RUESVMs: An Ensemble Method to Handle the Class Imbalance Problem in Land Cover Mapping Using Google Earth Engine
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Areas
2.2. Satellite Imagery
2.3. Reference Sample Data
3. Methodology
3.1. Input Features for LC Classification
3.2. RUESVMs
- (1)
- The fractions of LC classes are defined.
- (2)
- Based on the fractions, samples of original imbalanced data are randomly and repeatedly (with replacement) extracted. In this study, 10 different random subsets of the original data are generated for each fraction.
- (3)
- An SVM classifier is built for each of these 10 subsets. The radial basis function is used as kernel function, and the values of its parameters (i.e., cost and gamma) are selected after some preliminary analyses.
- (4)
- Using the built SVM classifiers, 10 LC maps are generated from the Sentinel-2 images.
- (5)
- The produced LC maps are combined using a majority voting strategy and the final LC map is generated.
3.3. The LC Class Fractions
3.4. Accuracy Assessment and Comparison
3.5. RUESVSMs Implementation
4. Results
4.1. Site-1
4.2. Site-2
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mercier, A.; Betbeder, J.; Rumiano, F.; Baudry, J.; Gond, V.; Blanc, L.; Bourgoin, C.; Cornu, G.; Marchamalo, M.; Poccard-Chapuis, R. Evaluation of sentinel-1 and 2 time series for land cover classification of forest–agriculture mosaics in temperate and tropical landscapes. Remote Sens. 2019, 11, 979. [Google Scholar] [CrossRef] [Green Version]
- Naboureh, A.; Moghaddam, M.H.R.; Feizizadeh, B.; Blaschke, T. An integrated object-based image analysis and ca-markov model approach for modeling land use/land cover trends in the sarab plain. Arab. J. Geosci. 2017, 10, 259. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Valizadeh Kamran, K.; Blaschke, T.; Aryal, J.; Naboureh, A.; Einali, J.; Bian, J. Spatial prediction of wildfire susceptibility using field survey gps data and machine learning approaches. Fire 2019, 2, 43. [Google Scholar] [CrossRef] [Green Version]
- Moharrami, M.; Naboureh, A.; Gudiyangada Nachappa, T.; Ghorbanzadeh, O.; Guan, X.; Blaschke, T. National-scale landslide susceptibility mapping in austria using fuzzy best-worst multi-criteria decision-making. ISPRS Int. J. Geoinf. 2020, 9, 393. [Google Scholar] [CrossRef]
- Congalton, R.G.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global land cover mapping: A review and uncertainty analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef] [Green Version]
- Thanh, H.N.T.; Doan, T.M.; Tomppo, E.; McRoberts, R.E. Land use/land cover mapping using multitemporal sentinel-2 imagery and four classification methods—A case study from dak nong, vietnam. Remote Sens. 2020, 12, 1367. [Google Scholar] [CrossRef]
- Ienco, D.; Gaetano, R.; Interdonato, R.; Ose, K.; Minh, D.H.T. Combining sentinel-1 and sentinel-2 time series via rnn for object-based land cover classification. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from sentinel-2 and landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.; Tilton, J.; Gumma, M.; Teluguntla, P.; Oliphant, A.; Congalton, R.; Yadav, K.; Gorelick, N. Nominal 30-m cropland extent map of continental africa by integrating pixel-based and object-based algorithms using sentinel-2 and landsat-8 data on google earth engine. Remote Sens. 2017, 9, 1065. [Google Scholar] [CrossRef] [Green Version]
- Devaux, N.; Crestey, T.; Leroux, C.; Tisseyre, B. Potential of sentinel-2 satellite images to monitor vine fields grown at a territorial scale. OENO One 2019, 53, 51–58. [Google Scholar] [CrossRef]
- Rujoiu-Mare, M.R.; Olariu, B.; Mihai, B.A.; Nistor, C.; Săvulescu, I. Land cover classification in romanian carpathians and subcarpathians using multi-date sentinel-2 remote sensing imagery. Eur. J. Remote Sens. 2017, 50, 496–508. [Google Scholar] [CrossRef] [Green Version]
