.0192 | −0.0434 | −0.005 | 0.0323 |
HBT09 | −0.0059 | 0.0163 | −0.0378 | −0.006 | 0.0264 |
Year 2014 | Mean | SD | 95%CrI Lower | Median | 95%CrI Upper |
(Intercept) | 7.1628 | 3.0638 | 1.1583 | 7.1496 | 13.2332 |
LB14 | −0.0008 | 0.0028 | −0.0063 | −0.0008 | 0.0047 |
HB14 | 0.2983 | 0.2792 | −0.2548 | 0.2992 | 0.8461 |
LBT14 | 0.0159 | 0.0322 | −0.0474 | 0.0159 | 0.0795 |
HBT14 | −0.1101 | 0.1185 | −0.3453 | −0.1096 | 0.1218 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakhapakorn, K.; Sancharoen, W.; Mutchimwong, A.; Jirakajohnkool, S.; Onchang, R.; Rotejanaprasert, C.; Tantrakarnapa, K.; Paul, R. Assessment of Urban Land Surface Temperature and Vertical City Associated with Dengue Incidences. Remote Sens. 2020, 12, 3802. https://doi.org/10.3390/rs12223802
Nakhapakorn K, Sancharoen W, Mutchimwong A, Jirakajohnkool S, Onchang R, Rotejanaprasert C, Tantrakarnapa K, Paul R. Assessment of Urban Land Surface Temperature and Vertical City Associated with Dengue Incidences. Remote Sensing. 2020; 12(22):3802. https://doi.org/10.3390/rs12223802
Chicago/Turabian StyleNakhapakorn, Kanchana, Warisara Sancharoen, Auemphorn Mutchimwong, Supet Jirakajohnkool, Rattapon Onchang, Chawarat Rotejanaprasert, Kraichat Tantrakarnapa, and Richard Paul. 2020. "Assessment of Urban Land Surface Temperature and Vertical City Associated with Dengue Incidences" Remote Sensing 12, no. 22: 3802. https://doi.org/10.3390/rs12223802
APA StyleNakhapakorn, K., Sancharoen, W., Mutchimwong, A., Jirakajohnkool, S., Onchang, R., Rotejanaprasert, C., Tantrakarnapa, K., & Paul, R. (2020). Assessment of Urban Land Surface Temperature and Vertical City Associated with Dengue Incidences. Remote Sensing, 12(22), 3802. https://doi.org/10.3390/rs12223802