Estimating Fuel Loads and Structural Characteristics of Shrub Communities by Using Terrestrial Laser Scanning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shrub Communities and Plots
2.2. Field Inventories and Determination of Fuel Characteristics
2.3. TLS Data
2.4. Models for Estimating Fuel Loads
- An equation for estimating total shrub and litter fuel load
- Two allometric equations to estimate total shrub load () and litter load (): and ; therefore, considering the ratio between and
- Two allometric equations to estimate coarse shrub load () and fine shrub load (): and ; therefore, developing the ratio between and in a similar way to step 2
- Finally, disaggregation of Equation (5) in a similar way produced two allometric equations for discriminating between dead fine () and live fine fuel loads ():
3. Results and Discussion
3.1. The Direct Estimation (DE) Approach
3.2. The Indirect Estimation (IE) Approach
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Keane, R.E. Describing wildland surface fuel loading for fire management: A review of approaches, methods and systems. Int. J. Wildland Fire 2013, 22, 51–62. [Google Scholar] [CrossRef]
- Keane, R.E. Wildland Fuel Fundamentals and Applications; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Chandler, C.; Cheney, P.; Thomas, P.; Trabaud, L.; Williams, D. Fire in Forestry, Volume 1: Forest Fire Behavior and Effects; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1983. [Google Scholar]
- Pyne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to Widland Fire, 2nd ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Finney, M.A.; Seli, R.C.; McHugh, C.W.; Ager, A.A.; Bahro, B.; Agee, J. Simulation of long-term landscape-level fuel treatment effects on large wildfires. Int. J. Wildland Fire 2007, 16, 712–727. [Google Scholar] [CrossRef] [Green Version]
- Ager, A.A.; Vaillant, N.M.; Finney, M.A. Integrating Fire Behavior Models and Geospatial Analysis for Wildland Fire Risk Assessment and Fuel Management Planning. J. Combust. 2011, 2011, 572452. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, E.; Vega, J.A.; Ruiz-González, A.D.; Guijarro, M.; Alvarez-González, J.G.; Madrigal, J.; Cuiñas, P.; Hernando, C.; Fernández-Alonso, J.M. Carbon emissions and vertical pattern of canopy fuel consumption in three Pinus pinaster Ait. active crown fires in Galicia (NW Spain). Ecol. Eng. 2013, 54, 202–209. [Google Scholar] [CrossRef]
- Lasslop, G.; Kloster, S. Impact of fuel variability on wildfire emission estimates. Atmos. Environ. 2015, 121, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Possell, M.; Jenkins, M.; Bell, T.L.; Adams, M.A. Emissions from prescribed fires in temperate forest in south-east Australia: Implications for carbon accounting. Biogeosciences 2015, 12, 257–268. [Google Scholar] [CrossRef] [Green Version]
- Restaino, J. Fuel Loading. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Manzello, S., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Arellano, S.; Vega, J.A.; Ruiz-González, A.D.; Arellano, A.; Álvarez-González, J.G.; Vega-Nieva, D.; Pérez, E. Foto-guía de Combustibles Forestales de Galicia y Comportamiento del Fuego Asociado; Andavira: Santiago de Compostela, Spain, 2017. [Google Scholar]