- Skakun, S.; Vermote, E.; Roger, J.-C.; Justice, C. Multispectral misregistration of sentinel-2a images: Analysis and implications for potential applications. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2408–2412. [Google Scholar] [CrossRef] [PubMed]
- Storie, C.D.; Henry, C.J. Deep learning neural networks for land use land cover mapping. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3445–3448. [Google Scholar]
- Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens. 2015, 7, 153–168. [Google Scholar] [CrossRef]
- Rogan, J.; Franklin, J.; Stow, D.; Miller, J.; Woodcock, C.; Roberts, D. Mapping land-cover modifications over large areas: A comparison of machine learning algorithms. Remote Sens. Environ. 2008, 112, 2272–2283. [Google Scholar] [CrossRef]
- Amani, M.; Mahdavi, S.; Afshar, M.; Brisco, B.; Huang, W.; Mohammad Javad Mirzadeh, S.; White, L.; Banks, S.; Montgomery, J.; Hopkinson, C. Canadian wetland inventory using google earth engine: The first map and preliminary results. Remote Sens. 2019, 11, 842. [Google Scholar] [CrossRef] [Green Version]
- Waldner, F.; Chen, Y.; Lawes, R.; Hochman, Z. Needle in a haystack: Mapping rare and infrequent crops using satellite imagery and data balancing methods. Remote Sens. Environ. 2019, 233, 111375. [Google Scholar] [CrossRef]
- Bogner, C.; Seo, B.; Rohner, D.; Reineking, B. Classification of rare land cover types: Distinguishing annual and perennial crops in an agricultural catchment in south korea. PLoS ONE 2018, 13, e0190476. [Google Scholar] [CrossRef] [Green Version]
- Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F. A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2011, 42, 463–484. [Google Scholar] [CrossRef]
- Prati, R.C.; Batista, G.E.; Silva, D.F. Class imbalance revisited: A new experimental setup to assess the performance of treatment methods. Knowl. Inf. Syst. 2015, 45, 247–270. [Google Scholar] [CrossRef]
- Ortigosa-Hernández, J.; Inza, I.; Lozano, J.A. Measuring the class-imbalance extent of multi-class problems. Pattern Recognit. Lett. 2017, 98, 32–38. [Google Scholar] [CrossRef]
- Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 27. [Google Scholar] [CrossRef]
- Yijing, L.; Haixiang, G.; Xiao, L.; Yanan, L.; Jinling, L. Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data. Knowl. Based Syst. 2016, 94, 88–104. [Google Scholar] [CrossRef]
- Azadbakht, M.; Fraser, C.; Khoshelham, K. Improved urban scene classification using full-waveform lidar. Photogramm. Eng. Remote Sens. 2016, 82, 973–980. [Google Scholar] [CrossRef]
- Feng, W.; Dauphin, G.; Huang, W.; Quan, Y.; Bao, W.; Wu, M.; Li, Q. Dynamic synthetic minority over-sampling technique-based rotation forest for the classification of imbalanced hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2159–2169. [Google Scholar] [CrossRef]
- Azadbakht, M.; Fraser, C.S.; Khoshelham, K. Synergy of sampling techniques and ensemble classifiers for classification of urban environments using full-swaveform lidar data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 277–291. [Google Scholar] [CrossRef]
- Mellor, A.; Boukir, S.; Haywood, A.; Jones, S. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J. Photogramm. Remote Sens. 2015, 105, 155–168. [Google Scholar] [CrossRef]
- Haixiang, G.; Yijing, L.; Shang, J.; Mingyun, G.; Yuanyue, H.; Bing, G. Learning from class-imbalanced data: Review of methods and applications. Expert Syst. Appl. 2017, 73, 220–239. [Google Scholar] [CrossRef]
- Sharififar, A.; Sarmadian, F.; Malone, B.P.; Minasny, B. Addressing the issue of digital mapping of soil classes with imbalanced class observations. Geoderma 2019, 350, 84–92. [Google Scholar] [CrossRef]
- Maldonado, S.; López, J.; Vairetti, C. An alternative smote oversampling strategy for high-dimensional datasets. Appl. Soft Comput. 2019, 76, 380–389. [Google Scholar] [CrossRef]
