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Abstract: Nitrogen dioxide (NO2) is an important air pollutant with both environmental and
epidemiological effects. The main aim of this study is to analyze spatial patterns and temporal
trends in tropospheric NO2 concentrations globally using data from the satellite-based Ozone
Monitoring Instrument (OMI). Additional aims are to compare the satellite data with ground-based
observations, and to find the timing and magnitude of greatest breakpoints in tropospheric NO2

concentrations for the time period 2005–2018. The OMI NO2 concentrations showed strong
relationships with the ground-based observations, and inter-annual patterns were especially well
reproduced. Eastern USA, Western Europe, India, China and Japan were identified as hotspot
areas with high concentrations of NO2. The global average trend indicated slightly increasing NO2

concentrations (0.004 × 1015 molecules cm−2 y−1) in 2005–2018. The contribution of different regions
to this global trend showed substantial regional differences. Negative trends were observed for
most of Eastern USA, Western Europe, Japan and for parts of China, whereas strong, positive trends
were seen in India, parts of China and in the Middle East. The years 2005 and 2007 had the highest
occurrence of negative breakpoints, but the trends thereafter in general reversed, and the highest
tropospheric NO2 concentrations were observed for the years 2017–2018. This indicates that the
anthropogenic contribution to air pollution is still a major issue and that further actions are necessary
to reduce this contribution, having a substantial impact on human and environmental health.

Keywords: tropospheric NO2 concentrations; nitrogen dioxide; OMI; spatio-temporal trends; DBEST;
PolyTrend; time-series analysis; breakpoint detection

1. Introduction

Air pollution is one of the main threats to human health, ecosystems and climate on a global
scale [1,2]. The global population is growing substantially, and more than half of the world’s
population now live in urban areas. Large urban areas and high population densities are hotspots for
air pollution [1,3]. According to the World Health Organization (WHO), about 3 million people die
annually due to ambient air pollution, mainly in low- and middle-income countries, and about 90% of
the world’s population are exposed to air that exceeds the WHO air quality guidelines [4].

Nitrogen dioxide (NO2) is one of the most important air pollutants in the atmosphere [5] and linked
to a number of both environmental and epidemiological effects [2,6]. It is formed in processes where
nitrogen reacts with oxygen in high temperatures, e.g., through lightning and the combustion of
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fuels [7]. The main anthropogenic sources of NO2 emissions are transport, industry processes and
energy production [8]. Some of the main environmental effects linked to high NO2 concentrations are
acidification, eutrophication and photochemical formation of ozone (O3) [6,7,9]. NO2 also modifies the
radiative balance in the atmosphere and influences the atmospheric lifetime of greenhouse gases [10,11].
NO2 is toxic at high concentrations, and the epidemiological effects include respiratory illnesses
such as lung cancer, asthma exacerbations and cardiopulmonary mortality [2,5,7,12]. NO2 has a
short atmospheric lifetime, on average 3.8 ± 1.0 h (mean ± 1 standard deviation) [8] as it reacts with
sunlight, which triggers the production of hydroxyl radical OH [13]. Therefore, high concentrations
of tropospheric NO2 are mainly confined to its emission sources, which in general are urban and
industrialized areas [2,5].

Monitoring of NO2 concentrations can be done with ground-based monitoring stations. However,
monitoring stations tend to be clustered in city centers, have a small spatial coverage and are often
lacking in developing countries [2,14]. Ground-based air quality monitoring is thereby unevenly
distributed, and large areas are under-represented [14,15]. An alternative approach to monitor air
pollution is the usage of remotely sensed satellite data that increase the spatial coverage. Major advances
have been made over the past decades to use satellite sensors to monitor atmospheric pollutants [1].
Satellite monitoring of NO2 started in 1995 with the Global Ozone Monitoring Experiment (GOME)
instrument [3]. Since then, other satellite instruments have been used to monitor tropospheric NO2,
such as GOME-2, the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY
(SCIAMACHY), the Ozone Monitoring Instrument (OMI) and the recent TROPOspheric Monitoring
Instrument (TROPOMI) aboard Sentinel-5 Precursor. Out of these instruments, OMI offers the
longest continuous monitoring record (ongoing since 2004) and has a relatively high spatial resolution
(13 × 24 km2 at nadir) [6,7]. Potential errors in estimating NO2 concentrations from satellite data
include uncertainties in surface albedo, aerosols, cloud parameters, slant column density and air mass
factor calculations [2,6,16]. Therefore, for satellite-based products to be trustworthy, the data need to be
compared against other observations of NO2 concentrations, such as from ground-based monitoring
stations [17].

Studies of long-term trends in air pollution provide information about likely changes and distribution
patterns that are useful for assessing the effects of emission mitigation efforts [18–20]. Such studies
investigating NO2 trends using OMI data and validating derived results against ground-based
measurements have been performed previously. For instance, there are studies on NO2 trends over
USA [2,15,21], over China [22], Russia [23], in eight European cities [1] and in cities around the globe [24].
These studies have reported declining NO2 trends in their respective study areas and relationship
between OMI and ground-based measurements with correlation coefficients ranging between 0.3 and
0.93. NO2 trend studies on a global scale have also been performed previously using various satellite
sensors, but these studies have overall found both negative and positive trends [3,5,19,25,26].

