Global-Scale Patterns and Trends in Tropospheric NO2 Concentrations, 2005–2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite-Based NO2 Dataset
2.2. Ground-Based NO2 Dataset
2.3. Comparison against Ground Observations
2.4. Analysis of Spatial Patterns and Temporal Trends
2.4.1. Nonlinear Trend Analysis with PolyTrend
2.4.2. Breakpoint Analysis with DBEST
3. Results
3.1. Data Comparison against Ground Observations
3.2. Spatial Patterns
3.3. Temporal Trends
3.3.1. Trend Types
3.3.2. Breakpoints in Tropospheric NO2 Concentrations
4. Discussion
5. Conclusions
- Globally, the tropospheric NO2 concentration showed a slightly increasing long-term trend (0.004 × 1015 molecules cm−2 y−1) for the time period 2005–2018. A significant, positive change (0.03 × 1015 molecules cm−2) was observed during 2008–2011.
- Over Eastern USA, we found a negative trend of NO2 concentration (−0.033 × 1015 molecules cm−2 y−1) with two major breakpoint changes of −0.50 × 1015 and −0.08 × 1015 molecules cm−2 during 2005–2009 and 2013–2016, respectively.
- Over Western Europe, the annual average NO2 concentration decreased slowly (−0.008 × 1015 molecules cm−2 y−1) and in a nonlinear manner including two major drops of −0.08 × 1015 and −0.16 × 1015 molecules cm−2 during 2006–2008 and 2016–2018, respectively. Most of the breakpoints changes detected over Netherlands and Belgium were negative and of abrupt type.
- Over India, the steepest rising long-term trend in NO2 concentration (0.040 × 1015 molecules cm−2 y−1), among the other hot spot areas, was observed, and toward the end of the study period (2015–2017) the NO2 concentration raised even at a higher rate.
- Over China, the linear long-term trend was positive with a slight slope (0.014 × 1015 molecules cm−2 y−1). However, by using the polynomial trend method, we found a nonlinear concealed trend containing one major positive change (0.78 × 1015 molecules cm−2) during 2008–2011 and one big negative change (−0.81 × 1015 molecules cm−2) thereafter in 2011–2016.
- Over Japan, a considerable drop in NO2 concentration (−0.47 × 1015 molecules cm−2) was observed in 2005–2009, and the long-term NO2 trend became the strongest downward trend (−0.049 × 1015 molecules cm−2 y−1) as compared to all other focus areas.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paraschiv, S.; Constantin, D.-E.; Paraschiv, S.-L.; Voiculescu, M. OMI and ground-based in-situ tropospheric nitrogen dioxide observations over several important European cities during 2005–2014. Int. J. Environ. Res. Public Health 2017, 14, 1415. [Google Scholar]
- Bechle, M.J.; Millet, D.B.; Marshall, J.D. Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area. Atmos. Environ. 2013, 69, 345–353. [Google Scholar]
- Schneider, P.; Lahoz, W.; van der A, R. Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide. Atmos. Chem. Phys. Discuss. 2014, 14. [Google Scholar] [CrossRef] [Green Version]
- WHO: Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. Available online: http://www.who.int/iris/handle/10665/250141 (accessed on 21 August 2020).