- Han, H.; Wang, W.Y.; Mao, B.H. Borderline-smote: A new over-sampling method in imbalanced data sets learning. In Advances in Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Kuncheva, L.I.; Whitaker, C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 2003, 51, 181–207. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Wu, J.; Zhou, Z.-H. Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. ManCybern. Part B Cybern. 2008, 39, 539–550. [Google Scholar]
- Lin, Z.; Hao, Z.; Yang, X.; Liu, X. Several svm ensemble methods integrated with under-sampling for imbalanced data learning. In Proceedings of the International Conference on Advanced Data Mining and Applications, Dalian, China, 21–23 November 2009; Springer: Berlin/Heidelberg, Germany; pp. 536–544. [Google Scholar]
- Rakwatin, P.; Longépé, N.; Isoguchi, O.; Shimada, M.; Uryu, Y.; Takeuchi, W. Using multiscale texture information from alos palsar to map tropical forest. Int. J. Remote Sens. 2012, 33, 7727–7746. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. Isprs J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Al-Fares, W. Historical Land Use/Land Cover Classification Using Remote Sensing: A Case Study of the Euphrates River Basin in Syria; University of Jena: Jena, Germany, 2013. [Google Scholar]
- Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of urban surface water bodies from sentinel-2 msi imagery at 10 m resolution via ndwi-based image sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef] [Green Version]
- Thanh Noi, P.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Amani, M.; Salehi, B.; Mahdavi, S.; Granger, J.E.; Brisco, B.; Hanson, A. Wetland classification using multi-source and multi-temporal optical remote sensing data in newfoundland and labrador, canada. Can. J. Remote Sens. 2017, 43, 360–373. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y. Mapping major land cover dynamics in beijing using all landsat images in google earth engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Sidhu, N.; Pebesma, E.; Câmara, G. Using google earth engine to detect land cover change: Singapore as a use case. Eur. J. Remote Sens. 2018, 51, 486–500. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Kakooei, M.; Amani, M.; Mahdavi, S.; Mohammadzadeh, A.; Hasanlou, M. Improved land cover map of iran using sentinel imagery within google earth engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS J. Photogramm. Remote Sens. 2020, 167, 276–288. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the great plains with erts. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from eos-modis. Remote Sens Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Huete, A. Huete, ar a soil-adjusted vegetation index (savi). Remote sensing of environment. Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from tm imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Weigand, M.; Staab, J.; Wurm, M.; Taubenböck, H. Spatial and semantic effects of lucas samples on fully automated land use/land cover classification in high-resolution sentinel-2 data. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102065. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the normalized difference water index (ndwi) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Using the 500 m modis land cover product to derive a consistent continental scale 30 m landsat land cover classification. Remote Sens. Environ. 2017, 197, 15–34. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar]
- Chawla, N.V. Data mining for imbalanced datasets: An overview. In Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2009; pp. 875–886. [Google Scholar]
- Batista, G.E.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 2004, 6, 20–29. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. Smote: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computting; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org (accessed on 21 April 2017).
