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Abstract: The rapid development of portable terrestrial laser scanning (TLS) devices in recent
years has led to increased attention to their applicability for forest inventories, especially where
direct measurements are very expensive or nearly impossible. However, in terms of precision and
reproducibility, there are still some pending questions. In this study, we investigate the influence of
stand parameters on the TLS-related visibility in forest plots. We derived 2740 stand parameters from
Swiss national forest inventory sample plots. Based on these parameters, we defined virtual scenes of
the forest plots with the software “Blender”. Using Blender’s ray-tracing features, we assessed the
3D coverage in a cubic space and 2D visibility properties for each of the virtual plots with different
scanner placement schemes. We provide a formula to calculate the maximum number of possible hits
for any object size at any distance from a scanner with any resolution. Additionally, we show that the
Weibull scale parameter describing a stand, in addition to the number of trees and the mean diameter
of the dominant 100 trees per hectare, has a significant and relevant influence on the visibility of
the sample plot. Furthermore, we show the effectiveness and the efficiency of 40 scanner location
patterns. These experiments demonstrate that intuitively distributing scanner locations evenly
within the sample plot, with similar distances between locations and from the edge of the sample
plot, provides the best overall visibility of the stand.

Keywords: terrestrial laser scanning; forest inventory; occlusion; stem diameter distribution

1. Introduction

National Forest Inventories (NFI) deliver information on the forest area, the amount and
change of forest resources, the development of the biotope forest in general, the carbon balance
of a country [1–3] and other ecosystem services [4]. In the Swiss NFI, data collection is based on
aerial photo interpretation, forest service interviews and field measurements [5]. Field measurements
provide the largest and most important collection of data for a NFI. On a national level, they comprise
measurements of several thousand sample plots, each of which has to be visited by a field team [6].
Field measurements consist of two methods: actual measurements and expert assessments. If possible,
measurements are applied to determine forest features. However, certain forest features are nearly
impossible to measure on standing trees or can only be measured at a very high cost with traditional
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tools. Examples of such features are tree volume, forest structure, crown size and shape, gap size and
light availability at certain heights above ground. The medium-term objective of the Swiss NFI is to
replace or enhance expert assessments with actual measurements where possible. The development of
portable terrestrial LiDAR devices in recent years and increased computing power lead to the question
of whether these devices can be used for forest inventories to enhance the efficiency and improve
data quality.

Given the high costs of terrestrial laser scanning systems (TLS) and the time-consuming
measurement process, the added value of TLS for forest inventories needs to be clearly demonstrated
in terms of efficiency, robustness and precision. One evaluation method is to simulate a virtual forest
and a virtual instrument, as described by several authors [7–10]. The advantage of the simulation
approach is that many configurations can be tested with only little expense for additional samples. Still,
the simulation environment is merely an abstraction of reality and, consequently, the representativeness
of the virtual scene has to be considered carefully. Several factors, such as scanning resolution,
the LiDAR technology applied, and weather conditions, influence the quality of the laser scans in terms
of completeness and accuracy. However, as mentioned by various authors (e.g., [11–13]), occlusion is
one of the key factors that limits the potential of TLS. Occlusion is caused by objects shadowing each
other, so that parts of the objects of interest are not visible to the TLS device. The effect of occlusion
is usually mitigated by combining TLS scans from different locations [14]. In the literature, various
scanner location combination patterns are described (e.g., [11,15–17]). Trochta et al. [12] compare the
quality of multiple scans in natural beech forests. Van der Zande et al. [9] evaluate three different
scanner position combinations, each in three different types of stands. However, for the possible
applications of TLS in forest inventory, the methods need to have a proven high performance in a
larger range of forest stand conditions. The decision maker of a forest inventory needs a fundamental
understanding of the influencing factors regarding the quality of the point clouds generated by TLS and
possible constraints on operational applications. The analysis of visibility can contribute to quantifying
the expected quality of TLS acquisitions in terms of completeness.

The goal of this study is to highlight both the potential and the limitations of TLS in terms of
expected TLS points per object and to explain the influence of the stand and the scanner placement on
the quality of the scans in terms of completeness. We therefore use simulations in order to explore the
widest possible range of stand and scanner placement characteristics. Our objectives are:

(i) To demonstrate the relationships between angular resolution of the scanner, object size, distance
to the scanner and the possible sampling frequency (scanner point density) on an object with TLS
in a 3D space. This should help determine the minimal object size detectable by TLS.

(ii) To show the connection between the visibility of a sample plot and its stand describing parameters,
such as diameter distribution, stem number and dominant diameter. This experiment improves
the understanding of how the stand properties influence the scan quality. We hypothesize that
there is a very strong link between the stand parameters and the visibility.

(iii) To demonstrate the influence of the scanning location within a sample plot on the visibility.
(iv) To understand the mechanism behind occlusion and to determine the most suitable scanner

location patterns for TLS acquisitions in forests.

2. Materials and Methods

2.1. The NFI Framework, Data and Tools

2.1.1. Sample Plot

Depending on the target variable, different plot sizes are used in the Swiss NFI. The radii of the
six sample plots for the tree measurement of the different diameter classes range from 0.9 m to 12.62 m
(0.9 m, 1.5 m, 2.5 m, 4 m, 7.98 m, 12.62 m). The largest sample plot, a square area of 50× 50 m termed the
“interpretation area”, is used to assess stand level parameters, such as stand structure and occurrence
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of important elements in the stand, such as snags or coverage of regeneration [18]. For the evaluations
of TLS applications, we chose to evaluate this largest area because all the sample plots of the Swiss NFI
are contained within this area. For the evaluation, we defined the sample plot into a 2-dimensional
cartesian coordinate system. The centre of the sample plot is located at the x–y-coordinates (0, 0).