For trend analysis, one of the most widely used methods is the ordinary least-squares (OLS) linear
regression, as performed in most of the above-mentioned studies. These simple linear models only
provide partial insights on the mechanism essential for an appropriate attribution of drivers of changes.
Actual changes can abruptly occur caused by climatic extreme events, anthropogenic mitigations
efforts or changes in contributing factors to air pollution. These changes may only be visible for a short
period in time, despite having long-lasting effects, and will therefore remain undetected using such
traditional linear trend models [27–29].

Recent advances in time-series and breakpoint analysis open new possibilities for studying
tropospheric NO2 concentrations observed by Earth observation satellites, as they allow for the
detection of nonlinear trends and turning points in the concentrations. Nonlinear trend models
(e.g., PolyTrend) can separate trends into linear and nonlinear trend types [30]. Piecewise linear
models, such as Break For Additive Season and Trend (BFAST) [27] or Detecting Breakpoints and
Estimating Segments in Trend (DBEST) [29], allow for separating time-series into individual segments,
capturing dynamics in specific explanatory variables [28,31–33]. By using these methods, dynamics in
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tropospheric NO2 concentrations may be better characterized by capturing specific atmospheric
conditions and stages of pollution development through time.

Hence, the main aim of this paper is to analyze global and regional patterns and trends in
tropospheric NO2 concentrations using a continuous time-series of tropospheric NO2 concentrations
from the OMI instrument from 2005 to 2018 with novel methods within time-series and breakpoint
analyses. Specifically, we aim at (1) comparing the OMI data against NO2 concentrations from
ground-based monitoring stations, (2) analyzing spatial patterns and temporal (nonlinear) trends,
(3) investigating whether regional differences can be found in global NO2 concentrations and
(4) spatially explicitly detecting major breakpoints in NO2 concentrations and estimating their timing
and magnitude at global scale.

2. Materials and Methods

2.1. Satellite-Based NO2 Dataset

Aura is one of the National Aeronautics and Space Administration’s (NASA) Earth Observing
System (EOS) satellites. It was launched in 2004 with the mission to collect data of global air
pollution and to monitor the chemistry and dynamics of Earth’s atmosphere on a daily basis [34].
Aboard Aura there are four instruments, one of which is OMI [34,35]. OMI is a nadir-looking push
broom hyperspectral imaging spectrometer that measures reflected solar radiation in the ultraviolet and
the visible light (UV/VIS) channels of the electromagnetic spectrum (wavelength range of 264–504 nm)
with a spectral resolution of 0.42–0.63 nm [36,37].

We used the OMI/Aura level 3 NO2 (OMNO2d) standard product (the cloud screened subset 4)
downloaded from NASA’s Earth Observation data collection [38]. The OMNO2d product contains
composites of daily total tropospheric column NO2 data with a spatial resolution of 0.25◦ × 0.25◦.
In this study, we used OMI data from 1 January 2005 until 31 December 2018 (in total, 5092 daily
OMNO2d files considering 21 gaps in the daily data files). We also excluded all pixels with less than
50 days of data per year, in order to minimize influences of errors in the retrieval process.

2.2. Ground-Based NO2 Dataset

The ground-based data are annual averages (n = 6093) of daily observations of atmospheric
NO2 concentrations (n = 1,706,830) from monitoring stations in the USA between the years 2005 to
2018, provided by the United States Environmental Protection Agency (US EPA) [39]. The reference
method used by the US EPA for collection of ambient NO2 is chemiluminescence analysis [40] based on
the reaction of nitric oxide (NO) with ozone (O3). The principle of the method is that a sample of
ambient gas enters a reaction chamber where NO molecules react with O3 to form NO2. The reaction
produces a quantity of light, a phenomenon known as chemiluminescence. The intensity of the light,
which is proportional to the concentration of NO2, is then measured to determine the concentration of
NO2 [40,41].

2.3. Comparison against Ground Observations

The daily OMI NO2 data were first averaged monthly, and thereafter annually. Annual averages
were used since this study focuses on long-term trends, and it is therefore the inter-annual variability
that must be validated. The annual averages were then compared to corresponding ground-based
NO2 data in order to verify the validity of OMI NO2 product. Since the two datasets use different
units (1015 molecules cm−2 for the satellite-based data and part per billion (ppb) for the ground-based
data), we calculated z-scores using the z-statistic ((data value − average)/standard deviation) for both
datasets. The relationships between the two datasets were quantified using the root-mean-square error
(RMSE), and by goodness-of-fit when fitting the ordinary least-squares linear regression on the z-scores
for the two datasets.
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2.4. Analysis of Spatial Patterns and Temporal Trends

The spatial patterns were analyzed by averaging all OMI NO2 data pixel-wise over the study
period. For analyzing the temporal trends, time-series of annual mean NO2 concentration were first
calculated. Then we applied PolyTrend to analyze and classify trends in the annual NO2 time-series
2005–2018. We also applied the DBEST program to detect the greatest significant breakpoints in the
annual NO2 time-series and estimate their timing and magnitude. The PolyTrend and DBEST analyses
were both performed at pixel level having a statistical significance threshold (α) of 0.05. Pixels with
an absolute value of annual average tropospheric NO2 concentration below the OMI detection limit
(0.5 × 1015 molec.cm−2) [42] were excluded from the trend analyses.