- Georgoulias, A.K.; van der A, R.J.; Stammes, P.; Boersma, K.F.; Eskes, H.J. Long-term trends and trend reversal detection in two decades of tropospheric NO2 satellite observations. In Geophysical Research Abstracts; EBSCO Industries, Inc.: Birmingham, AL, USA, 2019; Volume 21. [Google Scholar]
- Streets, D.G.; Canty, T.; Carmichael, G.R.; de Foy, B.; Dickerson, R.R.; Duncan, B.N.; Edwards, D.P.; Haynes, J.A.; Henze, D.K.; Houyoux, M.R. Emissions estimation from satellite retrievals: A review of current capability. Atmos. Environ. 2013, 77, 1011–1042. [Google Scholar]
- Zhang, L.; Lee, C.S.; Zhang, R.; Chen, L. Spatial and temporal evaluation of long term trend (2005–2014) of OMI retrieved NO2 and SO2 concentrations in Henan Province, China. Atmos. Environ. 2017, 154, 151–166. [Google Scholar]
- Liu, F.; Beirle, S.; Zhang, Q.; Dörner, S.; He, K.; Wagner, T. NOx lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations. Atmos. Chem. Phys. 2016, 16, 5283. [Google Scholar]
- Zhang, R.; Wang, Y.; Smeltzer, C.; Qu, H.; Koshak, W.; Boersma, K.F. Comparing OMI-based and EPA AQS in situ NO2 trends: Towards understanding surface NOx emission changes. Atmos. Meas. Tech. 2018, 11, 3955–3967. [Google Scholar]
- Isaksen, I.S.; Berntsen, T.K.; Dalsøren, S.B.; Eleftheratos, K.; Orsolini, Y.; Rognerud, B.; Stordal, F.; Søvde, O.A.; Zerefos, C.; Holmes, C.D. Atmospheric ozone and methane in a changing climate. Atmosphere 2014, 5, 518–535. [Google Scholar]
- Solomon, S.; Portmann, R.; Sanders, R.; Daniel, J.; Madsen, W.; Bartram, B.; Dutton, E. On the role of nitrogen dioxide in the absorption of solar radiation. J. Geophys. Res. Atmos. 1999, 104, 12047–12058. [Google Scholar]
- Ordónez, C.; Richter, A.; Steinbacher, M.; Zellweger, C.; Nüß, H.; Burrows, J.; Prévôt, A. Comparison of 7 years of satellite-borne and ground-based tropospheric NO2 measurements around Milan, Italy. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Safieddine, S.; Clerbaux, C.; George, M.; Hadji-Lazaro, J.; Hurtmans, D.; Coheur, P.F.; Wespes, C.; Loyola, D.; Valks, P.; Hao, N. Tropospheric ozone and nitrogen dioxide measurements in urban and rural regions as seen by IASI and GOME-2. J. Geophys. Res. Atmos. 2013, 118, 10,555–10,566. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Wang, W.; Ciren, P.; Sun, R. An assessment of air-quality monitoring station locations based on satellite observations. Int. J. Remote Sens. 2018, 39, 6463–6478. [Google Scholar] [CrossRef]
- Lamsal, L.N.; Duncan, B.N.; Yoshida, Y.; Krotkov, N.A.; Pickering, K.E.; Streets, D.G.; Lu, Z. US NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI). Atmos. Environ. 2015, 110, 130–143. [Google Scholar]
- Boersma, K.; Eskes, H.; Dirksen, R.; van der A, R.; Veefkind, J.; Stammes, P.; Huijnen, V.; Kleipool, Q.; Sneep, M.; Claas, J. An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument. Atmos. Meas. Tech. 2011, 4, 1905–1928. [Google Scholar]
- McPeters, R.; Kroon, M.; Labow, G.; Brinksma, E.; Balis, D.; Petropavlovskikh, I.; Veefkind, J.; Bhartia, P.; Levelt, P. Validation of the Aura Ozone Monitoring Instrument Total Column Ozone Product. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Wang, W.; Wang, Q. Spatial Distribution and Temporal Trend of Tropospheric NO2 over the Wanjiang City Belt of China. Adv. Meteorol. 2018, 2018, 6597186. [Google Scholar] [CrossRef] [Green Version]