2.1.2. NFI Data

NFI data are commonly collected on sample plots arranged in a regular grid over an area of
interest. This allows for a statistical inference of population values, such as stem number, for the
investigated area [19]. Since the year 2009, the Swiss NFI has conducted its field measurements on
nine equally sized grids, which are placed so that all the grids combined constitute one regular grid
with a mesh size of approximately 1.41 km (

√
2). This always allows a representative evaluation of

either single or combined grids.
At each grid intersection point, the trees are recorded on different circular plots depending on

their size as mentioned earlier (Size classes: 0.1 m–0.39 m height, 0.4–1.29 m height, 0.1–3.9 cm
DBH, 4–11.9 cm DBH, 12–35.9 cm DBH, ≥36 cm DBH). Nevertheless, the methods applied are the
same, allowing all the measured trees of any given diameter at breast height (DBH) to be combined.
Since every tree of any diameter contributes to occlusion, we included all trees reaching 1.3 m in
height for our evaluation. We used the combined datasets of all the trees per grid intersection point,
respecting their statistical selection probability, to derive stand describing parameters.

The Weibull distribution is a common choice for describing the density of diameters in a stand [20].
It is a left-truncated distribution and can handle a wide spectrum of stand situations. The Weibull
distribution consists of three parameters, a shape (Wshape), a scale (Wscale) and an offset that describes
the smallest diameter. The offset was set to 0.5 cm as a fixed parameter because this is the smallest
diameter measured at breast height. Wshape and Wscale were estimated by maximising the likelihood
function of the Weibull distribution, given the observations. Since this estimation is subject to
a stochastic process, we excluded extreme outliers which we could identify with commonly used NFI
parameters. We excluded the simulated samples that exceeded double the maximal determined Ddom
in a Swiss NFI field campaign (185 cm) and all the samples that have one simulated diameter that
exceeds three times the maximal measured diameter in the Swiss NFI of 207 cm. With this variability,
we covered all the possible stand parameters that are likely to occur in the Swiss forests and included
some extreme values as well.

2.1.3. Blender

Blender [21] is an open-source 3D content creation suite. For this publication, we used version 2.74.
Blender can be fully controlled using the programming language python. It allows the user to create
3D objects and define their light interaction properties. These features are normally used to render
photorealistic images or animated movies. Blender provides a large toolbox to define, manipulate and
store 3D objects.

We used Blender and the stand parameters to set up cylinders as a proxy for trees for a visibility
assessment (see Figure 1). The Weibull parameters Wshape and Wscale defined the shape of the diameter
distribution. Ntree on the other hand, defined the number of cylinders to be set up. A random number
generator for Weibull distributions in the python library “numpy” provided the diameters of the
cylinders. The locations of the cylinders were calculated by a random uniform number generator,
which leads to Poisson-distributed cylinders on the sample plot. No cylinder was allowed to overlap
the scanner positions or another cylinder, and any overlapping cylinders were relocated to a new
random position within the sample plot. The cylinders were initially defined as a Bézier curve with
a certain diameter (bevel) and then converted to a mesh. A mesh is defined in Blender as a number
of points (vertices) that are connected with lines (edges) and polygons (faces). The time needed
for the definition of new cylinders increases exponentially, so we sourced out the definition of new
cylinders when Ntree exceeded 4000. For this step, we used a Blender feature called particle systems.
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With particle systems, a single object can be multiplied and randomly placed, without using much
computing power, by defining the number and the random locations with a mathematical equation.
We used particle systems to randomly place the smallest trees (cylinders), which are the single reason
for higher Ntree values. To avoid overlapping with the scanner location, we spared an area of 0.04 m2

around the scanner positions. To account for particle system cylinders located within larger cylinders,
which were not defined by a particle system, we increased the number of particle cylinders using the
ratio of the basal area of the larger cylinders to the sample plot size.

Figure 1. Rendering of the cylinder placement of one sample plot in Blender. The 50 × 50 m sample
plot is orange and the cylinders following the Weibull distribution of tree diameters are green.

2.1.4. Simulated Laser Scanning

BlenSor is an add-on for Blender which allows the user to simulate various types of range scanners
and other optical instruments [22]. It enables an efficient intersection of mathematical vectors (rays)
with 3D objects defined in Blender and returns the range and the incidence angle. This information
allows the user to calculate the number of rays possibly hitting an object at any distance from the
origin of the ray (scanner location), or it can be used as a sampling procedure for visibility assessments
of the sample plots.

2.1.5. Voxel Traversal Algorithm

We used a voxel traversal algorithm implemented by [23] based on the approach described
by [24]. By knowing the starting point (scanner location) and the point where the laser beam
(mathematical vector) hits an object, this algorithm can calculate, for every voxel in a predefined
voxel grid, whether the vector entered a voxel or was stopped before entering the voxel. In this
way, the algorithm returns, for a given set of rays, the number of rays entering each voxel and those
intercepted (occluded) before reaching that particular voxel.

2.1.6. Visibility Assessment

Visibility assessment has a long tradition in GIS sciences for the evaluation of digital elevation
models (e.g., [25,26]). Our approach is to use TLS simulations to assess the 2-dimensional visibility of
forest stands. We use BlenSor to send out horizontal vectors from a virtual scanner position, following
specific angular steps (angular resolution). From a statistical point of view, we sample the visibility of
a given space (e.g., the sample plot) with the vectors and assess the visibility along each of the vectors
by intersecting them with the objects (cylinders) within that space (see Figure 2). BlenSor returns
the coordinates of the intersections within the sample plot or, in cases where there is no intersection,
a coordinate of the vector outside the sample plot (red dots in Figure 2). The obtained dataset is
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a 2D point cloud (or 3D point cloud with all the points in one plane). The voxel traversal algorithm
described above evaluates for each voxel of a predefined voxel grid, the number of vectors entering
and the number of vectors that could theoretically enter the voxel without occlusion. The visibility
experiments, as described below, are conducted with vectors in a plane and the voxel space height is
only one voxel, so one could also speak of “pixels” instead of “voxels”. For the visibility assessment
in this publication, we calculated, for each voxel, the ratio of rays entering the voxel to all the rays
that theoretically could have entered the voxel. This is a measure of the visibility of a given voxel.
We defined the mean of all these ratios within a plot as the mean relative visibility (Vm). We chose Vm

as a measure of visibility because it takes every voxel into account, irrespective of the distance from
the scanner.