2.4.1. Nonlinear Trend Analysis with PolyTrend

PolyTrend is an automated method with an algorithm that accounts for nonlinear change in a
trend [30]. It uses a polynomial fitting-based scheme that divides trends into linear and nonlinear trend
behaviors and then subdivides the nonlinear trends into classes of cubic, quadratic, and concealed
trend types. The linear trend type means that the trend line has a uniform direction over the study
period (either increasing or decreasing). The quadratic trend type is a trend line with one bend in
its curve, implying that the cell has experienced one direction-change in its trend line over the study
period (i.e., first positive and then negative trend, or vice versa). The cubic trend type means that the
trend line has two bends, implying that corresponding cell has experienced more than one change
in the trend direction over the study period (i.e., first decreasing followed by increasing and then
again decreasing change, or vice versa). The concealed trend type consists of cells with either cubic or
quadratic trend types, but with no significant net change in tropospheric NO2 concentrations over the
study period. We refer to Jamali et al. [30] for more details.

2.4.2. Breakpoint Analysis with DBEST

DBEST was developed for analyzing time-series of satellite sensor data, and it uses a segmentation
method for two main algorithms of trend generalization and change detection [29]. We used its
change detection algorithm in order to detect breakpoints with greatest change in tropospheric NO2

concentrations. Our input data in DBEST were the pixel-wise time-series of the annual average NO2

concentrations data.
First, DBEST tests for the occurrence of discontinuities, in this case of tropospheric NO2

concentrations, by analyzing the absolute differences between consecutive data points and comparing
this to the first level-shift-threshold set by the user (Table 1). If the difference is greater than the first
level-shift-threshold, then it tests whether or not this difference caused a significant shift in the mean
level of tropospheric NO2 concentrations and persisted over the duration-threshold. If the mean
level before and after this identified discontinuity is greater than the second level-shift-threshold,
DBEST considers this a level-shift point. DBEST then repeats this process for all data points, sorts them
into descending order based on the absolute value of tropospheric NO2 concentrations difference,
and tests if the spacing between a data point and an identified level-shift point is at least the
duration-threshold. The trend component of the time-series is then segmented using a peak/valley
detector function and a method that draws a straight line through detected peak/valley points and
compares perpendicular distances to the non-peak and non-valley points between them with the
distance-threshold parameter. If the distance is greater than this threshold, these points are added
to the set of detected peak/valley points and level-shift points, all of which are called turning points.
Detected turning points are then fit to the tropospheric NO2 concentrations trend using piecewise
linear modelling, and those turning points that minimize the Bayesian Information Criterion (BIC) [43]
are considered breakpoints. Here, we used the change detection algorithm of DBEST with a set
value (2) for the number of significant breakpoints of interest for detection (Table 1), and as such,
DBEST identifies a final set of greatest significant breakpoints as requested by user. The results of
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the change detection algorithm include the starting time of the breakpoints (break date); the change
duration, or the temporal period over which this change occurred; the change value, or the amount of
change that occurred over this time period; the change type, whether the change is abrupt (level-shift)
or non-abrupt; the change significance, based on the statistical significance level (α = 0.05).

Table 1. DBEST setting parameters, description and the threshold values used in this study.

Parameter Description Set Value

Algorithm
The algorithm used by DBEST

(either generalization or
change detection)

change detection

Data type
Cyclical for time-series with

seasonal cycle, and non-cyclical for
time-series without seasonal cycle

non-cyclical

Seasonality
The seasonality period for cyclical

data, and empty for
non-cyclical data

empty

First level-shift-threshold
The lowest absolute difference

allowed in input data before and
after a breakpoint

0.1 × 1015 molecules cm−2

Duration-threshold

The lowest time period
(time steps) within which the shift
in the mean level before and after

the breakpoint persists

2 years

Second level-shift-threshold

The lowest absolute difference
allowed in the means of the data

calculated over the
duration-threshold before and

after the breakpoint

0.5 × 1015 molecules cm−2

Distance-threshold An internal fitting parameter
computed by DBEST default

Breakpoint number
The number of greatest
breakpoints of interest

for detection
2

Alpha (α)
Statistical significance level used

for testing significance of
detected breakpoints

0.05

Here, the annual average tropospheric NO2 concentrations time-series data were set as non-cyclical
type (Table 1). The first level-shift-threshold was set to 0.1 × 1015 molecules cm−2 and the second
level-shift-threshold to 0.5 × 1015 molecules cm-2. It is recommended that the first level-shift-threshold
be set to a smaller value than that for the second level-shift-threshold [29]. Therefore, if a detected change
was quick (between two consecutive observations/years) and large enough (0.1 × 1015 molecules cm−2)
to shift the mean over the user-set duration (2 years) by 0.5 × 1015 molecules cm−2 before and after the
point, it was characterized as an abrupt change, otherwise it was considered a non-abrupt change,
provided that it was a significant breakpoint. The distance-threshold is normally set to be a default
that is derived internally by DBEST.