- Koutsias, N.; Allgöwer, B.; Kalabokidis, K.; Mallinis, G.; Balatsos, P.; Goldammer, J.G. Fire occurrence zoning from local to global scale in the European Mediterranean basin: Implications for multi-scale fire management and policy. iForest-Biogeosci. For. 2015, 9, 195–204. [Google Scholar] [CrossRef] [Green Version]
- San Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Libertà, G.; Branco, A.; de Rigo, D.; Ferrari, D.; Maianti, P.; Artés Vivancos, T.; Oom, D.; et al. Forest Fires in Europe, Middle East and North Africa 2018; JRC Technical Report EUR 29856 EN: Ispra, Italy, 2019. [Google Scholar]
- Jiménez-Ruano, A.; Rodrigues Mimbrero, M.; de la Riva Fernández, J. Exploring spatial–temporal dynamics of fire regime features in mainland Spain. Nat. Hazards Earth Syst. Sci. 2017, 17, 1697–1711. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.; González-Hidalgo, J.C.; Peña-Angulo, D.; Jiménez-Ruano, A. Identifying wildfire-prone atmospheric circulation weather types on mainland Spain. Agric. For. Meteorol. 2019, 264, 92–103. [Google Scholar] [CrossRef]
- Rodrigues, M.; Trigo, R.M.; Vega-García, C.; Cardil, A. Identifying large fire weather typologies in the Iberian Peninsula. Agric. For. Meteorol. 2020, 280, 107789. [Google Scholar] [CrossRef]
- Xunta de Galicia. Plan de Prevención y Defensa Contra los Incendios Forestales de Galicia–PLADIGA; Consellería do Medio Rural: Santiago de Compostela, Spain, 2019. [Google Scholar]
- MARM. Cuarto Inventario Forestal Nacional. Galicia; Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2011. [Google Scholar]
- Catchpole, W.R.; Wheeler, C.J. Estimating plant biomass: A review of techniques. Aust. J. Ecol. 1992, 17, 121–131. [Google Scholar] [CrossRef]
- Bonham, C.D. Measurements for Terrestrial Vegetation, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2013. [Google Scholar]
- Pearce, H.G.; Anderson, W.R.; Fogarty, L.G.; Todoroki, C.L.; Anderson, S.A.J. Linear mixed-effects models for estimating biomass and fuel loads in shrublands. Can. J. For. Res. 2010, 40, 2015–2026. [Google Scholar] [CrossRef]
- Pasalodos-Tato, M.; Ruiz-Peinado, R.; del Río, M.; Montero, G. Shrub biomass accumulation and growth rate models to quantify carbon stocks and fluxes for the Mediterranean region. Eur. J. For. Res. 2015, 134, 537–553. [Google Scholar] [CrossRef]
- De Cáceres, M.; Casals, P.; Gabriel, E.; Castro, X. Scaling-up individual-level allometric equations to predict stand-level fuel loading in Mediterranean shrublands. Ann. For. Sci. 2019, 76, 87. [Google Scholar] [CrossRef]
- Keane, R.E.; Burgan, R.; Van Wagtendonk, J. Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. Int. J. Wildland Fire 2001, 10, 301–319. [Google Scholar] [CrossRef]
- Riaño, D.; Chuvieco, E.; Salas, J.; Palacios-Orueta, A.; Bastarrika, A. Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Can. J. For. Res. 2002, 32, 1301–1315. [Google Scholar] [CrossRef]
- Reich, R.M.; Lundquist, J.E.; Bravo, V.A. Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA. Int. J. Wildland Fire 2004, 13, 119–129. [Google Scholar] [CrossRef]
- Mutlu, M.; Popescu, S.C.; Stripling, C.; Spencer, T. Mapping surface fuel models using lidar and multispectral data fusion for fire behavior. Remote Sens. Environ. 2008, 112, 274–285. [Google Scholar] [CrossRef]
- Viana, H.; Aranha, J.; Lopes, D.; Cohen, W.B. Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models. Ecol. Model. 2012, 226, 22–35. [Google Scholar] [CrossRef]