Figure 2. Illustration of visibility assessment. (a) Sample plot divided into a voxel (pixel) grid with
scanner position in the centre. The cylinders are displayed as green circles, the unoccluded vectors as
blue lines, the vectors occluded by the trees as dotted blue lines and the points of the point cloud as
red dots; (b) The same sample plot showing, for each voxel (pixel), the number of vectors entering the
voxel cell (Nhits) and the number of vectors that could enter the voxel cell without occlusion (Nt).

2.2. Theoretical Coverage of a Laser Scanning System in a 3D Space

The goal of this experiment was to determine the theoretical minimal coverage of a laser scanning
system in a cubic space. The vertical extent of the sample plot was set to 50 m because that is the height
of the tallest measured trees in the Swiss NFI.

We assumed the laser beam to be infinitesimally small in diameter. To define the direction in
which these rays start, we assumed a scanning system with a rotating mirror on a horizontal axis.
This mirror rotates again around a vertical axis, as applied in many commercial scanning systems,
such as Faro Focus 3D and Leica BLK360, and in experimental systems such as SALCA [27]. In such
a scanning system, the angular resolution refers to the angular steps in longitudinal and latitudinal
directions. It leads to an increasing point density from the horizontal plane towards the zenith and the
nadir. We tested angular scanning resolutions ranging from 0.01° to 1.00° (i.e., the angular resolutions
in [°] of 0.01, 0.02, 0.04, 0.06, 0.1, 0.2, 0.5, 1). The location for the scanning system we chose to be the
centre of the sample plot, at 1.3 m height above ground, corresponding to the height of the DBH
measurement. To mimic variations in the object size, we varied the voxel size from 1 mm up to 1 m
(i.e., the sizes in [m] of 0.001, 0.005, 0.01, 0.05, 0.06, 0.07, 0.1, 0.5, 1). To reduce the calculation time,
we did not evaluate all the voxels in the voxel space but instead a maximum of 5000 randomly selected
voxels for each scanner configuration.
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As a measure of the coverage, we used the voxel traversal algorithm described in Section 2.1.5 to
count the number of rays entering the sampled voxels (Nhits). As explanatory variables, we calculated,
for each voxel, the Euclidean distance (De) from the voxel centre to the scanner location. To account
for the effect of a higher point density towards the zenith and the nadir of the scanner, we derived
the horizontal distance (Dh) to the scanner location. Dh is the distance, projected on the X–Y-plane,
from the voxel centre to the scanner location. Additionally, we calculated the ratio of voxel size to
scanner resolution (Rvs/sr). To test for the influence of De, Dh and Rvs/sr on Nhits, we applied a linear
regression using the software R [28]. Since all the variables are positive numbers, we log-transformed
them following the recommendations of [29]. As some configurations with Rvs/sr exhibited many
voxels with Nhits of 0, we applied the regression on configurations starting at an Rvs/sr of 1. At that
point, every voxel in the 50 m cubic space obtains at least one hit, which allows the regression to be
fitted in a meaningful way.

2.3. Influence of Stand Parameters on Visibility in a 2D Space

We used Blender to set up 2740 sample plots based on five annual NFI grids. For sampling
visibility, we chose an angular resolution of 0.001°, which manifests a high sampling frequency.
The voxel size was chosen considering two effects: if the voxel size is too small, the demand in
computing power increases. However, large voxels overestimate the actual visibility. For the following
experiments, we chose a voxel size of 0.1 m.

We calculated additional NFI-related stand parameters based on the generated diameter
distribution files, to be used in the evaluation of the results. One parameter is the mean diameter of
the 100 largest trees per hectare (Ddom). The other parameter is the stem number of the trees with
a minimal diameter at breast height of 12 cm (Ntree≥12cm). To test the influence of the stand parameters,
we transformed the dependent and independent variables, following the recommendations of [29].
Since the range of Vm is from 0 to 1, we applied an arc-sin-square-root transformation. The other
variables were log-transformed. The software R [28] was used for the analysis.

2.4. Influence of the Scanning Location within Sample Plots on Visibility in a 2D Space

In this experiment, we investigated the influence of the scanning location within the sample plot
on the visibility. We tested 25 evenly distributed scanning positions along the positive x-axis (Th) of
the local coordinate system. Another 25 scanner positions were tested following the diagonal (Td)
from the centre to the corner with coordinates (25, 25). Combined with the central scan, 51 scanner
positions were tested in total (see Figure 3). In contrast to the other experiments where cylinders were
set up with Blender, cylinders overlapping the scanner position were not relocated in this experiment.
The affected sample plots were dropped from the sample to avoid alleys of visibility which would be
generated on transects if the other approach was chosen. Due to computational constraints, we used
the 537 stand samples from the last reporting period (2013) and not the full data set. Other than that,
this experiment was set up identically to the former, using the same software tools. To test the influence
of the scanner position, two additional independent variables were appended to the model described
in the former experiment (see Equation (3)). We wanted to test the supplementary influence of the
distance to the centre (Dc) and the transect (Ft) the scanner location belongs to. Both variables were
added to the model, and Dc was log-transformed and squared. To visualize the influence of only
these two variables, we removed the predicted values of the model using only the stand parameters
from the actual Vm. The difference in Vm between the two transects we calculated as follows: first,
we retransformed the residuals of the model with the stand parameters and Dc; second, we calculated
the mean of these residuals for each transect. The difference of these means of residuals represents the
mean difference in Vm without the influence of the stand parameters and Dc.
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Figure 3. Locations of the tested scanner positions within the sample plot. Th is the transect following
the x-axis, Td is the transect directed at a corner of the sample plot.