3. Results

3.1. Data Comparison against Ground Observations

The comparison of OMI data against ground-based observations showed a strong relationship
(Pearson’s correlation coefficient R = 0.65) that was statistically significant (p-value < 0.01) (Figure 1).
The relationship was equally strong (R = 0.65) when separating the analysis into a comparison of
how well OMI captured the spatial variability (data averaged site-wise; Figure 1b). The OMI data
were most successful at reproducing the inter-annual variability (data averaged annually), for which
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the observations were in a very close relationship with the ground-based observations (R = 0.99)
(Figure 1c). The ordinary least-squares linear trend in annual averages of the z-scores in OMI NO2

concentrations (−0.220 ± 0.027 z-scores y−1; R2 = 0.85) was very similar to the corresponding trend in
the ground-based NO2 concentrations (−0.218 ± 0.022 z-scores y−1; R2 = 0.83).Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 18 
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Figure 1. Comparison between z-scores from Ozone Monitoring Instrument (OMI)-based and
ground-based tropospheric NO2 concentrations. (a) All annual averages of the ground-based stations
against the annual averages of the corresponding OMI pixels. (b) The site-wise average for each
ground-based station against the corresponding OMI-based pixels. (c) The annual averages of all
ground-based stations against the annual averages of all corresponding OMI-based pixels. Included are
also the ordinary least-squares linear regression (red) with corresponding regression equation and
coefficient of determination (R2), the root-mean-square errors (RMSE) and the number of data points
(n). Slope of the linear regression fit indicates Pearson’s correlation coefficient (R). The black lines are
the one-to-one lines.

3.2. Spatial Patterns

There is a distinct difference in the NO2 concentration distribution between the northern and southern
hemispheres, where the higher concentrations are almost exclusively found in the northern hemisphere
(Figure 2a). The primary hotspot areas are USA (Figure 2b), Western Europe (Figure 2c), and India,
China and Japan (Figure 2d). While the mean global NO2 concentration was 0.2 × 1015 molecules cm−2,
The Netherlands, Belgium, Germany, France, UK, Italy and Spain had the highest average NO2

concentration (on average 1.91 × 1015 molecules cm−2), followed by Japan (0.91 × 1015 molecules cm−2),
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India(0.43 × 1015 molecules cm−2), USA(0.38 × 1015 molecules cm−2)andChina(0.36 × 1015 molecules cm−2)
(Table 2). The maximum NO2 concentration was for China (28.24 × 1015 molecules cm−2) followed by Japan
(14.28 × 1015 molecules cm−2), Italy (11.84 × 1015 molecules cm−2), Germany (11.34 × 1015 molecules cm−2),
USA (11.25 × 1015 molecules cm−2) and India (9.22 × 1015 molecules cm−2). Due to their high concentrations
in tropospheric NO2, we selected these areas as focus areas used for further analysis in the remaining part of
the study.
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Figure 2. Spatial distribution of tropospheric NO2 concentrations (1015 molecules cm−2) averaged over
the years 2005–2018: (a) globally; (b) USA; (c) Europe; (d) India, China, Japan. Pixels with less than
50 days of data per year were excluded.

Table 2. The average, maximum and range of tropospheric NO2 concentrations (1015 molecules cm−2),
2005–2018, for the focus areas. Included are the trends in tropospheric NO2 concentrations averaged
country-wise, as well as their strongest positive and negative trend slope (1015 molecules cm−2 y−1).

Country
Average NO2
Concentration

Max NO2
Concentration

Average Range Average Trend Strongest Trend Slope

+ −

USA 0.38 11.25 10.87 −0.033 0.055 −0.732

The Netherlands 4.63 9.34 4.70 −0.132 0.000 −0.298

Belgium 3.43 9.26 5.83 −0.143 0.000 −0.285

Germany 1.67 11.34 9.72 −0.035 0.096 −0.361

UK 0.93 7.87 6.94 −0.089 0.016 −0.348

Spain 0.60 5.66 5.06 −0.044 0.012 −0.336

Italy 1.00 11.84 10.84 −0.070 0.047 −0.527

France 1.12 7.42 6.30 −0.042 0.015 −0.309

India 0.43 9.22 8.79 0.040 0.302 −0.031

China 0.36 28.24 27.88 0.014 0.363 −0.946

Japan 0.91 14.28 13.37 −0.049 0.036 −0.671

Global 0.20 28.24 28.04 0.004 0.363 −0.969
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3.3. Temporal Trends

Significant trends in NO2 concentrations were observed largely over land and to a much
lower degree over oceans along boundaries with lands (Figure 3). With the insignificant no-trends
masked out, 79.55% of the remaining cells had positive trend whereas 20.45% had negative trend.
The increasing trends were distributed over large parts of land, but the decreasing trends were
generally observed over USA (Figure 3a), Western Europe (Figure 3b), Japan and the eastern
parts of China (Figure 3c). The global average trend in 2005–2018 was slightly increasing
(0.004 × 1015 molecules cm−2 y−1); however, the regional negative trends were strong enough to
compensate for the global rising trend of NO2 concentrations over larger areas. Globally, the strongest
negative trend was −0.969 × 1015 molecules cm−2 y−1 while the strongest positive trend was only
0.363 × 1015 molecules cm−2 y−1 (Table 2).

Areas with high average NO2 concentrations, except India and western parts of
China (Figure 2), generally showed negative trends (Figure 3; Table 2). On average,
the strongest negative trends were found in Europe (Belgium: −0.143 × 1015 molecules cm−2 y−1;
Netherlands: −0.132 × 1015 molecules cm−2 y−1; U.K.: −0.089 × 1015 molecules cm−2 y−1;
Italy: −0.070 × 1015 molecules cm−2 y−1) followed by Japan (−0.049 × 1015 molecules cm−2 y−1)
and USA (−0.033 × 1015 molecules cm−2 y−1). The average trend was positive over India and
the Middle East. The strongest positive average trend (0.040 × 1015 molecules cm−2 y−1) was for
India. Although the strongest negative trend in the focus areas (−0.946 × 1015 molecules cm−2 y−1)
was for China, the average trend for the entire country was just slightly increasing
(0.014 × 1015 molecules cm−2 y−1) because strong increasing trends (0.363 × 1015 molecules cm−2 y−1)
were observed over large parts of the country as well (Figure 3c).

