Estimating Fuel Loads and Structural Characteristics of Shrub Communities by Using Terrestrial Laser Scanning
Abstract
1. Introduction
2. Materials and Methods
2.1. Shrub Communities and Plots
2.2. Field Inventories and Determination of Fuel Characteristics
2.3. TLS Data
2.4. Models for Estimating Fuel Loads
- An equation for estimating total shrub and litter fuel load
- Two allometric equations to estimate total shrub load () and litter load (): and ; therefore, considering the ratio between and
- Two allometric equations to estimate coarse shrub load () and fine shrub load (): and ; therefore, developing the ratio between and in a similar way to step 2
- Finally, disaggregation of Equation (5) in a similar way produced two allometric equations for discriminating between dead fine () and live fine fuel loads ():
3. Results and Discussion
3.1. The Direct Estimation (DE) Approach
3.2. The Indirect Estimation (IE) Approach
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Keane, R.E. Describing wildland surface fuel loading for fire management: A review of approaches, methods and systems. Int. J. Wildland Fire 2013, 22, 51–62. [Google Scholar] [CrossRef]
- Keane, R.E. Wildland Fuel Fundamentals and Applications; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Chandler, C.; Cheney, P.; Thomas, P.; Trabaud, L.; Williams, D. Fire in Forestry, Volume 1: Forest Fire Behavior and Effects; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1983. [Google Scholar]
- Pyne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to Widland Fire, 2nd ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Finney, M.A.; Seli, R.C.; McHugh, C.W.; Ager, A.A.; Bahro, B.; Agee, J. Simulation of long-term landscape-level fuel treatment effects on large wildfires. Int. J. Wildland Fire 2007, 16, 712–727. [Google Scholar] [CrossRef]
- Ager, A.A.; Vaillant, N.M.; Finney, M.A. Integrating Fire Behavior Models and Geospatial Analysis for Wildland Fire Risk Assessment and Fuel Management Planning. J. Combust. 2011, 2011, 572452. [Google Scholar] [CrossRef]
- Jiménez, E.; Vega, J.A.; Ruiz-González, A.D.; Guijarro, M.; Alvarez-González, J.G.; Madrigal, J.; Cuiñas, P.; Hernando, C.; Fernández-Alonso, J.M. Carbon emissions and vertical pattern of canopy fuel consumption in three Pinus pinaster Ait. active crown fires in Galicia (NW Spain). Ecol. Eng. 2013, 54, 202–209. [Google Scholar] [CrossRef]
- Lasslop, G.; Kloster, S. Impact of fuel variability on wildfire emission estimates. Atmos. Environ. 2015, 121, 93–102. [Google Scholar] [CrossRef][Green Version]
- Possell, M.; Jenkins, M.; Bell, T.L.; Adams, M.A. Emissions from prescribed fires in temperate forest in south-east Australia: Implications for carbon accounting. Biogeosciences 2015, 12, 257–268. [Google Scholar] [CrossRef]
- Restaino, J. Fuel Loading. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Manzello, S., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Arellano, S.; Vega, J.A.; Ruiz-González, A.D.; Arellano, A.; Álvarez-González, J.G.; Vega-Nieva, D.; Pérez, E. Foto-guía de Combustibles Forestales de Galicia y Comportamiento del Fuego Asociado; Andavira: Santiago de Compostela, Spain, 2017. [Google Scholar]