2.5. Influence of Scanner Location Patterns on Visibility in a 2D Space

The goal of this experiment was to show the influence of scanner location patterns (Psl) on the
visibility. A scanner location pattern is the combination of several scanning locations, as used for
multiple terrestrial laser scanning acquisition. As in Section 2.4, we used the stand parameters of one
annual NFI sampling grid. Various (Psl) are described in the literature. Some authors [11,14,30–32]
describe multiple scanning patterns, where most of the scanner locations are on the edge of the sample
plot. Others [33–36] placed the scanner at multiple locations outside of the sample plot, either to scan
isolated stands or to scan within a larger stand. On the other hand, a third group of authors [9,37–41]
applied various scanner location patterns, such as one scan in the centre and four to six around it,
or distributed the scanner locations evenly. Based on these scanner location patterns, we defined
25 scanning locations that could be combined to form various scanner location patterns (see Figure 4).
We also added very close scanning locations to test the effect of very dense scanner patterns (e.g.,
a brute force approach). Due to computational constraints, we restricted testing of the patterns we
found in the literature and only added specific scanner location patterns to learn about the effect of
shifting one scanning location. The complete set of tested scanner location patterns is shown in the
Appendix A in Figures A2 and A3. Due to the combination of multiple scanner locations with their
associated 2D point clouds, we calculated the visibility (Vm) in the following way: For each scanning
location to be used in a pattern, we calculated the invisible fraction of each voxel (Fi). Fi is one minus
the ratio of rays entering the voxel to the number of rays that could have entered the voxel in case
of no occlusion. To combine the visibility of the various scanner locations, we assumed that every
additional scan reduces the initial Fi in (actuarial) expectation in the ratio of Fi of the newly added
scan. So the Vm of n combined scans is calculated as showed in Equation (1).

Vm = 1− (Fi(1) ∗ Fi(2) ∗ ... ∗ Fi(n)) (1)
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To check for the influence of the number of positions (Ns) used for a scanning pattern and the
scanner location pattern (Psl), we added these variables to the basic equation with the stand parameters
(see Equation (3)). We log-transformed Ns following the recommendations of [29]. We compared
the efficiency of the various Psl without the influence of the stand parameters and Ns (see Figure 5).
To do so, we fitted the basic model (Equation (3)) including Ns using the software R [28]. With this
model, we predicted Vm for all the sample plots. We subtracted this value from the “measured” Vm

and normalised these values by subtracting the mean Vm of the single scanner locations in the centre
of the sample plot. We call this value “scan location pattern efficiency” (Psl-efficiency).

Figure 4. The scanning locations tested in each sample plot of 50 × 50 m. The displayed scanning
locations, with their identification number, can be combined to form scanning location patterns for the
search for efficient patterns, which are each evaluated for occlusion and coverage (visibility).
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Figure 5. Efficiency of the scanner location patterns (Psl-efficiency). Psl-efficiencies are the residuals
of the Vm model explained by the stand parameters and the number of combined scanner locations,
normalised to the mean Vm of single scans in the centre of the sample plots. The figure shows the
change in efficiency compared with that of the central scan (C) when different scanner location patterns
are applied. The scanner location pattern “C” is the single central scan and “D” is the mean of all the
other tested single scan positions that were used for the patterns.
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3. Results

3.1. Theoretical Coverage of a Laser Scanning System in a 3D Space

To investigate the theoretical coverage of a TLS system in a cubic space with an edge length of
50 m, we simulated laser range measurements with geometric vectors as a proxy for TLS laser pulses.
As a proxy for object size, we used the size of voxels in the given 3D space. The number of laser beams
(vectors) entering each voxel Nhits served as a measure of coverage, i.e., detection quality of the laser
scanner. With a sufficient resolution, any size of object could theoretically be resolved throughout
the scene, i.e., at any distance to the scanner, given, that the laser beam has no extent (footprint).
Besides the Euclidean distance De and the horizontal distance Dh from the voxel centre to the scanner
location, we used the ratio of voxel size to scanner resolution (Rvs/sr) as an independent variable to
explain Nhits. For a proper applicability of a linear regression, we only used settings where every
voxel in the cubic space of 50 m has at least one vector passing it. Figure 6 shows that, in the given
experimental setting, this point is reached when Rvs/sr is equal to 1.

Figure 6. The relationship between the ratio of voxel size to scanner resolution [m/°] (Rvs/sr) and the
ratio of the number of voxels hit by at least one ray to all the voxels in the cubic space with edge size of
50 m (Rhit).

The regression was conducted using the following formula:

log(Nhits) = log(Dh) + log(De) + log(Rvs/sr) (2)

The regression showed a very good performance, with all variables highly significant and
an adjusted R2 of 0.99. Table 1 displays the coefficients of the independent variables and their
respective p values.

In Table A1 in the Appendix A, the mean number of hits per voxel in the various ratio classes and
the (Euclidean) distance to the scanner are shown.
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Table 1. Model coefficients and standardised model coefficients based on scaled variables to make their
effect sizes comparable.

Variable Model Coefficient Standardised Model Coefficient p Value

Intercept 8.38 0 <0.0001
log (Dh) −0.9 −0.22 <0.0001
log (De) −1.09 −0.18 <0.0001

log (Rvs/sr) 2.03 0.92 <0.0001

3.2. Influence of Stand Parameters on Visibility in a 2D Space

The hypothesis was that the structure of a stand, represented by a Weibull distribution, stem
number and dominant diameter (Ddom), would have an influence on the visibility within the stand.
Ddom is the mean diameter of the 100 largest trees per hectare. To test this hypothesis, we randomly
placed cylinders following Weibull distributions derived from 2740 sample plots of the Swiss NFI from
the year 2009 to 2013. The number of placed cylinders ranges from 30 to 19,620 (see Figure 7). The scale
parameter of the Weibull distribution ranges from 0.002 to 65.8 and the shape parameter ranges from
0.2 to 9.8. To analyse the visibility, the mean relative visibility of voxels (Vm) in each 50 × 50 m plot
was calculated. The relative visibility of a voxel is the ratio between the vectors emitted from the virtual
scanner location (that either passed the voxel or hit an object within that voxel) and the theoretical
number of vectors that could pass the voxel in a space without occluding objects. To account for the
occurring range in the variables, they were transformed following the recommendations of [29].