3.3.1. Trend Types

In a global context, the linear trend was the dominant trend type with a spatial coverage of
61.98%, out of which 54.47% were positive and 7.51% negative (Figure 4a, Table 3). The concealed
trend was the second trend type with 21.89% spatial coverage and mainly found over east of China
and Southwestern Europe (Figure 4c,d). For the remaining trends, 9.77% were quadratic and 6.36%
were cubic, out of which the majority was found over the eastern parts of USA (Figure 4a) and west of
Europe (Spain and Portugal) (Figure 4b,c). In the focus areas, the dominant trend type was different
for different areas. In the USA, the nonlinear trends (67.59%) were spatially more than the linear trends
(32.41%) (Figure 4a, Table 3). In the focus areas in Europe, the most common trend type was linear
(negative), except for Spain where the nonlinear trends, particularly the quadratic negative trends
(57.96%), were dominant (Figure 4c, Table 3). The most common trend type over India was linear
(increasing) (84.36%), and over Japan was linear (decreasing) (43.03%). China was the country with
the largest proportion of nonlinear concealed trends in NO2 concentration (45.81%); it was also the
second country with the highest proportion of linearly increasing trends (39.19%) after India (84.36%)
(Figure 4c,d, Table 3).

3.3.2. Breakpoints in Tropospheric NO2 Concentrations

The global tropospheric NO2 concentrations showed a slightly decreasing trend from 2005 to
2008, followed by a small, positive change (0.03 × 1015 molecules cm−2) starting in 2008, and then
a gradual increasing trend between 2011 and 2018 (Figure 5a). The annual average reached its
highest values towards the end of the period in 2017–2018 (0.66 × 1015 and 0.67 × 1015 molecules
cm−2). Among the focus areas, only India showed a similar trend behavior but at a higher NO2

level and with a much greater positive change (0.20 × 1015 molecules cm−2) in 2015 (Figure 5d).
Japan was also similar in showing a linear long-term trend with only one breakpoint change but
different in that the detected breakpoint was a great negative change (−0.47 × 1015 molecules cm−2),
thus resulting in an overall decreasing trend (Figure 5f). In contrast, the number of the greatest
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changes detected in NO2 concentrations over USA, Europe and China was two. The two greatest
changes of USA (−0.50 × 1015 molecules cm−2 and −0.08 × 1015 molecules cm−2) as well as Europe
(−0.08 × 1015 molecules cm−2 and −0.16 × 1015 molecules cm−2) were both negative and started either
in the beginning (2004–2005) or towards the end of the studied period (2013–2016) (Figure 5b,c).
The first greatest change detected over China was positive (0.78 × 1015 molecules cm−2) and started in
2008, but then a second big reverse change (−0.81 × 1015 molecules cm−2) happened in 2011 (Figure 5e).
These two almost equally big but opposite changes (upward and then downward) with no relax time
in between caused the overall NO2 trend being insignificant with no net-change in NO2 concentrations
throughout the time period over China. This type of significant nonlinear trend was identified as
concealed trend type (Figure 5e).Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 18 
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Table 3. Spatial coverage (%) of the significant increasing and decreasing trend types globally and in
the focus areas with hotspots in average NO2 concentration. Insignificant no-trends were masked out
(α = 0.05).

Trend Types 1

Lin.
+

Lin.
−

Quad.
+

Quad.
−

Cub.
+

Cub.
−

Conc.
+

Conc.
−

Cell
Count

USA 7.51 24.90 1.17 25.98 1.20 16.82 8.15 14.27 8052

The Netherlands 0.00 82.35 0.00 0.00 0.00 13.73 0.00 3.92 51

Belgium 0.00 98.04 0.00 0.00 0.00 1.96 0.00 0.00 51

Germany 4.51 68.44 0.41 2.46 0.41 5.74 2.87 15.16 244

UK 0.00 94.23 0.00 2.41 0.00 0.96 0.96 1.44 416

Spain 0.13 6.44 0.00 57.96 0.13 10.10 2.28 22.98 792

Italy 0.59 75.81 0.00 14.45 0.00 2.07 3.83 3.25 339

France 0.00 87.31 0.00 7.02 0.00 0.90 1.34 3.43 670

India 84.36 0.03 9.64 0.03 4.53 0.03 1.07 0.34 3840

China 39.19 0.85 10.89 0.53 2.64 0.09 33.46 12.35 10,259

Japan 10.09 43.03 0.00 11.87 0.89 13.06 9.19 11.87 337

Global 54.47 7.51 6.19 3.58 4.56 1.80 14.33 7.56 123,256
1. Lin = linear, Quad = quadratic, Cub = cubic, Conc = concealed.
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3.3.2. Breakpoints in Tropospheric NO2 Concentrations 

The global tropospheric NO2 concentrations showed a slightly decreasing trend from 2005 to 