- Riaño, D.; Chuvieco, E.; Ustin, S.L.; Salas, J.; Rodríguez-Pérez, J.R.; Ribeiro, L.M.; Viegas, D.X.; Moreno, J.M.; Fernández, H. Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging. Int. J. Wildland Fire 2007, 16, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Estornell, J.; Ruiz, L.A.; Velázquez-Martí, B.; Fernández-Sarría, A. Estimation of shrub biomass by airborne LiDAR data in small forest stands. For. Ecol. Manag. 2011, 262, 1697–1703. [Google Scholar] [CrossRef] [Green Version]
- Jakubowksi, M.K.; Guo, Q.; Collins, B.; Stephens, S.; Kelly, M. Predicting Surface Fuel Models and Fuel Metrics Using Lidar and CIR Imagery in a Dense, Mountainous Forest. Photogramm. Eng. Remote Sens. 2013, 79, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Greaves, H.E.; Vierling, L.A.; Eitel, J.U.H.; Boelman, N.T.; Magney, T.S.; Prager, C.M.; Griffin, K.L. High-resolution mapping of aboveground shrub biomass in Arctic tundra using airborne lidar and imagery. Remote Sens. Environ. 2016, 184, 361–373. [Google Scholar] [CrossRef]
- Li, A.; Dhakal, S.; Glenn, N.F.; Spaete, L.P.; Shinneman, D.J.; Pilliod, D.S.; Arkle, R.S.; McIlroy, S.K. Lidar aboveground vegetation biomass estimates in shrublands: Prediction, uncertainties and application to coarser scales. Remote Sens. 2017, 9, 903. [Google Scholar] [CrossRef] [Green Version]
- Estornell, J.; Ruiz, L.A.; Velázquez-Martí, B.; Hermosilla, T. Analysis of the factors affecting LiDAR DTM accuracy. Int. J. Digit. Earth 2011, 4, 521–538. [Google Scholar] [CrossRef] [Green Version]
- Glenn, N.F.; Spaete, L.P.; Sankey, T.T.; Derryberry, D.R.; Hardegree, S.P.; Mitchell, J.J. Errors in LiDAR-derived shrub height and crown area on sloped terrain. J. Arid Environ. 2011, 75, 377–382. [Google Scholar] [CrossRef]
- Mitchell, J.J.; Glenn, N.F.; Sankey, T.T.; Derryberry, D.R.; Anderson, M.O.; Hruska, R.C. Small-footprint LiDAR estimations of sagebrush canopy characteristics. Photogramm. Eng. Remote Sens. 2011, 77, 521–530. [Google Scholar] [CrossRef]
- Vierling, L.A.; Xu, Y.; Eitel, J.U.H.; Oldow, J.S. Shrub characterization using terrestrial laser scanning and implications for airborne LiDAR assessment. Can. J. Remote Sens. 2013, 38, 709–722. [Google Scholar] [CrossRef]
- Hopkinson, C.; Chasmer, L.; Young-Pow, C.; Treitz, P. Assessing forest metrics with a ground-based scanning lidar. Can. J. For. Res. 2004, 34, 573–583. [Google Scholar] [CrossRef] [Green Version]
- Astrup, R.; Ducey, M.J.; Granhus, A.; Ritter, T.; von Lüpke, N. Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode. Can. J. For. Res. 2014, 44, 666–676. [Google Scholar] [CrossRef]
- Abegg, M.; Kükenbrink, D.; Zell, J.; Schaepman, M.E.; Morsdorf, F. Terrestrial laser scanning for forest inventories—tree diameter distribution and scanner location impact on occlusion. Forests 2017, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Feng, Z.; Chen, P.; Khan, T.U.; Lian, Y. Nondestructive Estimation of the Above-Ground Biomass of Multiple Tree Species in Boreal Forests of China Using Terrestrial Laser Scanning. Forests 2019, 10, 936. [Google Scholar] [CrossRef] [Green Version]
- Loudermilk, E.L.; Hiers, J.K.; O’Brien, J.J.; Mitchell, R.J.; Singhania, A.; Fernandez, J.C.; Slatton, K.C. Ground-based LIDAR: A novel approach to quantify fine-scale fuelbed characteristics. Int. J. Wildland Fire 2009, 18, 676–685. [Google Scholar] [CrossRef] [Green Version]