- Koutsias, N.; Allgöwer, B.; Kalabokidis, K.; Mallinis, G.; Balatsos, P.; Goldammer, J.G. Fire occurrence zoning from local to global scale in the European Mediterranean basin: Implications for multi-scale fire management and policy. iForest-Biogeosci. For. 2015, 9, 195–204. [Google Scholar] [CrossRef]
- San Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Libertà, G.; Branco, A.; de Rigo, D.; Ferrari, D.; Maianti, P.; Artés Vivancos, T.; Oom, D.; et al. Forest Fires in Europe, Middle East and North Africa 2018; JRC Technical Report EUR 29856 EN: Ispra, Italy, 2019. [Google Scholar]
- Jiménez-Ruano, A.; Rodrigues Mimbrero, M.; de la Riva Fernández, J. Exploring spatial–temporal dynamics of fire regime features in mainland Spain. Nat. Hazards Earth Syst. Sci. 2017, 17, 1697–1711. [Google Scholar] [CrossRef]
- Rodrigues, M.; González-Hidalgo, J.C.; Peña-Angulo, D.; Jiménez-Ruano, A. Identifying wildfire-prone atmospheric circulation weather types on mainland Spain. Agric. For. Meteorol. 2019, 264, 92–103. [Google Scholar] [CrossRef]
- Rodrigues, M.; Trigo, R.M.; Vega-García, C.; Cardil, A. Identifying large fire weather typologies in the Iberian Peninsula. Agric. For. Meteorol. 2020, 280, 107789. [Google Scholar] [CrossRef]
- Xunta de Galicia. Plan de Prevención y Defensa Contra los Incendios Forestales de Galicia–PLADIGA; Consellería do Medio Rural: Santiago de Compostela, Spain, 2019. [Google Scholar]
- MARM. Cuarto Inventario Forestal Nacional. Galicia; Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2011. [Google Scholar]
- Catchpole, W.R.; Wheeler, C.J. Estimating plant biomass: A review of techniques. Aust. J. Ecol. 1992, 17, 121–131. [Google Scholar] [CrossRef]
- Bonham, C.D. Measurements for Terrestrial Vegetation, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2013. [Google Scholar]
- Pearce, H.G.; Anderson, W.R.; Fogarty, L.G.; Todoroki, C.L.; Anderson, S.A.J. Linear mixed-effects models for estimating biomass and fuel loads in shrublands. Can. J. For. Res. 2010, 40, 2015–2026. [Google Scholar] [CrossRef]
- Pasalodos-Tato, M.; Ruiz-Peinado, R.; del Río, M.; Montero, G. Shrub biomass accumulation and growth rate models to quantify carbon stocks and fluxes for the Mediterranean region. Eur. J. For. Res. 2015, 134, 537–553. [Google Scholar] [CrossRef]
- De Cáceres, M.; Casals, P.; Gabriel, E.; Castro, X. Scaling-up individual-level allometric equations to predict stand-level fuel loading in Mediterranean shrublands. Ann. For. Sci. 2019, 76, 87. [Google Scholar] [CrossRef]
- Keane, R.E.; Burgan, R.; Van Wagtendonk, J. Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. Int. J. Wildland Fire 2001, 10, 301–319. [Google Scholar] [CrossRef]
- Riaño, D.; Chuvieco, E.; Salas, J.; Palacios-Orueta, A.; Bastarrika, A. Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Can. J. For. Res. 2002, 32, 1301–1315. [Google Scholar] [CrossRef]
- Reich, R.M.; Lundquist, J.E.; Bravo, V.A. Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA. Int. J. Wildland Fire 2004, 13, 119–129. [Google Scholar] [CrossRef]
- Mutlu, M.; Popescu, S.C.; Stripling, C.; Spencer, T. Mapping surface fuel models using lidar and multispectral data fusion for fire behavior. Remote Sens. Environ. 2008, 112, 274–285. [Google Scholar] [CrossRef]
- Viana, H.; Aranha, J.; Lopes, D.; Cohen, W.B. Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models. Ecol. Model. 2012, 226, 22–35. [Google Scholar] [CrossRef]