- Geddes, J.A.; Martin, R.V.; Boys, B.L.; van Donkelaar, A. Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations. Environ. Health Perspect. 2016, 124, 281–289. [Google Scholar]
- Munir, S.; Habeebullah, T.M.; Seroji, A.R.; Gabr, S.S.; Mohammed, A.M.; Morsy, E.A. Quantifying temporal trends of atmospheric pollutants in Makkah (1997–2012). Atmos. Environ. 2013, 77, 647–655. [Google Scholar] [CrossRef]
- Tong, D.Q.; Lamsal, L.; Pan, L.; Ding, C.; Kim, H.; Lee, P.; Chai, T.; Pickering, K.E.; Stajner, I. Long-term NOx trends over large cities in the United States during the great recession: Comparison of satellite retrievals, ground observations, and emission inventories. Atmos. Environ. 2015, 107, 70–84. [Google Scholar] [CrossRef]
- De Foy, B.; Lu, Z.; Streets, D.G. Impacts of control strategies, the Great Recession and weekday variations on NO2 columns above North American cities. Atmos. Environ. 2016, 138, 74–86. [Google Scholar]
- Gruzdev, A.; Elokhov, A. Validation of Ozone Monitoring Instrument NO2 measurements using ground based NO2 measurements at Zvenigorod, Russia. Int. J. Remote Sens. 2010, 31, 497–511. [Google Scholar] [CrossRef]
- Duncan, B.N.; Lamsal, L.N.; Thompson, A.M.; Yoshida, Y.; Lu, Z.; Streets, D.G.; Hurwitz, M.M.; Pickering, K.E. A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005–2014). J. Geophys. Res. Atmos. 2016, 121, 976–996. [Google Scholar] [CrossRef] [Green Version]
- Krotkov, N.A.; Lamsal, L.N.; Celarier, E.A.; Swartz, W.H.; Marchenko, S.V.; Bucsela, E.J.; Chan, K.L.; Wenig, M.; Zara, M. The version 3 OMI NO2 standard product. Atmos. Meas. Tech. 2017, 10, 3133–3149. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, K.; Eskes, H.; Sudo, K.; Boersma, K.F.; Bowman, K.; Kanaya, Y. Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation. Atmos. Chem. Phys. 2017, 17, 807–837. [Google Scholar]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Schaepman, M.E.; De Bruin, S. Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Glob. Chang. Biol. 2012, 18, 642–655. [Google Scholar] [CrossRef]
- Jamali, S.; Jönsson, P.; Eklundh, L.; Ardö, J.; Seaquist, J. Detecting changes in vegetation trends using time series segmentation. Remote Sens. Environ. 2015, 156, 182–195. [Google Scholar] [CrossRef]
- Jamali, S.; Seaquist, J.; Eklundh, L.; Ardö, J. Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel. Remote Sens. Environ. 2014, 141, 79–89. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Zeileis, A.; Schaepman, M.E. Shifts in global vegetation activity trends. Remote Sens. 2013, 5, 1117–1133. [Google Scholar] [CrossRef] [Green Version]
- Burrell, A.L.; Evans, J.P.; Liu, Y. Detecting dryland degradation using time series segmentation and residual trend analysis (TSS-RESTREND). Remote Sens. Environ. 2017, 197, 43–57. [Google Scholar] [CrossRef]
- Horion, S.; Prishchepov, A.V.; Verbesselt, J.; de Beurs, K.; Tagesson, T.; Fensholt, R. Revealing turning points in ecosystem functioning over the Northern Eurasian agricultural frontier. Glob. Chang. Biol. 2016, 22, 2801–2817. [Google Scholar] [CrossRef] [PubMed]
- NASA’s Aura: New Eye for Clean Air. Available online: https://www.nasa.gov/vision/earth/lookingatearth/aura_first.html (accessed on 21 August 2020).
- Levelt, P.; Noordhoek, R. OMI Algorithm Theoretical Basis Document Volume I: OMI Instrument, Level 0-1b Processor, Calibration & Operations; Technology Report ATBD-OMI-01, Version 2002, 1; NASA: Washington, DC, USA, 2002.