- Olsoy, P.J.; Glenn, N.F.; Clark, P.E.; Derryberry, D.R. Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens. 2014, 88, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Rowell, E.M.; Seielstad, C.A.; Ottmar, R.D. Development and validation of fuel height models for terrestrial lidar—RxCADRE 2012. Int. J. Wildland Fire 2016, 25, 38–47. [Google Scholar] [CrossRef]
- Owers, C.J.; Rogers, K.; Woodroffe, C.D. Terrestrial laser scanning to quantify above-ground biomass of structurally complex coastal wetland vegetation. Estuar. Coast. Shelf Sci. 2018, 204, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Lovell, J.L.; Jupp, D.L.B.; Culvenor, D.S.; Coops, N.C. Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Can. J. Remote Sens. 2003, 29, 607–622. [Google Scholar] [CrossRef]
- Li, A.; Glenn, N.F.; Olsoy, P.J.; Mitchell, J.J.; Shrestha, R. Aboveground biomass estimates of sagebrush using terrestrial and airborne LiDAR data in a dryland ecosystem. Agric. For. Meteorol. 2015, 213, 138–147. [Google Scholar] [CrossRef]
- Liu, L.; Pang, Y.; Li, Z.; Si, L.; Liao, S. Combining airborne and terrestrial laser scanning technologies to measure forest understorey volume. Forests 2017, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Hudak, A.T.; Kato, A.; Bright, B.C.; Loudermilk, E.L.; Hawley, C.; Restaino, J.C.; Ottmar, R.D.; Prata, G.A.; Cabo, C.; Prichard, S.J.; et al. Towards spatially explicit quantification of pre- and post-fire fuels and fuel consumption from traditional and point cloud measurements. For. Sci. 2020, 66, 428–442. [Google Scholar] [CrossRef]
- Crespo-Peremarch, P.; Fournier, R.A.; Nguyen, V.T.; van Lier, O.R.; Ruiz, L.Á. A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data. For. Ecol. Manag. 2020, 473, 118268. [Google Scholar] [CrossRef]
- Aicardi, I.; Dabove, P.; Lingua, A.M.; Piras, M. Integration between TLS and UAV photogrammetry techniques for forestry applications. iForest-Biogeosci. For. 2017, 10, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Warfield, A.D.; Leon, J.X. Estimating Mangrove Forest Volume Using Terrestrial Laser Scanning and UAV-Derived Structure-from-Motion. Drones 2019, 3, 32. [Google Scholar] [CrossRef] [Green Version]
- LaRue, E.A.; Atkins, J.W.; Dahlin, K.; Fahey, R.; Fei, S.; Gough, C.; Hardiman, B.S. Linking Landsat to terrestrial LiDAR: Vegetation metrics of forest greenness are correlated with canopy structural complexity. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 420–427. [Google Scholar] [CrossRef]
- Greaves, H.E.; Vierling, L.A.; Eitel, J.U.H.; Boelman, N.T.; Troy, S.T.; Magney, T.; Prager, C.M.; Griffin, K.L. Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR. Remote Sens. Environ. 2015, 164, 26–35. [Google Scholar] [CrossRef]
- Rowell, E.; Loudermilk, E.L.; Hawley, C.; Pokswinski, S.; Seielstad, C.; Queen, L.L.; O’Brien, J.J.; Hudak, A.T.; Goodrick, S.; Hiers, J.K. Coupling terrestrial laser scanning with 3D fuel biomass sampling for advancing wildland fuels characterization. For. Ecol. Manag. 2020, 462, 117945. [Google Scholar] [CrossRef]
- Hawley, C.M.; Loudermilk, E.L.; Rowell, E.M.; Pokswinski, S. A novel approach to fuel biomass sampling for 3D fuel characterization. MethodsX 2018, 5, 1597–1604. [Google Scholar] [CrossRef]