Figure 7. Derived stand parameters from National Forest Inventories (NFI) data and their relationship
to each other.



Forests 2017, 8, 184 12 of 29

The regression was conducted using the following formula:

arcsin(
√

Vm) = log(Ntree) + log(Wshape) + log(Wscale) + log(Ddom) + log(Ntree≥12cm) (3)

All the independent variables except the Weibull scale parameter (Wscale) are highly significant,
with an adjusted R2 of 0.96. The refitted model without Wscale led to the coefficients shown in Table 2.
In Figure A1 in the Appendix A, the distribution of Vm for different Ddom and Ntree classes is shown.

Table 2. Model coefficients and standardised model coefficients based on scaled variables to make their
effect size comparable.

Variable Model Coefficient Standardised Model Coefficient p Value

Intercept 2.726 0 <0.0001
log(Ntree) −0.249 −1.211 <0.0001

log(Wshape) −0.124 −0.384 <0.0001
log(Ddom) −0.116 −0.271 <0.0001

log(Ntree≥12cm) 0.008 0.06 <0.0001

3.3. Influence of the Scanning Location within Sample Plots on Visibility in a 2D Space

To test the influence of the scanner position within the sample plot, we tested 51 scanner positions
(see Figure 3). To confine computational cost, we reduced the dataset by using only the NFI plots
surveyed in 2013, ending up with 537 different stand parameters. The regression of this reduced
dataset leads to the same R2 and to very similar coefficients and significance values (compare Table 2
earlier in the text with Table A2 in the Appendix A). To test the influence of the scanner position within
the sample plot, we added the distance to the plot centre (Dc) and a factor Ft which describes the kind
of transect (horizontal or diagonal) the tested scanner position is situated on. The applied model is
as follows:

arcsin(
√

Vm) = log(Ntree) + log(Wshape) + log(Ddom) + log(Ntree≥12cm) + log(Dc) + log(Dc)
2 + Ft (4)

All the added independent variables were significant, and the whole model showed an R2 of 0.94.
When reducing Vm by the influence of the stand parameters and the distance to the centre, the transect
following the x-axis had on average, a Vm of 0.013 greater than that of the diagonal transect. Figure 8
shows the reduction in Vm caused by the distance to the centre.

Figure 8. Reduction in visibility within the sample plot due to increased distance of the scanner
location from the plot centre. Vm is reduced by the influence of the stand parameters and normalised to
the mean Vm of the scans in the plot centre. Th is the transect following the x-axis, Td is the transect
directing to a corner of the sample plot.
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3.4. Influence of Scanner Location Pattern on Visibility in a 2D Space

The combination of multiple scanner positions reduces the occlusion in a stand
substantially [17,34,42,43]. Based on scanner location patterns found in the literature, we simulated
25 single scanning positions on each sample plot (n = 536) (see Figure 4) and combined them to form
a total of 40 scanning location patterns (see Figures A2 and A3 in the Appendix A).

Figure 9 shows the differences in the mean visibility Vm caused by varying the number of scanner
positions. As one would expect, increasing the number of scans (Ns) has a positive influence on the
quality of the point cloud by covering more of the sampled area. Our evaluations showed that the
number of positions has a strong and significant influence on the mean visibility of the stand. We added
the number of scanning locations (Ns) to the basic model (Equation (3)). The model produced an R2

of 0.92. If we conduct the same procedure with the scanner location patterns (Psl), the corresponding
tested model has an R2 of 0.94. Table 3 displays the mean visibility for each Psl . Since Psl includes Ns

implicitly, these two R2 figures imply that the kind of pattern chosen has an influence on the visibility
within the stand as well. Figure 5 shows the change in visibility of the tested Psl compared to a single
scan in the centre of the sample plot. In the Appendix A we show, for each of the most efficient Psl ,
the histrogram of visibility by classes of Ddom and Ntree (Figures A4–A9) . Following the findings given
above, Vm becomes higher as more scans are combined and as Ntree becomes lower. Stem number
class 3 (501 to 1000 trees per hectare) and 4 (more than 1000 trees per hectare) seem to be especially
sensitive to the scanning regime.

Figure 9. Influence of the number of combined scanning locations (Ns) on the mean visibility (Vm)
within the plot.

Table 3. Changes in the mean visibility (Vm) influenced by scanner location pattern.

Scanner Location Pattern Combined Locations Mean Vm Standard Deviation of Vm

0 32, 34 0.67 0.23
1 63, 61 0.69 0.24
2 42, 44 0.69 0.24
3 22, 24 0.65 0.25
4 51, 53 0.68 0.24
5 11, 13 0.52 0.26
6 11, 51 0.57 0.24
7 11, 0 0.63 0.25
8 11, 53 0.61 0.25
9 42, 32 0.68 0.24

10 42, 0 0.69 0.24
11 42, 34 0.69 0.24
12 0, 34, 32 0.72 0.22
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Table 3. Cont.