- Ziemke, J.R.; Strode, S.A.; Douglass, A.R.; Joiner, J.; Vasilkov, A.; Oman, L.D.; Liu, J.; Strahan, S.E.; Bhartia, P.K.; Haffner, D.P. A cloud-ozone data product from Aura OMI and MLS satellite measurements. Atmos. Meas. Tech. 2017, 10, 4067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobber, M.R.; Dirksen, R.J.; Levelt, P.F.; van den Oord, G.H.; Voors, R.H.; Kleipool, Q.; Jaross, G.; Kowalewski, M.; Hilsenrath, E.; Leppelmeier, G.W. Ozone monitoring instrument calibration. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1209–1238. [Google Scholar] [CrossRef]
- Krotkov, N.A.; Lamsal, L.N.; Marchenko, S.V.; Celarier, E.A.; Bucsela, E.J.; Swartz, W.H.; Joiner, J. OMNO2d: OMI/Aura NO2 Cloud-Screened Total and Tropospheric Column L3 Global Gridded 0.25 degree × 0.25 degree V3. Available online: https://doi.org/10.5067/Aura/OMI/DATA3007 (accessed on 22 February 2019).
- US Environmental Protection Agency. Air Quality System Data Mart. Available online: https://www.epa.gov/airdata (accessed on 29 March 2019).
- Gilliam, J.; Hall, E. Reference and Equivalent Methods Used to Measure National Ambient Air Quality Standards (NAAQS) Criteria Air Pollutants—Volume IUS Environmental Protection Agency, Washington, DC; EPA/600/R-16/139; US Environmental Protection Agency: Washington, DC, USA, 2016. [Google Scholar]
- Quality Assurance Guidance Document 2.3—Reference Method for the Determination of Nitrogen Dioxide in the Atmosphere (Chemiluminescence). Available online: https://www3.epa.gov/ttn/amtic/files/ambient/pm25/qa/no2.pdf (accessed on 29 March 2019).
- Ialongo, I.; Herman, J.; Krotkov, N.; Lamsal, L.; Boersma, K.F.; Hovila, J.; Tamminen, J. Comparison of OMI NO2 observations and their seasonal and weekly cycles with ground-based measurements in Helsinki. Atmos. Meas. Tech. 2016, 9, 5203–5212. [Google Scholar] [CrossRef] [Green Version]
- Gideon, S. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar]
- Peters, E.; Wittrock, F.; Großmann, K.; Frieß, U.; Richter, A.; Burrows, J. Formaldehyde and nitrogen dioxide over the remote western Pacific Ocean: SCIAMACHY and GOME-2 validation using ship-based MAX-DOAS observations. Atmos. Chem. Phys. 2012, 12, 11179. [Google Scholar] [CrossRef] [Green Version]
- Yuchechen, A.; Lakkis, S.G.; Canziani, P. Linear and non-linear trends for seasonal NO2 and SO2 concentrations in the Southern Hemisphere (2004−2016). Remote Sens. 2017, 9, 891. [Google Scholar] [CrossRef] [Green Version]
- Krotkov, N.A.; McLinden, C.A.; Li, C.; Lamsal, L.N.; Celarier, E.A.; Marchenko, S.V.; Swartz, W.H.; Bucsela, E.J.; Joiner, J.; Duncan, B.N. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos. Chem. Phys. 2016, 16, 4605. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, J. Tropospheric SO2 and NO2 in 2012–2018: Contrasting views of two sensors (OMI and OMPS) from space. Atmos. Environ. 2020, 223, 117214. [Google Scholar] [CrossRef]