- Riaño, D.; Chuvieco, E.; Ustin, S.L.; Salas, J.; Rodríguez-Pérez, J.R.; Ribeiro, L.M.; Viegas, D.X.; Moreno, J.M.; Fernández, H. Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging. Int. J. Wildland Fire 2007, 16, 341–348. [Google Scholar] [CrossRef]
- Estornell, J.; Ruiz, L.A.; Velázquez-Martí, B.; Fernández-Sarría, A. Estimation of shrub biomass by airborne LiDAR data in small forest stands. For. Ecol. Manag. 2011, 262, 1697–1703. [Google Scholar] [CrossRef]
- Jakubowksi, M.K.; Guo, Q.; Collins, B.; Stephens, S.; Kelly, M. Predicting Surface Fuel Models and Fuel Metrics Using Lidar and CIR Imagery in a Dense, Mountainous Forest. Photogramm. Eng. Remote Sens. 2013, 79, 37–49. [Google Scholar] [CrossRef]
- Greaves, H.E.; Vierling, L.A.; Eitel, J.U.H.; Boelman, N.T.; Magney, T.S.; Prager, C.M.; Griffin, K.L. High-resolution mapping of aboveground shrub biomass in Arctic tundra using airborne lidar and imagery. Remote Sens. Environ. 2016, 184, 361–373. [Google Scholar] [CrossRef]
- Li, A.; Dhakal, S.; Glenn, N.F.; Spaete, L.P.; Shinneman, D.J.; Pilliod, D.S.; Arkle, R.S.; McIlroy, S.K. Lidar aboveground vegetation biomass estimates in shrublands: Prediction, uncertainties and application to coarser scales. Remote Sens. 2017, 9, 903. [Google Scholar] [CrossRef]
- Estornell, J.; Ruiz, L.A.; Velázquez-Martí, B.; Hermosilla, T. Analysis of the factors affecting LiDAR DTM accuracy. Int. J. Digit. Earth 2011, 4, 521–538. [Google Scholar] [CrossRef]
- Glenn, N.F.; Spaete, L.P.; Sankey, T.T.; Derryberry, D.R.; Hardegree, S.P.; Mitchell, J.J. Errors in LiDAR-derived shrub height and crown area on sloped terrain. J. Arid Environ. 2011, 75, 377–382. [Google Scholar] [CrossRef]
- Mitchell, J.J.; Glenn, N.F.; Sankey, T.T.; Derryberry, D.R.; Anderson, M.O.; Hruska, R.C. Small-footprint LiDAR estimations of sagebrush canopy characteristics. Photogramm. Eng. Remote Sens. 2011, 77, 521–530. [Google Scholar] [CrossRef]
- Vierling, L.A.; Xu, Y.; Eitel, J.U.H.; Oldow, J.S. Shrub characterization using terrestrial laser scanning and implications for airborne LiDAR assessment. Can. J. Remote Sens. 2013, 38, 709–722. [Google Scholar] [CrossRef]
- Hopkinson, C.; Chasmer, L.; Young-Pow, C.; Treitz, P. Assessing forest metrics with a ground-based scanning lidar. Can. J. For. Res. 2004, 34, 573–583. [Google Scholar] [CrossRef]
- Astrup, R.; Ducey, M.J.; Granhus, A.; Ritter, T.; von Lüpke, N. Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode. Can. J. For. Res. 2014, 44, 666–676. [Google Scholar] [CrossRef]
- Abegg, M.; Kükenbrink, D.; Zell, J.; Schaepman, M.E.; Morsdorf, F. Terrestrial laser scanning for forest inventories—tree diameter distribution and scanner location impact on occlusion. Forests 2017, 8, 184. [Google Scholar] [CrossRef]
- Chen, S.; Feng, Z.; Chen, P.; Khan, T.U.; Lian, Y. Nondestructive Estimation of the Above-Ground Biomass of Multiple Tree Species in Boreal Forests of China Using Terrestrial Laser Scanning. Forests 2019, 10, 936. [Google Scholar] [CrossRef]
- Loudermilk, E.L.; Hiers, J.K.; O’Brien, J.J.; Mitchell, R.J.; Singhania, A.; Fernandez, J.C.; Slatton, K.C. Ground-based LIDAR: A novel approach to quantify fine-scale fuelbed characteristics. Int. J. Wildland Fire 2009, 18, 676–685. [Google Scholar] [CrossRef]