2008, followed by a small, positive change (0.03 × 1015 molecules cm−2) starting in 2008, and then a 

gradual increasing trend between 2011 and 2018 (Figure 5a). The annual average reached its highest 

values towards the end of the period in 2017–2018 (0.66 × 1015 and 0.67 × 1015 molecules cm−2). Among 

the focus areas, only India showed a similar trend behavior but at a higher NO2 level and with a much 

greater positive change (0.20 × 1015 molecules cm−2) in 2015 (Figure 5d). Japan was also similar in 

showing a linear long-term trend with only one breakpoint change but different in that the detected 

breakpoint was a great negative change (−0.47 × 1015 molecules cm−2), thus resulting in an overall 

decreasing trend (Figure 5f). In contrast, the number of the greatest changes detected in NO2 

concentrations over USA, Europe and China was two. The two greatest changes of USA (−0.50 × 1015 

molecules cm−2 and −0.08 × 1015 molecules cm−2) as well as Europe (−0.08 × 1015 molecules cm−2 and 

−0.16 × 1015 molecules cm−2) were both negative and started either in the beginning (2004–2005) or 

towards the end of the studied period (2013–2016) (Figure 5b,c). The first greatest change detected 

over China was positive (0.78 × 1015 molecules cm−2) and started in 2008, but then a second big reverse 

change (−0.81 × 1015 molecules cm−2) happened in 2011 (Figure 5e). These two almost equally big but 

opposite changes (upward and then downward) with no relax time in between caused the overall 

NO2 trend being insignificant with no net-change in NO2 concentrations throughout the time period 

over China. This type of significant nonlinear trend was identified as concealed trend type (Figure 

5e). 
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Figure 5. Time-series of annual average tropospheric NO2 concentrations, 2005–2018, with a segmented
trend estimated by Detecting Breakpoints and Estimating Segments in Trend (DBEST): (a) globally;
(b) USA; (c) Europe; (d) India; (e) China; (f) Japan. The line segments in red denote breakpoints with
greatest change (1015 molecules cm−2), and the dashed curves denote the type of trend estimated
by PolyTrend.
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Figure 6a shows the greatest breakpoint change detected in the annual average NO2 concentrations
at pixel level. The spatial patterns of the detected short-term changes were similar to the long-term
overall trends observed over lands (Figure 3): positive breakpoints were found over large areas in all
continents (79.4%) and negative breakpoints mainly over the focus areas (20.6%). The greatest negative
drop was for China (−12.41 × 1015 molecules cm−2), followed by USA (−5.60 × 1015 molecules cm−2),
Italy (−3.81 × 1015 molecules cm−2) and Japan (−3.78 × 1015 molecules cm−2) and then the other
focus countries in Europe (Figure 6a, Table 4). The greatest positive change was also for China
(6.65 × 1015 molecules cm−2) followed by India (2.13 × 1015 molecules cm−2). Range of the change
values was therefore the highest for China (19.06 × 1015 molecules cm−2) and the least for Netherlands
(1.59 × 1015 molecules cm−2) and Belgium (1.75 × 1015 molecules cm−2), where the average changes
were high and no positive change was detected at all (Table 4). The type of majority of the detected
greatest changes was non-abrupt, indicating that most of the changes occurred gradually over time,
except for Belgium where the changes mainly happened abruptly (56.86%).
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Figure 6. The breakpoint with greatest change in tropospheric NO2 concentrations obtained by using
the annual average tropospheric NO2 concentration data series, 2005–2018, in Detecting Breakpoints and
Estimating Segments in Trend (DBEST). (a) Magnitude of the change. (b) Starting time of the change.
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Table 4. The values of the greatest breakpoint changes in tropospheric NO2 concentrations
(1015 molecules cm−2), the within-country average and range of changes, as well as the distribution of
the type of the changes detected by Detecting Breakpoints and Estimating Segments in Trend (DBEST).

Major Change
Average Change

Range of
Change Values

Change Type (%)

Positive Negative Abrupt Non-Abrupt

USA 1.20 −5.60 −0.60 6.80 10.20 89.80

The Netherlands - −2.59 −1.54 1.59 35.29 64.71

Belgium - −2.50 −1.66 1.75 56.86 43.14

Germany 1.44 −3.28 −1.37 4.72 22.54 77.46

UK 0.98 −2.57 −0.98 3.56 14.77 85.23

Spain 0.54 −2.50 −0.54 3.04 9.10 90.90

Italy 1.23 −3.81 −0.91 5.04 17.70 82.30

France 0.53 −3.11 −0.83 3.64 9.25 90.75

India 2.13 −1.01 0.41 3.14 2.23 97.77

China 6.65 −12.41 0.28 19.06 22.13 77.87

Japan 0.76 −3.78 −0.73 4.54 16.02 83.98
Global 6.68 −12.41 0.09 19.06 4.15 95.85

The starting time of the major drops in tropospheric NO2 concentrations is most often detected
during the period of 2005–2009 for USA (89.6% of cells), Japan (78.8%) and Europe (57.8%) (Figure 6b).
For India, the greatest positive change started most often during 2015–2017 (41.1% of cells). For China,
the biggest positive change started mostly during 2008–2010 (54.3%) and then the greatest drop
happened during 2011–2014 (88.7%).