- Martins, D.K.; Najjar, R.G.; Tzortziou, M.; Abuhassan, N.; Thompson, A.M.; Kollonige, D.E. Spatial and temporal variability of ground and satellite column measurements of NO2 and O3 over the Atlantic Ocean during the Deposition of Atmospheric Nitrogen to Coastal Ecosystems Experiment. J. Geophys. Res. Atmos. 2016, 121, 14175–14187. [Google Scholar] [CrossRef] [Green Version]
- Jamali, S. Analyzing Vegetation Trends with Sensor Data from Earth Observation Satellites. Ph.D. Thesis, Lund University, Lund, Sweden, 2014. [Google Scholar]
- Bishop, G.A.; Stedman, D.H. The recession of 2008 and its impact on light-duty vehicle emissions in three western United States cities. Environ. Sci. Technol. 2014, 48, 14822–14827. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, P.; Boersma, K.F. Reductions in nitrogen oxides over Europe driven by environmental policy and economic recession. Sci. Rep. 2012, 2, 265. [Google Scholar] [CrossRef]
- Lin, N.; Wang, Y.; Zhang, Y.; Yang, K. A large decline of tropospheric NO2 in China observed from space by SNPP OMPS. Sci. Total Environ. 2019, 675, 337–342. [Google Scholar] [CrossRef]
- Souri, A.H.; Choi, Y.; Jeon, W.; Woo, J.H.; Zhang, Q.; Kurokawa, J.I. Remote sensing evidence of decadal changes in major tropospheric ozone precursors over East Asia. J. Geophys. Res. Atmos. 2017, 122, 2474–2492. [Google Scholar] [CrossRef]
- Abel, C.; Horion, S.; Tagesson, T.; Brandt, M.; Fensholt, R. Towards improved remote sensing based monitoring of dryland ecosystem functioning using sequential linear regression slopes (SeRGS). Remote Sens. Environ. 2019, 224, 317–332. [Google Scholar] [CrossRef]
Parameter | Description | Set Value |
---|---|---|
Algorithm | The algorithm used by DBEST (either generalization or change detection) | change detection |
Data type | Cyclical for time-series with seasonal cycle, and non-cyclical for time-series without seasonal cycle | non-cyclical |
Seasonality | The seasonality period for cyclical data, and empty for non-cyclical data | empty |
First level-shift-threshold | The lowest absolute difference allowed in input data before and after a breakpoint | 0.1 × 1015 molecules cm−2 |
Duration-threshold | The lowest time period (time steps) within which the shift in the mean level before and after the breakpoint persists | 2 years |
Second level-shift-threshold | The lowest absolute difference allowed in the means of the data calculated over the duration-threshold before and after the breakpoint | 0.5 × 1015 molecules cm−2 |
Distance-threshold | An internal fitting parameter computed by DBEST | default |
Breakpoint number | The number of greatest breakpoints of interest for detection | 2 |
Alpha (α) | Statistical significance level used for testing significance of detected breakpoints | 0.05 |
Country | Average NO2 Concentration | Max NO2 Concentration | Average Range | Average Trend | Strongest Trend Slope | |
---|---|---|---|---|---|---|
+ | − | |||||
USA | 0.38 | 11.25 | 10.87 | −0.033 | 0.055 | −0.732 |
The Netherlands | 4.63 | 9.34 | 4.70 | −0.132 | 0.000 | −0.298 |
Belgium | 3.43 | 9.26 | 5.83 | −0.143 | 0.000 | −0.285 |
Germany | 1.67 | 11.34 | 9.72 | −0.035 | 0.096 | −0.361 |
UK | 0.93 | 7.87 | 6.94 | −0.089 | 0.016 | −0.348 |