- Olsoy, P.J.; Glenn, N.F.; Clark, P.E.; Derryberry, D.R. Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens. 2014, 88, 166–173. [Google Scholar] [CrossRef]
- Rowell, E.M.; Seielstad, C.A.; Ottmar, R.D. Development and validation of fuel height models for terrestrial lidar—RxCADRE 2012. Int. J. Wildland Fire 2016, 25, 38–47. [Google Scholar] [CrossRef]
- Owers, C.J.; Rogers, K.; Woodroffe, C.D. Terrestrial laser scanning to quantify above-ground biomass of structurally complex coastal wetland vegetation. Estuar. Coast. Shelf Sci. 2018, 204, 164–176. [Google Scholar] [CrossRef]
- Lovell, J.L.; Jupp, D.L.B.; Culvenor, D.S.; Coops, N.C. Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Can. J. Remote Sens. 2003, 29, 607–622. [Google Scholar] [CrossRef]
- Li, A.; Glenn, N.F.; Olsoy, P.J.; Mitchell, J.J.; Shrestha, R. Aboveground biomass estimates of sagebrush using terrestrial and airborne LiDAR data in a dryland ecosystem. Agric. For. Meteorol. 2015, 213, 138–147. [Google Scholar] [CrossRef]
- Liu, L.; Pang, Y.; Li, Z.; Si, L.; Liao, S. Combining airborne and terrestrial laser scanning technologies to measure forest understorey volume. Forests 2017, 8, 111. [Google Scholar] [CrossRef]
- Hudak, A.T.; Kato, A.; Bright, B.C.; Loudermilk, E.L.; Hawley, C.; Restaino, J.C.; Ottmar, R.D.; Prata, G.A.; Cabo, C.; Prichard, S.J.; et al. Towards spatially explicit quantification of pre- and post-fire fuels and fuel consumption from traditional and point cloud measurements. For. Sci. 2020, 66, 428–442. [Google Scholar] [CrossRef]
- Crespo-Peremarch, P.; Fournier, R.A.; Nguyen, V.T.; van Lier, O.R.; Ruiz, L.Á. A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data. For. Ecol. Manag. 2020, 473, 118268. [Google Scholar] [CrossRef]
- Aicardi, I.; Dabove, P.; Lingua, A.M.; Piras, M. Integration between TLS and UAV photogrammetry techniques for forestry applications. iForest-Biogeosci. For. 2017, 10, 41–47. [Google Scholar] [CrossRef]
- Warfield, A.D.; Leon, J.X. Estimating Mangrove Forest Volume Using Terrestrial Laser Scanning and UAV-Derived Structure-from-Motion. Drones 2019, 3, 32. [Google Scholar] [CrossRef]
- LaRue, E.A.; Atkins, J.W.; Dahlin, K.; Fahey, R.; Fei, S.; Gough, C.; Hardiman, B.S. Linking Landsat to terrestrial LiDAR: Vegetation metrics of forest greenness are correlated with canopy structural complexity. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 420–427. [Google Scholar] [CrossRef]
- Greaves, H.E.; Vierling, L.A.; Eitel, J.U.H.; Boelman, N.T.; Troy, S.T.; Magney, T.; Prager, C.M.; Griffin, K.L. Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR. Remote Sens. Environ. 2015, 164, 26–35. [Google Scholar] [CrossRef]
- Rowell, E.; Loudermilk, E.L.; Hawley, C.; Pokswinski, S.; Seielstad, C.; Queen, L.L.; O’Brien, J.J.; Hudak, A.T.; Goodrick, S.; Hiers, J.K. Coupling terrestrial laser scanning with 3D fuel biomass sampling for advancing wildland fuels characterization. For. Ecol. Manag. 2020, 462, 117945. [Google Scholar] [CrossRef]
- Hawley, C.M.; Loudermilk, E.L.; Rowell, E.M.; Pokswinski, S. A novel approach to fuel biomass sampling for 3D fuel characterization. MethodsX 2018, 5, 1597–1604. [Google Scholar] [CrossRef]