- Branco, P.; Ribeiro, R.P.; Torgo, L. Ubl: An R package for utility-based learning. arXiv 2016, arXiv:1604.08079. [Google Scholar]
- Feng, W.; Huang, W.; Bao, W. Imbalanced hyperspectral image classification with an adaptive ensemble method based on smote and rotation forest with differentiated sampling rates. IEEE Geosci. Remote Sens. 2019, 16, 1879–1883. [Google Scholar] [CrossRef]
- Douzas, G.; Bacao, F.; Fonseca, J.; Khudinyan, M. Imbalanced learning in land cover classification: Improving minority classes’ prediction accuracy using the geometric smote algorithm. Remote Sens. 2019, 11, 3040. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.M.; Khoshgoftaar, T.M. Deep learning and data sampling with imbalanced big data. In Proceedings of the 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI), Los Angeles, CA, USA, 30 July–1 August 2019; pp. 175–183. [Google Scholar]
- Cenggoro, T.W.; Isa, S.M.; Kusuma, G.P.; Pardamean, B. Classification of imbalanced land-use/land-cover data using variational semi-supervised learning. In Proceedings of the 2017 International Conference on Innovative and Creative Information Technology (ICITech), Salatiga, Indonesia, 2–4 November 2017; pp. 1–6. [Google Scholar]
- Feng, W.; Boukir, S.; Huang, W. Margin-based random forest for imbalanced land cover classification. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3085–3088. [Google Scholar]
LC Class | Agriculture | Barren | Built-Up | Grassland | Road | Urban-Vegetation | Water | Forest | Snow/Ice |
---|---|---|---|---|---|---|---|---|---|
Site-1 | 291 | 189 | 184 | 265 | 76 | 46 | 21 | - | - |
Site-2 | 403 | 385 | 169 | 153 | 62 | 51 | 60 | 65 | 60 |
Spectral Index | Formula |
---|---|
NDVI | (Band8 − Band4)/(Band8 + Band4) |
GNDVI | (Band8 − Band3)/(Band8 + Band3) |
SAVI | ((Band8 − Band4)/(Band8 + Band4 + L)) × (1 + L) |
NDBI | (Band11 − Band8)/(Band11 + Band8) |
NDWI | (Band3 − Band8)/(Band3 + Band8) |
Scenario | LC Class Fractions (%) | ||
---|---|---|---|
Category-1 | Category-2 | Category-3 | |
1 | 10 | 10 | 100 |
2 | 10 | 20 | 100 |
3 | 10 | 30 | 100 |
4 | 10 | 40 | 100 |
5 | 10 | 50 | 100 |
6 | 10 | 60 | 100 |
7 | 10 | 70 | 100 |
8 | 10 | 80 | 100 |
9 | 10 | 90 | 100 |
10 | 10 | 100 | 100 |
11 | 20 | 10 | 100 |
⋮ | ⋮ | ⋮ | ⋮ |
99 | 100 | 90 | 100 |
100 | 100 | 100 | 100 |
Method | Per-Class Metrics | LC Classes | Overall Metrics | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Agriculture | Barren | Built-up | Grassland | Road | Urban-Vegetation | Water | OA (%) | GM-UA (%) | GM-PA (%) | ||
RUESVMs-47 | UA (%) | 93.8 | 90.9 | 95.3 | 83.0 | 91.4 | 81.2 | 99.2 | 89.8 | 90.5 | 90.4 |
PA (%) | 95.8 | 82.6 | 90.1 | 92.6 | 85.8 | 87.4 | 100 | ||||
RUESVMs-27 | UA (%) | 96.8 | 88.8 | 97.1 | 79.6 | 89.2 | 79 | 99.3 | 90.7 | 89.6 | 90.1 |
PA (%) | 95.4 | 80.8 | 85.8 | 92.7 | 88.3 | 89.4 | 100 | ||||
SVM | UA (%) | 88.1 | 75.9 | 90.9 | 79.2 | 74.7 | 98.7 | 100 | 84.9 | 86.3 | 80.6 |