Spain | 0.60 | 5.66 | 5.06 | −0.044 | 0.012 | −0.336 |
Italy | 1.00 | 11.84 | 10.84 | −0.070 | 0.047 | −0.527 |
France | 1.12 | 7.42 | 6.30 | −0.042 | 0.015 | −0.309 |
India | 0.43 | 9.22 | 8.79 | 0.040 | 0.302 | −0.031 |
China | 0.36 | 28.24 | 27.88 | 0.014 | 0.363 | −0.946 |
Japan | 0.91 | 14.28 | 13.37 | −0.049 | 0.036 | −0.671 |
Global | 0.20 | 28.24 | 28.04 | 0.004 | 0.363 | −0.969 |
Trend Types 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Lin. + | Lin. − | Quad. + | Quad. − | Cub. + | Cub. − | Conc. + | Conc. − | Cell Count | |
USA | 7.51 | 24.90 | 1.17 | 25.98 | 1.20 | 16.82 | 8.15 | 14.27 | 8052 |
The Netherlands | 0.00 | 82.35 | 0.00 | 0.00 | 0.00 | 13.73 | 0.00 | 3.92 | 51 |
Belgium | 0.00 | 98.04 | 0.00 | 0.00 | 0.00 | 1.96 | 0.00 | 0.00 | 51 |
Germany | 4.51 | 68.44 | 0.41 | 2.46 | 0.41 | 5.74 | 2.87 | 15.16 | 244 |
UK | 0.00 | 94.23 | 0.00 | 2.41 | 0.00 | 0.96 | 0.96 | 1.44 | 416 |
Spain | 0.13 | 6.44 | 0.00 | 57.96 | 0.13 | 10.10 | 2.28 | 22.98 | 792 |
Italy | 0.59 | 75.81 | 0.00 | 14.45 | 0.00 | 2.07 | 3.83 | 3.25 | 339 |
France | 0.00 | 87.31 | 0.00 | 7.02 | 0.00 | 0.90 | 1.34 | 3.43 | 670 |
India | 84.36 | 0.03 | 9.64 | 0.03 | 4.53 | 0.03 | 1.07 | 0.34 | 3840 |
China | 39.19 | 0.85 | 10.89 | 0.53 | 2.64 | 0.09 | 33.46 | 12.35 | 10259 |
Japan | 10.09 | 43.03 | 0.00 | 11.87 | 0.89 | 13.06 | 9.19 | 11.87 | 337 |
Global | 54.47 | 7.51 | 6.19 | 3.58 | 4.56 | 1.80 | 14.33 | 7.56 | 123256 |
Major Change | Average Change | Range of Change Values | Change Type (%) | |||
---|---|---|---|---|---|---|
Positive | Negative | Abrupt | Non-abrupt | |||
USA | 1.20 | −5.60 | −0.60 | 6.80 | 10.20 | 89.80 |
The Netherlands | - | −2.59 | −1.54 | 1.59 | 35.29 | 64.71 |
Belgium | - | −2.50 | −1.66 | 1.75 | 56.86 | 43.14 |
Germany | 1.44 | −3.28 | −1.37 | 4.72 | 22.54 | 77.46 |
UK | 0.98 | −2.57 | −0.98 | 3.56 | 14.77 | 85.23 |
Spain | 0.54 | −2.50 | −0.54 | 3.04 | 9.10 | 90.90 |
Italy | 1.23 | −3.81 | −0.91 | 5.04 | 17.70 | 82.30 |
France | 0.53 | −3.11 | −0.83 | 3.64 | 9.25 | 90.75 |
India | 2.13 | −1.01 | 0.41 | 3.14 | 2.23 | 97.77 |
China | 6.65 | −12.41 | 0.28 | 19.06 | 22.13 | 77.87 |
Japan | 0.76 | −3.78 | −0.73 | 4.54 | 16.02 | 83.98 |
Global | 6.68 | −12.41 | 0.09 | 19.06 | 4.15 | 95.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamali, S.; Klingmyr, D.; Tagesson, T. Global-Scale Patterns and Trends in Tropospheric NO2 Concentrations, 2005–2018. Remote Sens. 2020, 12, 3526. https://doi.org/10.3390/rs12213526
Jamali S, Klingmyr D, Tagesson T. Global-Scale Patterns and Trends in Tropospheric NO2 Concentrations, 2005–2018. Remote Sensing. 2020; 12(21):3526. https://doi.org/10.3390/rs12213526
Chicago/Turabian StyleJamali, Sadegh, Daniel Klingmyr, and Torbern Tagesson. 2020. "Global-Scale Patterns and Trends in Tropospheric NO2 Concentrations, 2005–2018" Remote Sensing 12, no. 21: 3526. https://doi.org/10.3390/rs12213526
APA StyleJamali, S., Klingmyr, D., & Tagesson, T. (2020). Global-Scale Patterns and Trends in Tropospheric NO2 Concentrations, 2005–2018. Remote Sensing, 12(21), 3526. https://doi.org/10.3390/rs12213526