- Mandel, J.; Beezley, J.D.; Kochanski, A.K. Coupled atmosphere–wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model Dev. 2011, 4, 591–610. [Google Scholar] [CrossRef] [Green Version]
- Mandel, J.; Amram, S.; Beezley, J.D.; Kelman, G.; Kochanski, A.K.; Kondratenko, V.Y.; Lynn, B.H.; Regev, B.; Vejmelka, M. Recent advances and applications of WRF-SFIRE. Nat. Hazards Earth Syst. Sci. 2014, 14, 2829–2845. [Google Scholar] [CrossRef] [Green Version]
- Mell, W.; Jenkins, M.A.; Gould, J.; Cheney, P. A physics-based approach to modeling grassland fires. Int. J. Wildland Fire 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Mell, W.; Maranghides, A.; McDermott, R.; Manzello, S.L. Numerical simulation and experiments of burning Douglas-fir trees. Combust. Flame 2009, 156, 2023–2041. [Google Scholar] [CrossRef]
- Linn, R.R.; Reisner, J.; Colmann, J.J.; Winterkamp, J. Studying wildfire behavior using FIRETEC. Int. J. Wildland Fire 2002, 11, 233–246. [Google Scholar] [CrossRef]
- Linn, R.R.; Winterkamp, J.; Colman, J.J.; Edminster, C.; Bailey, J.D. Modeling interactions between fire and atmosphere in discrete element fuelbeds. Int. J. Wildland Fire 2005, 14, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Hudak, A.; Prichard, S.; Keane, R.; Loudermilk, L.; Parsons, R.; Seielstad, C.; Rowell, E.; Skowronski, N. Hierarchical 3D Fuel and Consumption Maps to Support Physics-Based Fire Modeling; Joint Fire Science Program Project 16-4-01-15 Final Report; Joint Fire Science Program: Moscow, ID, USA, 2017. [Google Scholar]
- Finney, M.A. FARSITE: Fire Area Simulator–Model Development and Evaluation; Research Paper RMRS-RP-4 Revised; United States Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2004.
- Finney, M.A. An overview of FlamMap fire modeling capabilities. In Fuels Management—How to Measure Success, Proceedings of the Rocky Mountain Research Station, Portland, OR, USA, 28–30 March 2006; United States Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006. [Google Scholar]
- MARM. Mapa Forestal de España. Escala 1:25.000; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2011.
- MMA. Mapa Forestal Nacional. Escala 1:50.000; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2006.
- Canfield, R.H. Application of the line interception method in sampling range vegetation. J. For. 1941, 39, 388–394. [Google Scholar]
- Arellano-Pérez, S. Modelos de Combustibles Forestales de Galicia. Master’s Thesis, Universidad de Santiago de Compostela, Lugo, Spain, 2011. [Google Scholar]
- Bliss, C. The Transformation of Percentages for Use in the Analysis of Variance. Ohio J. Sci. 1938, 38, 9–12. [Google Scholar]
- Cao, Q.V.; Burkhart, H.E.; Lemin, R.C. Diameter Distributions and Yields of Thinned Loblolly Pine Plantations; FWS 1-82; School of Forestry and Wildlife Resources, Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 1982. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 16 March 2020).
- Adler, D.; Murdoch, D.; Nenadic, O.; Urbanek, S.; Chen, M.; Gebhardt, A.; Bolker, B.; Csardi, G.; Strzelecki, A.; Senger, A. rgl: 3D Visualization Using OpenGL. R package version 0.100.54. Available online: https://CRAN.R-project.org/package=rgl (accessed on 16 March 2020).
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071). R package version 1.7-2. Available online: https://CRAN.R-project.org/package=e1071 (accessed on 16 March 2020).