- Mandel, J.; Beezley, J.D.; Kochanski, A.K. Coupled atmosphere–wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model Dev. 2011, 4, 591–610. [Google Scholar] [CrossRef]
- Mandel, J.; Amram, S.; Beezley, J.D.; Kelman, G.; Kochanski, A.K.; Kondratenko, V.Y.; Lynn, B.H.; Regev, B.; Vejmelka, M. Recent advances and applications of WRF-SFIRE. Nat. Hazards Earth Syst. Sci. 2014, 14, 2829–2845. [Google Scholar] [CrossRef]
- Mell, W.; Jenkins, M.A.; Gould, J.; Cheney, P. A physics-based approach to modeling grassland fires. Int. J. Wildland Fire 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Mell, W.; Maranghides, A.; McDermott, R.; Manzello, S.L. Numerical simulation and experiments of burning Douglas-fir trees. Combust. Flame 2009, 156, 2023–2041. [Google Scholar] [CrossRef]
- Linn, R.R.; Reisner, J.; Colmann, J.J.; Winterkamp, J. Studying wildfire behavior using FIRETEC. Int. J. Wildland Fire 2002, 11, 233–246. [Google Scholar] [CrossRef]
- Linn, R.R.; Winterkamp, J.; Colman, J.J.; Edminster, C.; Bailey, J.D. Modeling interactions between fire and atmosphere in discrete element fuelbeds. Int. J. Wildland Fire 2005, 14, 37–48. [Google Scholar] [CrossRef]
- Hudak, A.; Prichard, S.; Keane, R.; Loudermilk, L.; Parsons, R.; Seielstad, C.; Rowell, E.; Skowronski, N. Hierarchical 3D Fuel and Consumption Maps to Support Physics-Based Fire Modeling; Joint Fire Science Program Project 16-4-01-15 Final Report; Joint Fire Science Program: Moscow, ID, USA, 2017. [Google Scholar]
- Finney, M.A. FARSITE: Fire Area Simulator–Model Development and Evaluation; Research Paper RMRS-RP-4 Revised; United States Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2004.
- Finney, M.A. An overview of FlamMap fire modeling capabilities. In Fuels Management—How to Measure Success, Proceedings of the Rocky Mountain Research Station, Portland, OR, USA, 28–30 March 2006; United States Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006. [Google Scholar]
- MARM. Mapa Forestal de España. Escala 1:25.000; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2011.
- MMA. Mapa Forestal Nacional. Escala 1:50.000; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2006.
- Canfield, R.H. Application of the line interception method in sampling range vegetation. J. For. 1941, 39, 388–394. [Google Scholar]
- Arellano-Pérez, S. Modelos de Combustibles Forestales de Galicia. Master’s Thesis, Universidad de Santiago de Compostela, Lugo, Spain, 2011. [Google Scholar]
- Bliss, C. The Transformation of Percentages for Use in the Analysis of Variance. Ohio J. Sci. 1938, 38, 9–12. [Google Scholar]
- Cao, Q.V.; Burkhart, H.E.; Lemin, R.C. Diameter Distributions and Yields of Thinned Loblolly Pine Plantations; FWS 1-82; School of Forestry and Wildlife Resources, Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 1982. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 16 March 2020).
- Adler, D.; Murdoch, D.; Nenadic, O.; Urbanek, S.; Chen, M.; Gebhardt, A.; Bolker, B.; Csardi, G.; Strzelecki, A.; Senger, A. rgl: 3D Visualization Using OpenGL. R package version 0.100.54. Available online: https://CRAN.R-project.org/package=rgl (accessed on 16 March 2020).
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071). R package version 1.7-2. Available online: https://CRAN.R-project.org/package=e1071 (accessed on 16 March 2020).