In a global context, the years 2005 and 2007 were by far the years with the highest occurrence
of negative breakpoints (27.7% and 17.4% respectively), indicating a major event during this period
that had global effects and particularly in the focus areas (Figure 6a; Figure 7a). The time period with
high occurrence of global positive breakpoints was 2008 to 2015, and the years 2008 and 2015 had the
highest rates (12.4% and 12.2% respectively) (Figure 7b).
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4. Discussion

The relationship between the satellite-based and the ground-based datasets supports previous
OMI validation studies. For instance, the Pearson’s correlation coefficient R was 0.65, which is within
the middle of the range (0.40–0.80) of several other studies [1,2,15,22]. The statistical comparison
further indicated that OMI was more successful at estimating the temporal component than the spatial
component (Figure 1b,c). This can partially be explained since the ground-based monitoring stations
are focused on a certain emission source (e.g., traffic locations), whereas an OMI pixel (13 × 24 km2)
covers a larger area with potential emission sources both within and downwind from the pixel [1].
The strong relationships with the ground-based observations still indicate that OMI data are useful
giving spatially explicit time-series of tropospheric NO2 concentrations to study global patterns
and trends.
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The spatial distribution of average NO2 concentrations found in this study (Figure 2)
resembles those in other studies [5,19,25,26], confirming that the focus areas are indeed the main
hotspots of tropospheric NO2 concentrations globally. According to Krotkov et al. [25], the highest
NO2 concentrations coincide with urban areas with high populations and industrialized regions.
NO2 concentrations are generally much lower over oceans than that over land since there are no
sources of NO2 emissions except for passing ships [44]. This indicates that the trends observed along
offshore boundaries are possibly caused by atmospheric deposition of NO2 transported from their
source by large-scale circulation [45]. According to Peters et al. [44], satellite instruments have issues
with detecting trace gases over oceans because of the low NO2 concentrations often being below the
detection limit of the instruments (0.5 × 1015 molecules cm−2).

The global and regional trends seen (Figure 3) generally agree with the results from previous studies.
Previous studies have shown increasing trends over both India and China [5,19,25,26], where our results
show increasing trends over both countries too (Figure 3). The decreasing trend with major drop in
NO2 that we observed over Eastern USA confirms the previous study by Krotkov et al. [46] reporting a
dramatic decrease in OMI NO2 from 2005 to 2015, as a result of both technological improvements
and stricter regulation of emissions. In agreement with our trend results derived for Western Europe,
recently Wang et al. [47] observed decreasing trends over Netherlands, Belgium, Germany and Italy,
as detected in OMI NO2 concentrations for 2012–2018. The trend results seem to be consistent among
studies with data used from different satellite instruments and/or study periods [5,19,25,26].

Decreases of NO2 concentrations can primarily be attributed to either local-, regional-
or country-level environmental regulations, improvements in emission control technology
(e.g., power plants and vehicles), or economic changes and the associated effects in energy usage [24,25].
Since the spatial distribution of average concentrations and significant decreasing trends correlate well,
this indicates that environmental regulations and technological improvements in the countries with
the most severe pollution have had a positive effect on concentrations of NO2. However, it should
also be noted that the two final years of this study period (2017–2018) were the years with the
highest average global concentrations. This clearly shows the importance of continuous satellite-based
monitoring of global patterns and trends in NO2 concentrations, also for assessing the effects of regional
environmental regulations and technological improvements to reduce emissions [48].

Linear regression models assume that changes occur linearly and gradually, which is not always
the case [30,49]. Here, a polynomial fitting-based scheme (PolyTrend) was used to account for nonlinear
trends. This polynomial approach thus helps to detect nonlinear trends in time-series that would not
be identified by an ordinary least-squares (i.e., linear model) approach. The linear trend type was
the dominant trend type globally (Figure 4; Table 3) as well as for Europe (except Spain), India and
Japan, indicating monotonic (non-decreasing or non-increasing) trends over these areas. The nonlinear
trends with a significant slope (quadratic and cubic) were mainly found over eastern parts of USA
and Spain. Since the curve of these trends has one (quadratic) or two (cubic) bends, this indicates
that the NO2 concentration trends in these areas either started with an increase and then decreased or
the opposite started with a decrease and then increased (quadratic), or with even more short-term
changes in the direction of the trend (cubic). The latter case is in agreement with the regional trend
curve for USA: a cubic trend starting with a short-term downward trend, then an upward trend,
and then again another downward trend (Figure 5b). The identified areas with the concealed trends,
mainly in the eastern parts of China and south of Spain, are new findings that, up to the best of our
knowledge, have not been reported yet. The reason is that the OLS method is often used in trend
studies, and such nonlinear trends are not detectable when OLS is applied for the entire studied period.
If OLS applies here, no significant trend in 2005–2018 is detected. However, the concealed changes are
credible patterns of nonlinear changes such as the greatest breakpoint changes we detected in NO2

concentrations over China.
The majority of the detected significant breakpoints were non-abrupt indicating that the

concentrations of NO2 changed gradually, possibly due to stricter environmental regulations or
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economic cycles, as opposed to abrupt changes (e.g., in Belgium and Netherlands), which could be due
to power plants or industries that have been either opened or shut down suddenly. The years 2005 to 2009
were by far the years with the highest occurrence of negative breakpoints, and regional-scale reductions
of tropospheric NO2 concentrations were also observed for USA, Europe and Japan during these years
(Figures 5–7). It has also previously been pointed out that 2008 was a year of significant reductions in
NO2 emissions (e.g., [21,22,50,51]) due to the start of the great economic recession [50,51]. This was
an event, which caused large-scale economic reductions and affected anthropogenic activity globally,
which in turn reduced the associated emissions of air pollution from, for example, vehicles, power
plants and industries. According to the results of this study, the largest change magnitudes in NO2