Scanner Location Pattern Combined Locations Mean Vm Standard Deviation of Vm

13 0, 61, 63 0.78 0.23
14 0, 51, 53 0.78 0.23
15 0, 11, 13 0.71 0.26
16 53, 43, 52 0.75 0.23
17 53, 33, 52 0.77 0.23
18 53, 0, 52 0.77 0.23
19 53, 31, 52 0.77 0.23
20 53, 41, 52 0.78 0.23
21 31, 32, 33, 34 0.76 0.21
22 61, 62, 63, 64 0.84 0.21
23 41, 42, 43, 44 0.84 0.21
24 51, 52, 53, 54 0.84 0.21
25 11, 12, 13, 14 0.71 0.28
26 51, 62, 53, 64 0.84 0.21
27 51, 61, 53, 63 0.83 0.22
28 33, 43, 52, 62 0.81 0.22
29 11, 12, 13, 0 0.76 0.26
30 0, 31, 32, 33, 34 0.78 0.21
31 0, 41, 42, 43, 44 0.86 0.2
32 0, 51, 52, 53, 54 0.87 0.19
33 62, 51, 52, 53, 54 0.87 0.2
34 42, 51, 52, 53, 54 0.87 0.2
35 32, 51, 52, 53, 54 0.87 0.19
36 0, 41, 61, 62, 43, 63, 64 0.9 0.17
37 53, 43, 52, 44, 0, 42, 54, 41, 51 0.92 0.15
38 53, 43, 52, 44, 0, 42, 54, 41, 11 0.92 0.16
39 53, 43, 52, 44, 0, 42, 54, 41, 61 0.92 0.15

4. Discussion

4.1. Theoretical Coverage of a Laser Scanning System in a 3D Space

The first goal of this study was to test the link between scanner resolution and a minimum object
size that could theoretically be detected without accounting for occlusion, given the assumption of
an infinitesimally small laser beam. We provided a model which includes the independent variables
“distance to the scanner” (De), “horizontal distance to the scanner” (Dh) and “ratio of object size to
scanner resolution” (Rvs/sr), which enables calculation of the number of possible rays passing through a
voxel with very high precision (R2 of 0.99). The last bit of unexplained variation in the model possibly
comes from the fact that the cross section of the voxel from the direction of the assumed scanner
position varies, depending on the direction from which a voxel is scanned. Starting at (Rvs/sr) > 1,
every object of the respective size obtains at least one hit by a laser ray in a 50 m cube. Below that
value, the ratio between the number of voxels with at least one hit by a laser and the total number of
voxels decreases in a close-to-linear s-shaped connection to Rvs/sr (see Figure 6). As mentioned above,
this experiment respects neither the influence of a laser beam divergence nor any effect of occlusion by
other objects in the same scene. Nevertheless, a laser beam with an increasing diameter when crossing
the forest scene can hit multiple objects at the same time, leading to various effects in respect to the
obtained point clouds. Depending on the technology used, this can deliver point clouds with worse
quality concerning the distance to the object or, in the better case, can deliver multiple returns from one
single laser pulse. However, this experiment can support decisions for a field campaign concerning
the size of the object of interest and the corresponding minimal scanner resolution. Findings from this
experiment allow users to calculate in advance the maximum possible number of laser beams hitting
an object of a specific size in any direction and distance to the scanner. This is especially important
for measurements of tree parts which scanners cannot be placed close to, e.g., branches higher up in
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the canopy. For these objects, only multiple TLS measurements can improve the coverage, albeit in a
linear fashion. Newnham et al. [42] identify two different categories of data retrieval approaches from
TLS generated point clouds: gap probability and geometrical modelling. While the former approach
samples the forest scene to provide a complement of all vegetation components, the latter uses the
discrete point clouds to derive geometrical properties of the scanned object, e.g., by quantitative
structure modelling (QSM) [44,45]. The suitability of geometrical modelling depends on a sufficient
point based representation of an object in order to infer the geometric properties. Our results suggest
that geometric modelling is more suitable for the lower forest layer(s), while in the top layers the
point density might be too low simply because of the (vertical) distance to the scanner, not even
considering occlusion.

4.2. Influence of Stand Parameters on Visibility in a 2D Space

The experiment to explore the influence of stand parameters on visibility showed that the Weibull
parameter “shape” (Wshape) has a significant influence on Vm of a stand. The number of trees (Ntree),
the mean diameter of the 100 largest trees per hectare (Ddom) and the number of trees with a DBH
of ≥12 cm (Ntree≥12cm) show a highly significant influence as well. On the other hand, the Weibull
“scale” parameter (Wscale) in combination with the above-mentioned stand parameters has no influence.
The standardised model coefficients, shown in Table 2, reveal the magnitude and the direction of the
influence. The number of trees clearly has the strongest (negative) influence, followed by the Wshape
parameter and Ddom. Surprisingly, Ntree≥12cm has a positive relationship with Vm. A reason for this
finding could be that there is some interaction with the other variables that alleviates their influence
slightly. However, the standardised model coefficient shows that this influence is very small and not
relevant. The independent variables of the model based on NFI data have a very high variability,
due to the fact that only a few trees of a stand are located within the NFI sample plot. Their occurrence
is subject to a stochastic process. This means that the stand description derived from the NFI data
is not the actual description of the stand, but an unbiased expectation over a large sample of plots.
The possible variety of stands that could occur is covered, or even goes beyond realistic occurrences.
In the experiments of this publication, other influences are not considered, such as uneven terrain,
lying dead wood or foliage, twigs and branches. However, twigs and branches might have a similar
influence on visibility as a high number of small (stem) cylinders.

The assessment of visibility in this experiment is based on range measurements of geometric
vectors with an infinitesimally small diameter. Especially when small objects with unsuitable angular
resolution are scanned, a fraction of these objects would theoretically be invisible for the laser scanner
(Figure 6). As mentioned above, laser pulses of any TLS device have a starting diameter and a beam
divergence. Due to this increasing diameter (footprint) of the laser beam, a single laser pulse can hit
multiple objects at the same time. Therefore, small objects would often be hit by a laser beam with a
footprint, which could lead to noise or additional information in the acquired point cloud depending
on the LiDAR technology of the TLS device (phase shift or time of flight). Kükenbrink et al. [23]
noticed an overestimation of occluded volume when laser scanning data were simulated using an
infinitesimally small laser beam diameter.