- Tang, S.; Li, Y.; Wang, Y. Simultaneous equations, error-invariable models, and model integration in systems ecology. Ecol. Model. 2001, 142, 285–294. [Google Scholar] [CrossRef]
- Tang, S.; Wang, Y. A parameter estimation program for the error-in-variable model. Ecol. Model. 2002, 156, 225–236. [Google Scholar] [CrossRef]
- Myers, R.H. Classical and Modern Regression with Applications, 2nd ed.; Duxbury Press: Pacific Grove, CA, USA, 1990. [Google Scholar]
- White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 1980, 48, 817–838. [Google Scholar] [CrossRef]
- Cailliez, F. Estimación del Volumen Forestal y Predicción del Rendimiento; FAO: Roma, Italy, 1980. [Google Scholar]
- Harvey, A.C. Estimating regression models with multiplicative heteroscedasticity. Econometrica 1976, 44, 461–465. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/ETS® 9.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Ku, N.; Popescu, S.C.; Ansley, R.J.; Perotto-Baldivieso, H.L.; Filippi, A.M. Assessment of available rangeland woody plant biomass with a terrestrial lidar system. Photogramm. Eng. Remote Sens. 2012, 78, 349–361. [Google Scholar] [CrossRef]
- Anderson, K.E.; Glenn, N.F.; Spaete, L.P.; Shinneman, D.J.; Pilliod, D.S.; Arkle, R.S.; McIlroy, S.K.; Derryberry, D.R. Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial lidar and machine learning. Ecol. Indic. 2018, 84, 793–802. [Google Scholar] [CrossRef]
- Xu, K.; Su, Y.; Liu, J.; Hu, T.; Jin, S.; Ma, Q.; Zhai, Q.; Wang, R.; Zhang, J.; Li, Y.; et al. Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data. Ecol. Indic. 2020, 108, 105747. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, X.; Yebra, M.; Harris, S.; Tapper, N. Strata-based forest fuel classification for wildfire hazard assessment using terrestrial LiDAR. J. Appl. Remote Sens. 2016, 10, 046025. [Google Scholar] [CrossRef]
- Newnham, G.J.; Armston, J.D.; Calders, K.; Disney, M.I.; Lovell, J.L.; Schaaf, C.B.; Strahler, A.H.; Danson, F.M. Terrestrial laser scanning for plot-scale forest measurement. Curr. For. Rep. 2015, 1, 239–251. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: A comparison of indices based on liquid water and chlorophyll absorption features. Remote Sens. Environ. 2003, 84, 526–537. [Google Scholar] [CrossRef]
- Pimont, F.; Dupuy, J.L.; Rigolot, E.; Prat, V.; Piboule, A. Estimating Leaf Bulk Density Distribution in a Tree Canopy Using Terrestrial LiDAR and a Straightforward Calibration Procedure. Remote Sens. 2015, 7, 7995–8018. [Google Scholar] [CrossRef]
- Greaves, H.E.; Vierling, L.E.; Eitel, J.U.H.; Boelman, N.T.; Magney, T.S.; Prager, C.M.; Griffin, K.L. Applying terrestrial lidar for evaluation and calibration of airborne lidar-derived shrub biomass estimates in Arctic tundra. Remote Sens. Lett. 2017, 8, 175–184. [Google Scholar] [CrossRef]
Shrub Community | No. of Plots | Code | Dominant Shrub Species | Secondary Species |
---|---|---|---|---|