concentrations during 2005–2008 were found in USA and Japan. The European countries appear
to have suffered less, based on the changes in tropospheric NO2 concentrations (Figure 6, Table 4).
The negative breakpoint we found over Eastern China with a four-year duration (2011–2014) is in
general agreement with Li et al.’s [52] study of analyzing global change of tropospheric NO2 from
2012 to 2017 using data from the Ozone Mapping Profiler Suite (OMPS) Nadir Mapper (NM) onboard
the Suomi National Polar Partnership (SNPP). They reported a large decline of NO2 in Eastern China
started in 2013 and was almost entirely driven by wintertime decreases, thus indicating a decrease in
anthropogenic emissions over the area. Souri et al. [53] in‘their study of analyzing long-term trends
of OMI NO2 concentration 2005–2014 over East Asia, also found downward trends in Japan and
more developed Chinese cities such as Guangzhou and Beijing, and upward trends in the majority
of northern regions of China in 2010–2013. This supports the concealed trend (upward–downward)
we observed for China. Another study by Krotkov et al. [46] also showed similar severe declines of
NO2 in Eastern China in 2011–2014 due to an economic shutdown and government efforts to restrain
emissions from the power and industrial sectors. Likewise, the steepest increasing trend we observed
was over India, and they reported a fast-growing trend from 2005 to 2015 for India’s NO2 level from
coal power plants and smelters.

The time-series analysis methods used in this study (PolyTrend and DBEST) benefit from recent
developments, as mentioned earlier, but like many other methods they also have weaknesses. They work
on a pixel-by-pixel basis, and they consider each pixel’s time-series data as an isolated entity in their
trend classification and change detection procedure; the spatial behavior of adjacent areas is not used
to improve the robustness of trend/change detection [54]. Thus, the obtained trend and breakpoint
results should be interpreted with caution.

Future research could include multiple breakpoint detection analyses using data for pre- and
post-pandemic phases of COVID-19 to study impacts of possible changes in anthropogenic sources
of NO2 emissions (e.g., transport, industry processes and energy production) on air pollution and
tropospheric NO2 concentration trends.

5. Conclusions

This study contributes to the ongoing research regarding spatiotemporal patterns and trends in
tropospheric NO2 concentrations using data from the OMI instrument, and it investigates how the
tropospheric concentrations have changed globally and regionally over the period of 2005 through
2018. By applying novel techniques for analysis of time-series and their breakpoints, we quantified
long-term nonlinear trends and provided information about distribution patterns in the point in time
with the greatest changes.

1. Globally, the tropospheric NO2 concentration showed a slightly increasing long-term trend
(0.004 × 1015 molecules cm−2 y−1) for the time period 2005–2018. A significant, positive change
(0.03 × 1015 molecules cm−2) was observed during 2008–2011.

2. Over Eastern USA, we found a negative trend of NO2 concentration (−0.033 × 1015 molecules cm−2 y−1)
with two major breakpoint changes of −0.50 × 1015 and −0.08 × 1015 molecules cm−2 during
2005–2009 and 2013–2016, respectively.
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3. Over Western Europe, the annual average NO2 concentration decreased slowly
(−0.008 × 1015 molecules cm−2 y−1) and in a nonlinear manner including two major drops of
−0.08 × 1015 and −0.16 × 1015 molecules cm−2 during 2006–2008 and 2016–2018, respectively.
Most of the breakpoints changes detected over Netherlands and Belgium were negative and of
abrupt type.

4. Over India, the steepest rising long-term trend in NO2 concentration
(0.040 × 1015 molecules cm−2 y−1), among the other hot spot areas, was observed, and toward
the end of the study period (2015–2017) the NO2 concentration raised even at a higher rate.

5. Over China, the linear long-term trend was positive with a slight slope
(0.014 × 1015 molecules cm−2 y−1). However, by using the polynomial trend method, we found a
nonlinear concealed trend containing one major positive change (0.78 × 1015 molecules cm−2)
during 2008–2011 and one big negative change (−0.81 × 1015 molecules cm−2)
thereafter in 2011–2016.

6. Over Japan, a considerable drop in NO2 concentration (−0.47 × 1015 molecules cm−2)
was observed in 2005–2009, and the long-term NO2 trend became the strongest downward
trend (−0.049 × 1015 molecules cm−2 y−1) as compared to all other focus areas.

Despite the breakpoint changes detected for the focus areas, the linear trend was the dominant
trend type at global scale with a spatial coverage of 61.98%, out of which 54.47% were positive and 7.51%
negative. The concealed trends, mainly observed over Eastern China and South Spain, ranked second.
The years 2005 and 2007 were the years with the highest occurrence of negative breakpoints (27.7% and
17.4% respectively), indicating a major event during these years that had global effects and in the focus
areas in particular. However, the trend thereafter reversed, and throughout the study period, the years
2017–2018 had the highest tropospheric NO2 concentrations. This indicates that the anthropogenic
contribution to air pollution is still a major issue, and that further actions are necessary to reduce this
contribution. These techniques for analysis of time-series and their breakpoints could be used for
studying underlying causes to regional patterns in trends, possibly providing insights to impact of
environmental regulations and other actions to prevent air pollution, having substantial impact on
human and environmental health.
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