The applied model (Equation (3)) shows a relatively high adjusted R2 of 0.96. The unexplained
variation might arise from the location of the scanner with respect to its neighbouring trees (cylinders)
or might be due to the placement process of the cylinders. In this study, we chose a Poisson process to
place them. Theoretically, it would be possible to apply so called “point processes”, which are based on
empirical data of tree distributions, to which the NFI data cannot contribute, due to the small sample
plot size [46–48]. Even though the Weibull distribution is a common choice to describe diameter
distributions of stands [20], it does not encompass distributions with more than one local maximum,
as described in [12]. This experiment supports the assumption that, on the one hand, the number
of objects and, on the other hand, the size of the objects, represented as Ddom and Wshape, influence
visibility the most. With the derived formulas, we are now able to assess the extent of the influence
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of these stand parameters in advance. The experiment was conducted in a 2D space. This is useful
for any application that is applied in such a setting, for example certain methods of stem detection or
DBH derivation, as described by [34,37,39,49,50]. However, most current methods of feature extraction
are based on 3D point clouds, so it is questionable to what extent the findings of this 2D experiment
can be transferred to a 3D space.

What kinds of stands are covered by the Weibull parameters used here? The Weibull distribution
with a shape parameter (Wshape) of 1 describes an exponential distribution, whereas with Wshape 3.6 it
follows a normal distribution. With a larger Wshape, the distribution becomes more negatively skewed.
Figure 7 illustrates the combinations of Wshape with Wscale and Ntree. The plots show that the simulated
stands include typical regeneration stands with a large number of trees (low Wshape, low Wscale),
uneven-aged stands (Wshape around 3.6 and large Wscale around 50) to relatively even-aged mature
stands (large Wshape, large Wscale). These Weibull parameters are based on the same data that were
used to produce the online publication of the Swiss NFI results [51].

4.3. Influence of the Scanning Location within Sample Plots on Visibility in a 2D Space

By simulating different scanning locations, we showed the effect of the scanner placement within
a sample plot on occlusion and coverage. We proved that the most efficient location to place a scanner
in a single-scan setup is the centre of a sample plot, as one would intuitively assume. The mean
visibility (Vm) within the plot decreases when the scanner is placed at an increasing distance from the
plot centre. Whether the scanner is moved towards an edge or to a corner only makes a small difference.
The reason for this effect is that the further away the scanner is from the plot centre, the longer the
distance a laser beam has to travel to scan the opposite side of the sample plot and the more likely
it is that the beam is intercepted by tree trunks. A limitation of this experiment was that no location
outside of the plot was tested. In a continuous forest, the effect of increasing occlusion is very likely to
continue with larger distances. If the stand is isolated in a non occlusive surrounding, the outside view
may not lose visibility because no additional occluding objects will cross the view line of the scanner.
Figure 8 shows the remaining unexplained variation of the mean visibility Vm. This could be either
due to the random placement of the cylinders or due to the placement of the scanner relative to its
nearest neighbouring cylinders, as mentioned above.

4.4. Influence of Scanner Location Pattern on Visibility in a 2D Space

With the fourth experiment, we tested the influence of multiple scanning locations on the visibility
within sample plots. We evaluated 40 scanning location patterns and showed that, on average,
every additional scan increased the visibility (see Figure 9). However, there is a saturation effect:
for larger numbers of combined scans, the additional gain in Vm decreases. Nevertheless, the different
patterns of scanner positions showed considerable differences in efficiency (see Figure 5). The least
favourable pattern is scanning from the edge (as with Psl 5 or 25, see Figures A2 and A3), which leads
to a strong reduction in visibility. Similarly, very close Psl (as in Psl 0, 21 or 30) seem to deliver a low
visibility compared to other patterns. Another loss of efficiency, though not to the same extent as those
mentioned above, seems to occur with an uneven distribution of scanning locations over the sample
plot (as in Psl 6, 16 or 28). From Psl 16 to 20, such an unevenness decreases continuously and efficiency
increases. Minor shifts of a few metres (as in Psl 18 to 19 or 9 to 10 to 11) do not worsen Vm notably.
Even more severe shifts of the central position, as tested in Psl from 32 to 35, do not show relevant
changes in efficiency.

As an overall conclusion from the analysis of the scanner location patterns, the following rule of
thumb could be inferred: an even distribution of scanner locations over the sample plot with even
distances to the edge of the sample plot and to other scanner locations delivers the best visibility of
the stand. Additionally, a local adjustment of the scanner location aimed at increasing the distance
to the closest surrounding trees would not affect Vm; on the contrary, it would likely bring a gain in
efficiency, as [14] stated.
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5. Conclusions

In this study, we investigated the maximal possible coverage of a TLS device in a 50 m cubic
voxel space. Additionally, using NFI Data and a 3D content creating suite, we analysed the influence
of stand parameters, the scanning location within a sample plot and scanner location patterns on the
visibility within a sample plot of 50 × 50 m.

We found a close relationship between the number of infinitesimally small laser beams hitting an
object and the angular scanner resolution, the object size, and the distance to the scanner. These findings
will help to exclude unrealistic expectations in TLS measurements. The number of trees clearly has the
strongest influence on the visibility of a sample plot. Parameters with the second and third strongest
influence on visibility are the shape of the Weibull distribution and the mean diameter at breast height
of the 100 largest trees per hectare. These results suggest that, depending on the stand, different
scanning settings might be necessary. The most efficient scanner location in terms of visibility is the
centre of the sample plot. If multiple locations are used, our results show that an even distribution
of the scanner locations over the sample plot, with even distances to the edge of the sample plot and
to other scanner locations, delivers the best visibility for deriving properties of the stand. A local
adjustment of the scanner location considering the surrounding trees could contribute to an even
better visibility.