High heath | 15 | Ea | Erica australis L. | Pterospartum tridentatum, Halimium alyssoides (Lam.) Greuter, Erica arborea L., Ulex europaeus |
Prickled broom | 10 | Pt | Pterospartum tridentatum (L) Willk. | Erica umbellata Loefle ex L., Halimium alyssoides, Erica australis L., Ulex gallii, Ulex europaeus, Pteridium aquilinum (L.) Kuhn |
High gorse | 15 | Ue | Ulex europaeus L. | Ulex gallii, Erica umbellata, Pteridium aquilinum, Pterospartum tridentatum, |
Low gorse | 15 | Ug | Ulex gallii Planch./ Ulex minor Roth. | Ulex europaeus, Erica umbellata, Daboecia cantábrica (Huds.) K.Koch, Pterospartum tridentatum, Pteridium aquilinum |
Variable | Statistic | Ea | Pt | Ue | Ug |
---|---|---|---|---|---|
n | 15 | 10 | 15 | 15 | |
Mean (std. dev.) | 84.91 (31.48) | 90.37 (33.94) | 108.18 (19.95) | 65.43 (21.77) | |
(cm) | Range | 38.24–150.76 | 42.86–151.05 | 59.71–113.10 | 13.90–109.33 |
CovShr | Mean (std. dev.) | 99.80 (0.52) | 99.34 (1.20) | 99.64 (0.77) | 98.32 (3.17) |
(%) | Range | 98.15–100 | 96.3–100 | 97.69–100 | 87.5–100 |
Mean (std. dev.) | 2.38 (1.17) | 4.03 (1.19) | 5.49 (2.11) | 4.56 (0.98) | |
(cm) | Range | 0.78–5.60 | 2.02–5.86 | 3.08–10.55 | 2.40–5.81 |
WShr_G1_dead | Mean (std. dev.) | 0.41 (0.12) | 0.84 (0.17) | 0.89 (0.09) | 0.75 (0.18) |
(kg m−2) | Range | 0.20–0.63 | 0.58–1.01 | 0.65–1.00 | 0.20–1.00 |
WShr_G1_live | Mean (std. dev.) | 1.19 (0.23) | 1.47 (0.25) | 1.40 (0.07) | 1.53 (0.23) |
(kg m−2) | Range | 0.76–1.53 | 1.08–1.73 | 1.18–1.48 | 0.72–1.69 |
WShr_G1 | Mean (std. dev.) | 1.60 (0.36) | 2.31 (0.42) | 2.29 (0.16) | 2.28 (0.41) |
(kg m−2) | Range | 0.96–2.16 | 1.66–2.74 | 1.83–2.47 | 0.92–2.69 |
WShr_G23 | Mean (std. dev.) | 0.48 (0.36) | 0.62 (0.40) | 1.17 (0.31) | 0.37 (0.28) |
(kg m−2) | Range | 0.06–1.38 | 0.12–1.37 | 0.46–1.58 | 0–1.09 |
WShr | Mean (std. dev.) | 2.08 (0.71) | 2.93 (0.80) | 3.47 (0.47) | 2.65 (0.63) |
(kg m−2) | Range | 1.02–3.54 | 1.77–3.99 | 2.29–4.05 | 0.93–3.78 |
WLitt | Mean (std. dev.) | 1.00 (0.36) | 1.38 (0.49) | 1.89 (0.64) | 1.70 (0.35) |
(kg m−2) | Range | 0.45–1.91 | 0.71–2.25 | 1.14–3.40 | 0.93–2.14 |
WShr+Litt | Mean (std. dev.) | 3.08 (0.99) | 4.31 (1.11) | 5.35 (1.02) | 4.35 (0.84) |
(kg m−2) | Range | 1.70–5.45 | 2.54–6.24 | 3.98–7.45 | 2.51–5.75 |
Metric | Description |
---|---|
hmax (cm) | maximum |
hmean (cm) | mean |
hmode (cm) | mode |
hmedian (cm) | median |
hSD (cm) | standard deviation |
hskw | skewness |
hkurt | kurtosis |
hID (cm) | interquartile distance |
h01, h05, h10, h15, h20,…, h90, h95, h99 (cm) | percentiles |
h25 and h75 (cm) | first and third quartiles |
IQR (cm) | Interquartile range (h75–h25) |
PAhmean | ratio of laser returns above hmean to total laser returns |
PAhmode | ratio of laser returns above hmode to total laser returns |
Equation | Expression | Par. | Estimate | Approx. Std. Error | RMSE (kg m−2) | R2 |
---|---|---|---|---|---|---|
No. 1 | a00 | 0.2954 | 0.0447 | 0.5796 | 0.8033 | |
a01 | −0.0860 | 0.0138 | ||||
a1 | 0.6416 | 0.0351 | ||||
a2 | 0.1397 | 0.0506 | ||||
No. 2 | b1 | 0.7205 | 0.1964 | 0.2630 | 0.9018 | |