- Tang, S.; Li, Y.; Wang, Y. Simultaneous equations, error-invariable models, and model integration in systems ecology. Ecol. Model. 2001, 142, 285–294. [Google Scholar] [CrossRef]
- Tang, S.; Wang, Y. A parameter estimation program for the error-in-variable model. Ecol. Model. 2002, 156, 225–236. [Google Scholar] [CrossRef]
- Myers, R.H. Classical and Modern Regression with Applications, 2nd ed.; Duxbury Press: Pacific Grove, CA, USA, 1990. [Google Scholar]
- White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 1980, 48, 817–838. [Google Scholar] [CrossRef]
- Cailliez, F. Estimación del Volumen Forestal y Predicción del Rendimiento; FAO: Roma, Italy, 1980. [Google Scholar]
- Harvey, A.C. Estimating regression models with multiplicative heteroscedasticity. Econometrica 1976, 44, 461–465. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/ETS® 9.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Ku, N.; Popescu, S.C.; Ansley, R.J.; Perotto-Baldivieso, H.L.; Filippi, A.M. Assessment of available rangeland woody plant biomass with a terrestrial lidar system. Photogramm. Eng. Remote Sens. 2012, 78, 349–361. [Google Scholar] [CrossRef]
- Anderson, K.E.; Glenn, N.F.; Spaete, L.P.; Shinneman, D.J.; Pilliod, D.S.; Arkle, R.S.; McIlroy, S.K.; Derryberry, D.R. Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial lidar and machine learning. Ecol. Indic. 2018, 84, 793–802. [Google Scholar] [CrossRef]
- Xu, K.; Su, Y.; Liu, J.; Hu, T.; Jin, S.; Ma, Q.; Zhai, Q.; Wang, R.; Zhang, J.; Li, Y.; et al. Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data. Ecol. Indic. 2020, 108, 105747. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, X.; Yebra, M.; Harris, S.; Tapper, N. Strata-based forest fuel classification for wildfire hazard assessment using terrestrial LiDAR. J. Appl. Remote Sens. 2016, 10, 046025. [Google Scholar] [CrossRef] [Green Version]
- Newnham, G.J.; Armston, J.D.; Calders, K.; Disney, M.I.; Lovell, J.L.; Schaaf, C.B.; Strahler, A.H.; Danson, F.M. Terrestrial laser scanning for plot-scale forest measurement. Curr. For. Rep. 2015, 1, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: A comparison of indices based on liquid water and chlorophyll absorption features. Remote Sens. Environ. 2003, 84, 526–537. [Google Scholar] [CrossRef]
- Pimont, F.; Dupuy, J.L.; Rigolot, E.; Prat, V.; Piboule, A. Estimating Leaf Bulk Density Distribution in a Tree Canopy Using Terrestrial LiDAR and a Straightforward Calibration Procedure. Remote Sens. 2015, 7, 7995–8018. [Google Scholar] [CrossRef] [Green Version]
- Greaves, H.E.; Vierling, L.E.; Eitel, J.U.H.; Boelman, N.T.; Magney, T.S.; Prager, C.M.; Griffin, K.L. Applying terrestrial lidar for evaluation and calibration of airborne lidar-derived shrub biomass estimates in Arctic tundra. Remote Sens. Lett. 2017, 8, 175–184. [Google Scholar] [CrossRef]
Shrub Community | No. of Plots | Code | Dominant Shrub Species | Secondary Species |
---|---|---|---|---|