These findings will contribute to efficient TLS applications within forest inventories.
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Abbreviations

The following abbreviations are used in this manuscript:

Dc Horizontal distance to the centre of the sample plot
DBH Diameter at breast height
Ddom Diameter of the dominant (the largest) 100 trees per hectare
De Euclidean distance from the voxel centre to the scanner location
Dh Horizontal distance from the voxel centre to the scanner location
GIS Geographical information system
LiDAR Light detection and ranging
NFI National Forest Inventory
Nhits Number of rays (vectors) entering a voxel
Ns Number of scanning locations combined to a scanner location pattern
Nt Number of rays (vectors) that could enter a voxel without occlusion
Ntree Number of trees per hectare with a minimal height of 1.3 m
Ntree≥12cm Number of trees per hectare with a minimal DBH of 12 cm
Psl Scanner location pattern: The pattern multiple scanning locations are combined to scan a sample plot
Rvs/sr Ratio of voxel size [m] to scanner resolution [°]
TLS Terrestrial Laser Scanning
Th Horizontal transect within the sample plot. The transect following the positive x axis of the local

coordinate system
Td Diagonal transect within the sample plot, ranging from the plot centre to the corner of the sample plot

with coordinates (25,25)
Vm Mean visibility of the sample plot
Wscale Weibull scale parameter
Wshape Weibull shape parameter
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Appendix A

Table A1. Mean hits by (Euclidean) distance class and ratio voxel size to scanner resolution (Rvs/sr) class.

Rvs/sr-Class

0–0.49 0.5–0.9 1–4.9 5–9.9 10–49.9 >50

Distance Class
0–4.9 14.9 295 3203 30,744 279,571 4,653,479
5–9.9 1.8 41 457 4453 38,371 610,737

10–14.9 0.5 15 174 1695 14,538 230,408
15–19.9 0.2 8 93 909 7770 123,584
20–24.9 0.1 4 58 575 4945 78,485
25–29.9 0 3 40 400 3451 54,917
30–49.9 0 1 22 221 1913 30,431

>50 0 0 8 89 779 12,420

Figure A1. Visibility (Vm) by stand types. Ddom class 1 (Ddom ≤ 20), Ddom class 2 (Ddom > 20 and ≤40),
Ddom class 3 (Ddom > 40 and ≤60), Ddom class 4 (Ddom > 60), Ntree class 1 (Ntree ≤ 100), Ntree class 2
(Ntree > 100 and ≤500), Ntree class 3 (Ntree > 500 and ≤1000), Ntree class 4 (Ntree > 1000).
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Table A2. Model coefficients explaining Vm on a single annual NFI grid. R2 = 0.96.

Variable Model Coefficient Standardised Model Coefficient p Value

Intercept 2.781 0 <0.0001
log(Ntree) −0.251 −1.23 <0.0001

log(Wshape) −0.13 −0.408 <0.0001
log(Ddom) −0.123 −0.285 <0.0001

log(Ntree≥12cm) 0.006 0.047 <0.0001

Figure A2. Tested scanner location patterns 0 to 19.
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Figure A3. Tested scanner location patterns 20 to 39.
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Figure A4. Visibility (Vm) of scanner location pattern 0 in dependence of Ddom class and stem number
class. Ddom class 1 (Ddom ≤ 20), Ddom class 2 (Ddom > 20 and ≤40), Ddom class 3 (Ddom > 40 and ≤60),
Ddom class 4 (Ddom > 60), Ntree class 1 (Ntree ≤ 100), Ntree class 2 (Ntree > 100 and ≤500), Ntree class 3
(Ntree > 500 and ≤1000), Ntree class 4 (Ntree > 1000).
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Figure A5. Visibility (Vm) of scanner location pattern 13 in dependence of Ddom class and stem number
class. Ddom class 1 (Ddom ≤ 20), Ddom class 2 (Ddom > 20 and ≤40), Ddom class 3 (Ddom > 40 and ≤60),
Ddom class 4 (Ddom > 60), Ntree class 1 (Ntree ≤ 100), Ntree class 2 (Ntree > 100 and ≤500), Ntree class 3
(Ntree > 500 and ≤1000), Ntree class 4 (Ntree > 1000).
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Figure A6. Visibility (Vm) of scanner location pattern 24 in dependence of Ddom class and stem number
class. Ddom class 1 (Ddom ≤ 20), Ddom class 2 (Ddom > 20 and ≤40), Ddom class 3 (Ddom > 40 and ≤60),
Ddom class 4 (Ddom > 60), Ntree class 1 (Ntree ≤ 100), Ntree class 2 (Ntree > 100 and ≤500), Ntree class 3
(Ntree > 500 and ≤1000), Ntree class 4 (Ntree > 1000).
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Figure A7. Visibility (Vm) of scanner location pattern 35 in dependence of Ddom class and stem number
class. Ddom class 1 (Ddom ≤ 20), Ddom class 2 (Ddom > 20 and ≤40), Ddom class 3 (Ddom > 40 and ≤60),
Ddom class 4 (Ddom > 60), Ntree class 1 (Ntree ≤ 100), Ntree class 2 (Ntree > 100 and ≤500), Ntree class 3
(Ntree > 500 and ≤1000), Ntree class 4 (Ntree > 1000).
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Figure A8. Visibility (Vm) of scanner location pattern 36 in dependence of Ddom class and stem number
class. Ddom class 1 (Ddom ≤ 20), Ddom class 2 (Ddom > 20 and ≤40), Ddom class 3 (Ddom > 40 and ≤60),
Ddom class 4 (Ddom > 60), Ntree class 1 (Ntree ≤ 100), Ntree class 2 (Ntree > 100 and ≤500), Ntree class 3
(Ntree > 500 and ≤1000), Ntree class 4 (Ntree > 1000).
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Figure A9. Visibility (Vm) of scanner location pattern 37 in dependence of Ddom class and stem number
class. Ddom class 1 (Ddom ≤ 20), Ddom class 2 (Ddom > 20 and ≤40), Ddom class 3 (Ddom > 40 and ≤60),
Ddom class 4 (Ddom > 60), Ntree class 1 (Ntree ≤ 100), Ntree class 2 (Ntree > 100 and ≤500), Ntree class 3
(Ntree > 500 and ≤1000), Ntree class 4 (Ntree > 1000).
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