No. 3 | b2 | −0.8301 | 0.1860 | 0.4584 | 0.4080 | |
No. 4 | c00 | 4.6139 | 0.5061 | 0.1957 | 0.8263 | |
c01 | 0.3103 | 0.0479 | ||||
No. 5 | c02 | 0.7254 | 0.0807 | 0.1154 | 0.9392 | |
c1 | −0.9864 | 0.1255 | ||||
No. 6 | d00 | 0.9106 | 0.1777 | 0.0820 | 0.8848 | |
d01 | 0.2900 | 0.0347 | ||||
No. 7 | d1 | −0.1084 | 0.0451 | 0.0860 | 0.8794 |
Variable | Expression | Par. | Estimate | Approx. Std. Error | RMSE | R2 |
---|---|---|---|---|---|---|
CovShr (%) | a0 | −0.4742 | 0.1707 | 1.1226% | 0.6626 | |
a1 | −0.0967 | 0.0145 | ||||
(cm) | b0 | −9.8958 | 4.2458 | 9.2027 cm | 0.9175 | |
b1 | 0.8080 | 0.0430 | ||||
b2 | 2.5762 | 0.5859 | ||||
(cm) | c0 | −2.8156 | 1.2422 | 1.5190 cm | 0.3907 | |
c1 | 1.9338 | 0.9432 | ||||
c2 | 7.9632 | 2.0776 | ||||
c3 | 0.1061 | 0.0204 |
Variable | Direct Estimation (DE) Approach | Indirect Estimation (IE) Approach | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (kg m−2) | RMSE (%) | R2 | RMSE (kg m−2) | RMSE (%) | |||||
WShr+Litt | 0.8033 | 0.5796 | −0.0183 | 0.4489 | 13.58 | 0.7642 | 0.6347 | 0.3339 | 0.5242 | 14.87 |
WShr | 0.9018 | 0.2630 | −0.0193 | 0.2121 | 9.50 | 0.7666 | 0.4056 | 0.3308 | 0.3393 | 14.65 |
WLitt | 0.4080 | 0.4584 | 0.0010 | 0.3572 | 30.55 | 0.4378 | 0.4467 | 0.0031 | 0.3482 | 29.78 |
WShr_G23 | 0.8263 | 0.1957 | −0.0160 | 0.1440 | 29.51 | 0.8710 | 0.1687 | 0.0888 | 0.1235 | 25.44 |
WShr_G1 | 0.9392 | 0.1154 | −0.0032 | 0.0958 | 5.48 | 0.6732 | 0.2676 | 0.2420 | 0.2444 | 12.71 |
WShr_G1_dead | 0.8848 | 0.0820 | −0.0090 | 0.0654 | 11.47 | 0.8371 | 0.0975 | 0.0821 | 0.0844 | 13.63 |
WShr_G1_live | 0.8794 | 0.0860 | 0.0058 | 0.0640 | 6.19 | 0.5103 | 0.1734 | 0.1599 | 0.1602 | 12.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Rego, C.; Arellano-Pérez, S.; Cabo, C.; Ordoñez, C.; Álvarez-González, J.G.; Díaz-Varela, R.A.; Ruiz-González, A.D. Estimating Fuel Loads and Structural Characteristics of Shrub Communities by Using Terrestrial Laser Scanning. Remote Sens. 2020, 12, 3704. https://doi.org/10.3390/rs12223704
Alonso-Rego C, Arellano-Pérez S, Cabo C, Ordoñez C, Álvarez-González JG, Díaz-Varela RA, Ruiz-González AD. Estimating Fuel Loads and Structural Characteristics of Shrub Communities by Using Terrestrial Laser Scanning. Remote Sensing. 2020; 12(22):3704. https://doi.org/10.3390/rs12223704
Chicago/Turabian StyleAlonso-Rego, Cecilia, Stéfano Arellano-Pérez, Carlos Cabo, Celestino Ordoñez, Juan Gabriel Álvarez-González, Ramón Alberto Díaz-Varela, and Ana Daría Ruiz-González. 2020. "Estimating Fuel Loads and Structural Characteristics of Shrub Communities by Using Terrestrial Laser Scanning" Remote Sensing 12, no. 22: 3704. https://doi.org/10.3390/rs12223704
APA StyleAlonso-Rego, C., Arellano-Pérez, S., Cabo, C., Ordoñez, C., Álvarez-González, J. G., Díaz-Varela, R. A., & Ruiz-González, A. D. (2020). Estimating Fuel Loads and Structural Characteristics of Shrub Communities by Using Terrestrial Laser Scanning. Remote Sensing, 12(22), 3704. https://doi.org/10.3390/rs12223704