High heath | 15 | Ea | Erica australis L. | Pterospartum tridentatum, Halimium alyssoides (Lam.) Greuter, Erica arborea L., Ulex europaeus |
Prickled broom | 10 | Pt | Pterospartum tridentatum (L) Willk. | Erica umbellata Loefle ex L., Halimium alyssoides, Erica australis L., Ulex gallii, Ulex europaeus, Pteridium aquilinum (L.) Kuhn |
High gorse | 15 | Ue | Ulex europaeus L. | Ulex gallii, Erica umbellata, Pteridium aquilinum, Pterospartum tridentatum, |
Low gorse | 15 | Ug | Ulex gallii Planch./ Ulex minor Roth. | Ulex europaeus, Erica umbellata, Daboecia cantábrica (Huds.) K.Koch, Pterospartum tridentatum, Pteridium aquilinum |
Variable | Statistic | Ea | Pt | Ue | Ug |
---|---|---|---|---|---|
n | 15 | 10 | 15 | 15 | |
Mean (std. dev.) | 84.91 (31.48) | 90.37 (33.94) | 108.18 (19.95) | 65.43 (21.77) | |
(cm) | Range | 38.24–150.76 | 42.86–151.05 | 59.71–113.10 | 13.90–109.33 |
CovShr | Mean (std. dev.) | 99.80 (0.52) | 99.34 (1.20) | 99.64 (0.77) | 98.32 (3.17) |
(%) | Range | 98.15–100 | 96.3–100 | 97.69–100 | 87.5–100 |
Mean (std. dev.) | 2.38 (1.17) | 4.03 (1.19) | 5.49 (2.11) | 4.56 (0.98) | |
(cm) | Range | 0.78–5.60 | 2.02–5.86 | 3.08–10.55 | 2.40–5.81 |
WShr_G1_dead | Mean (std. dev.) | 0.41 (0.12) | 0.84 (0.17) | 0.89 (0.09) | 0.75 (0.18) |
(kg m−2) | Range | 0.20–0.63 | 0.58–1.01 | 0.65–1.00 | 0.20–1.00 |
WShr_G1_live | Mean (std. dev.) | 1.19 (0.23) | 1.47 (0.25) | 1.40 (0.07) | 1.53 (0.23) |
(kg m−2) | Range | 0.76–1.53 | 1.08–1.73 | 1.18–1.48 | 0.72–1.69 |
WShr_G1 | Mean (std. dev.) | 1.60 (0.36) | 2.31 (0.42) | 2.29 (0.16) | 2.28 (0.41) |
(kg m−2) | Range | 0.96–2.16 | 1.66–2.74 | 1.83–2.47 | 0.92–2.69 |
WShr_G23 | Mean (std. dev.) | 0.48 (0.36) | 0.62 (0.40) | 1.17 (0.31) | 0.37 (0.28) |
(kg m−2) | Range | 0.06–1.38 | 0.12–1.37 | 0.46–1.58 | 0–1.09 |
WShr | Mean (std. dev.) | 2.08 (0.71) | 2.93 (0.80) | 3.47 (0.47) | 2.65 (0.63) |
(kg m−2) | Range | 1.02–3.54 | 1.77–3.99 | 2.29–4.05 | 0.93–3.78 |
WLitt | Mean (std. dev.) | 1.00 (0.36) | 1.38 (0.49) | 1.89 (0.64) | 1.70 (0.35) |
(kg m−2) | Range | 0.45–1.91 | 0.71–2.25 | 1.14–3.40 | 0.93–2.14 |
WShr+Litt | Mean (std. dev.) | 3.08 (0.99) | 4.31 (1.11) | 5.35 (1.02) | 4.35 (0.84) |
(kg m−2) | Range | 1.70–5.45 | 2.54–6.24 | 3.98–7.45 | 2.51–5.75 |
Metric | Description |
---|---|
hmax (cm) | maximum |
hmean (cm) | mean |
hmode (cm) | mode |
hmedian (cm) | median |
hSD (cm) | standard deviation |
hskw | skewness |
hkurt | kurtosis |
hID (cm) | interquartile distance |
h01, h05, h10, h15, h20,…, h90, h95, h99 (cm) | percentiles |
h25 and h75 (cm) | first and third quartiles |
IQR (cm) | Interquartile range (h75–h25) |
PAhmean | ratio of laser returns above hmean to total laser returns |
PAhmode | ratio of laser returns above hmode to total laser returns |
Equation | Expression | Par. | Estimate | Approx. Std. Error | RMSE (kg m−2) | R2 |
---|---|---|---|---|---|---|
No. 1 | a00 | 0.2954 | 0.0447 | 0.5796 | 0.8033 | |
a01 | −0.0860 | 0.0138 | ||||
a1 | 0.6416 | 0.0351 | ||||
a2 | 0.1397 | 0.0506 | ||||
No. 2 | b1 | 0.7205 | 0.1964 | 0.2630 | 0.9018 | |