PA (%) | 99.0 | 73.4 | 82.6 | 82.9 | 86.8 | 51.3 | 100 | ||||
SVM-SMOTE | UA (%) | 95.9 | 74.7 | 94.8 | 84.5 | 71.8 | 66.8 | 100 | 85.6 | 83.2 | 85.4 |
PA (%) | 89.3 | 78.5 | 86.1 | 76.9 | 86.9 | 82.3 | 100 | ||||
SVM-ROS | UA (%) | 97.3 | 68.4 | 94.7 | 83.7 | 66.5 | 60.0 | 100 | 82.3 | 80 | 83.3 |
PA (%) | 82.6 | 80.0 | 82.5 | 71.2 | 86.9 | 82.3 | 100 | ||||
SVM-RUS | UA (%) | 93.8 | 65.4 | 90.2 | 66.1 | 58.4 | 51.8 | 100 | 74.8 | 73 | 77.2 |
PA (%) | 76.2 | 63.2 | 77.1 | 67.0 | 87.0 | 75.7 | 100 |
Method | Per-Class Metrics | LC Classes | Overall Metrics | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agriculture | Barren | Built-Up | Grassland | Road | Urban-Vegetation | Water | Forest | Snow/Ice | OA (%) | GM-UA (%) | GM-PA (%) | ||
RUESVMs-55 | UA (%) | 90.7 | 96.9 | 95.2 | 94.3 | 67.9 | 70.4 | 76.6 | 96.3 | 100 | 91.2 | 86.8 | 89.2 |
PA (%) | 97.4 | 94.5 | 83.7 | 82.8 | 93.7 | 78.5 | 86 | 88.7 | 100 | ||||
RUESVMs-56 | UA (%) | 89.5 | 95.8 | 93.1 | 92.8 | 65.6 | 73 | 77 | 94.5 | 99 | 91.7 | 85.9 | 89.2 |
PA (%) | 96.7 | 93.1 | 81.2 | 81.2 | 93.9 | 79.7 | 88.6 | 91 | 100 | ||||
SVM | UA (%) | 92.2 | 78.4 | 79.3 | 87 | 63.1 | 45.0 | 89.0 | 83.9 | 94.6 | 84.7 | 77.4 | 78.3 |
PA (%) | 92.1 | 90.8 | 71.7 | 85.5 | 58.9 | 47.7 | 90.2 | 92 | 92.3 | ||||
SVM-SMOTE | UA (%) | 99.3 | 96.4 | 80.6 | 86.9 | 45.5 | 58.7 | 94.7 | 91 | 100 | 85.5 | 81.2 | 86.7 |
PA (%) | 91.8 | 73.8 | 71.8 | 90.1 | 100 | 72.4 | 94.8 | 95.6 | 95.9 | ||||
SVM-ROS | UA (%) | 97.3 | 87.2 | 85.8 | 84.8 | 42 | 35.4 | 94.7 | 87.3 | 100 | 82.7 | 75.1 | 83.5 |
PA (%) | 91.5 | 74.3 | 61.8 | 79.6 | 94.8 | 75.8 | 94.7 | 90 | 96.1 | ||||
SVM-RUS | UA (%) | 96.9 | 85.3 | 86.8 | 85.3 | 39.2 | 26 | 94.7 | 90.5 | 88 | 79.6 | 71.2 | 82.1 |
PA (%) | 91.8 | 67.7 | 55.5 | 79.2 | 100 | 75.0 | 94.7 | 87.4 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naboureh, A.; Ebrahimy, H.; Azadbakht, M.; Bian, J.; Amani, M. RUESVMs: An Ensemble Method to Handle the Class Imbalance Problem in Land Cover Mapping Using Google Earth Engine. Remote Sens. 2020, 12, 3484. https://doi.org/10.3390/rs12213484
Naboureh A, Ebrahimy H, Azadbakht M, Bian J, Amani M. RUESVMs: An Ensemble Method to Handle the Class Imbalance Problem in Land Cover Mapping Using Google Earth Engine. Remote Sensing. 2020; 12(21):3484. https://doi.org/10.3390/rs12213484
Chicago/Turabian StyleNaboureh, Amin, Hamid Ebrahimy, Mohsen Azadbakht, Jinhu Bian, and Meisam Amani. 2020. "RUESVMs: An Ensemble Method to Handle the Class Imbalance Problem in Land Cover Mapping Using Google Earth Engine" Remote Sensing 12, no. 21: 3484. https://doi.org/10.3390/rs12213484
APA StyleNaboureh, A., Ebrahimy, H., Azadbakht, M., Bian, J., & Amani, M. (2020). RUESVMs: An Ensemble Method to Handle the Class Imbalance Problem in Land Cover Mapping Using Google Earth Engine. Remote Sensing, 12(21), 3484. https://doi.org/10.3390/rs12213484