No. 3 | b2 | −0.8301 | 0.1860 | 0.4584 | 0.4080 | |
No. 4 | c00 | 4.6139 | 0.5061 | 0.1957 | 0.8263 | |
c01 | 0.3103 | 0.0479 | ||||
No. 5 | c02 | 0.7254 | 0.0807 | 0.1154 | 0.9392 | |
c1 | −0.9864 | 0.1255 | ||||
No. 6 | d00 | 0.9106 | 0.1777 | 0.0820 | 0.8848 | |
d01 | 0.2900 | 0.0347 | ||||
No. 7 | d1 | −0.1084 | 0.0451 | 0.0860 | 0.8794 |
Variable | Expression | Par. | Estimate | Approx. Std. Error | RMSE | R2 |
---|---|---|---|---|---|---|
CovShr (%) | a0 | −0.4742 | 0.1707 | 1.1226% | 0.6626 | |
a1 | −0.0967 | 0.0145 | ||||
(cm) | b0 | −9.8958 | 4.2458 | 9.2027 cm | 0.9175 | |
b1 | 0.8080 | 0.0430 | ||||
b2 | 2.5762 | 0.5859 | ||||
(cm) | c0 | −2.8156 | 1.2422 | 1.5190 cm | 0.3907 | |
c1 | 1.9338 | 0.9432 | ||||
c2 | 7.9632 | 2.0776 | ||||
c3 | 0.1061 | 0.0204 |
Variable | Direct Estimation (DE) Approach | Indirect Estimation (IE) Approach | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (kg m−2) | RMSE (%) | R2 | RMSE (kg m−2) | RMSE (%) | |||||
WShr+Litt | 0.8033 | 0.5796 | −0.0183 | 0.4489 | 13.58 | 0.7642 | 0.6347 | 0.3339 | 0.5242 | 14.87 |
WShr | 0.9018 | 0.2630 | −0.0193 | 0.2121 | 9.50 | 0.7666 | 0.4056 | 0.3308 | 0.3393 | 14.65 |
WLitt | 0.4080 | 0.4584 | 0.0010 | 0.3572 | 30.55 | 0.4378 | 0.4467 | 0.0031 | 0.3482 | 29.78 |
WShr_G23 | 0.8263 | 0.1957 | −0.0160 | 0.1440 | 29.51 | 0.8710 | 0.1687 | 0.0888 | 0.1235 | 25.44 |
WShr_G1 | 0.9392 | 0.1154 | −0.0032 | 0.0958 | 5.48 | 0.6732 | 0.2676 | 0.2420 | 0.2444 | 12.71 |
WShr_G1_dead | 0.8848 | 0.0820 | −0.0090 | 0.0654 | 11.47 | 0.8371 | 0.0975 | 0.0821 | 0.0844 | 13.63 |
WShr_G1_live | 0.8794 | 0.0860 | 0.0058 | 0.0640 | 6.19 | 0.5103 | 0.1734 | 0.1599 | 0.1602 | 12.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Rego, C.; Arellano-Pérez, S.; Cabo, C.; Ordoñez, C.; Álvarez-González, J.G.; Díaz-Varela, R.A.; Ruiz-González, A.D. Estimating Fuel Loads and Structural Characteristics of Shrub Communities by Using Terrestrial Laser Scanning. Remote Sens. 2020, 12, 3704. https://doi.org/10.3390/rs12223704
Alonso-Rego C, Arellano-Pérez S, Cabo C, Ordoñez C, Álvarez-González JG, Díaz-Varela RA, Ruiz-González AD. Estimating Fuel Loads and Structural Characteristics of Shrub Communities by Using Terrestrial Laser Scanning. Remote Sensing. 2020; 12(22):3704. https://doi.org/10.3390/rs12223704
Chicago/Turabian StyleAlonso-Rego, Cecilia, Stéfano Arellano-Pérez, Carlos Cabo, Celestino Ordoñez, Juan Gabriel Álvarez-González, Ramón Alberto Díaz-Varela, and Ana Daría Ruiz-González. 2020. "Estimating Fuel Loads and Structural Characteristics of Shrub Communities by Using Terrestrial Laser Scanning" Remote Sensing 12, no. 22: 3704. https://doi.org/10.3390/rs12223704
APA StyleAlonso-Rego, C., Arellano-Pérez, S., Cabo, C., Ordoñez, C., Álvarez-González, J. G., Díaz-Varela, R. A., & Ruiz-González, A. D. (2020). Estimating Fuel Loads and Structural Characteristics of Shrub Communities by Using Terrestrial Laser Scanning. Remote Sensing, 12(22), 3704. https://doi.org/10.3390/rs12223704