Designing a Validation Protocol for Remote Sensing Based Operational Forest Masks Applications. Comparison of Products Across Europe
Abstract
:1. Introduction
2. Study Areas and Data
2.1. Study Areas
- Croatia: Continental lowland forests by heterogeneous stands and lowland Slavonian pedunculated oak forests (HRV-1 and HRV-2).
- Czech Republic: Temperate Pannonian mixed forests: (i) conifers, namely spruces, pines and larches; and (ii) broadleaf, namely beeches, oaks and hornbeams (CZE-1).
- France: Oceanic maritime pine forest (FRA-1) and temperate continental with pedunculated oak (FRA-2).
- Lithuania: Boreal forest with forests dominated by scots pines, birches and Norway spruces (LTU-1 and LTU-2).
- Portugal: Plantations of Eucalyptus spp. on two climate subtypes: Atlantic-Mediterranean (PRT-1 and PRT-2) and typical Mediterranean combined with agroforestry areas (PRT-3 and PRT-4).
- Spain: Alpine forest dominated by beeches, oaks and pines (ESP-1) and Atlantic plantations of Eucalyptus spp. where land ownership is highly fragmented (ESP-2, ESP-3, ESP-4 and ESP-5).
2.2. High Resolution Forest/Non-Forest MSF Classification Dataset
2.3. High Resolution Forest/Non-Forest External Classification Datasets
- Forests High-Resolution Layer (HRL) is provided by Copernicus Land Monitoring Service (CLMS) and coordinated by the European Environment Agency (EEA) [32]. The Tree Cover Density (TCD) product provides the level of tree coverage per pixel in a range of 0–100%. It is obtained through a semi-automatic classification of multitemporal satellite images (Sentinel-2 and Landsat-8) for the year 2015 (±1 year) [32], using a combination of supervised and unsupervised classification techniques. The resulting product has 20 m spatial resolution. To make it comparable with the MSF forest masks, the TCD product was pre-processed to obtain a binary forest/non-forest classification, considering as forest all those pixels with a cover density of 50% or higher. A future update of this dataset for 2018 reference year was announced in August 2002 by Copernicus, but it was not available prior submission of this paper.
- TanDEM-X Forest/Non-Forest (FNF) is provided by Microwaves and Radar Institute of the German Aerospace Center (DLR) [33,34]. It is a global forest/non-forest map generated from interferometric synthetic aperture radar (InSAR) data from the TanDEM-X mission. The bistatic stripmap single polarization (HH) InSAR data were acquired between 2011 and 2016, being 2015 the reference year for the final product. FNF maps are produced with a final pixel size of 50 m.
2.4. Satellite Data Required to Build the Independent Validation Dataset
3. Methods
- Cross validation or dataset split [46]. Commonly used for products developed using any supervised classification approach. A training dataset is needed, either provided by the user or built by the producer. The use of cross-validation techniques is widely accepted when there are not independent training and testing sets. However, the statistical distribution of the training and test samples are not independent, leading to an optimistic bias in the resulting metrics [46]. Note that the final values of the metrics will be strongly determined by the quality of the input dataset.
- Using data from national forest inventories (NFI). Many methodologies used to perform forest inventories as the selected method by each nation will depend of the purpose and the scale of the inventory, leading to significant efforts to perform data search, normalization and data engineering. In Europe, the European National Forest Inventory Network (ENFIN) [47] promotes NFIs and harmonizes forest information. However, there are still different methods and plot sizes used. Moreover, inventories contain errors from different sources, as they rely on sampling strategies and the measuring protocols are not always clear, thus adding uncertainty to the metrics generated through the validation process [4,48,49]. Hence, validation metrics might differ significantly across areas where the product has identical quality, due to the different inventory methods used, which are in general heterogeneous.
- Building independent datasets based in visual interpretation of images [50]. This method is costly, and the validation must be carried out by independent interpreters in order to build an unbiased dataset trying to represent the variability of forest types within a determined area. The statistical metrics obtained with this method may be close to the real quality of the product if sampling and interpretation processes are carefully designed.
3.1. Sampling Design
3.2. Dataset Generation
3.3. Performance Metrics
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pause, M.; Schweitzer, C.; Rosenthal, M.; Keuck, V.; Bumberger, J.; Dietrich, P.; Heurich, M.; Jung, A.; Lausch, A. In situ/remote sensing integration to assess forest health-a review. Remote Sens. 2016, 8, 471. [Google Scholar] [CrossRef] [Green Version]
- Masek, J.G.; Hayes, D.J.; Joseph Hughes, M.; Healey, S.P.; Turner, D.P. The role of remote sensing in process-scaling studies of managed forest ecosystems. For. Ecol. Manag. 2015, 355, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Trumbore, S.; Brando, P.; Hartmann, H. Forest health and global change. Science 2016, 349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef] [Green Version]
- Forest Europe; Unece; F.A.O. FOREST EUROPE: State of Europe’s Forests 2015; Liaison Unit: Madrid, Spain, 2015. [Google Scholar]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.-J.; Lasch, P.; Eggers, J.; van der Maaten-Theunissen, M.; et al. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manag. 2014, 146, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Milad, M.; Schaich, H.; Bürgi, M.; Konold, W. Climate change and nature conservation in Central European forests: A review of consequences, concepts and challenges. For. Ecol. Manag. 2011, 261, 829–843. [Google Scholar] [CrossRef]
- Holmgren, P.; Thuresson, T. Satellite remote sensing for forestry planning—A review. Scand. J. For. Res. 1998, 13, 90–110. [Google Scholar] [CrossRef]
- Boyd, D.S.; Danson, F.M. Satellite remote sensing of forest resources: Three decades of research development. Prog. Phys. Geogr. Earth Environ. 2005, 29, 1–26. [Google Scholar] [CrossRef]
- Wood, J.E.; Gillis, M.D.; Goodenough, D.G.; Hall, R.J.; Leckie, D.G.; Luther, J.E.; Wulder, M.A. Earth Observation for Sustainable Development of Forests (EOSD): Project overview. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 3, pp. 1299–1302. [Google Scholar]
- Wulder, M.A.; White, J.C.; Nelson, R.F.; Næsset, E.; Ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.; Gobakken, T. Lidar sampling for large-area forest characterization: A review. Remote Sens. Environ. 2012, 121, 196–209. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.; Treitz, P.; Wulder, M.; St-Onge, B.; Flood, M. LiDAR remote sensing of forest structure. Prog. Phys. Geogr. Earth Environ. 2003, 27, 88–106. [Google Scholar] [CrossRef] [Green Version]
- Dubayah, R.O.; Drake, J.B. Lidar Remote Sensing for Forestry. J. For. 2000, 98, 44–46. [Google Scholar] [CrossRef]
- My Sustainable Forest. Earth Observation Services for Silviculture. Available online: https://mysustainableforest.com/ (accessed on 30 August 2020).
- Pekkarinen, A.; Reithmaier, L.; Strobl, P. Pan-European forest/non-forest mapping with Landsat ETM+ and CORINE Land Cover 2000 data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 171–183. [Google Scholar] [CrossRef]
- Fernandez-Carrillo, A.; de la Fuente, D.; Rivas-Gonzalez, F.W.; Franco-Nieto, A. A Sentinel-2 unsupervised forest mask for European sites. In Proceedings of the SPIE, Strasbourg, France, 9–12 September 2019; Volume 11156. [Google Scholar]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Kempeneers, P.; Sedano, F.; Seebach, L.; Strobl, P.; San-Miguel-Ayanz, J. Data Fusion of Different Spatial Resolution Remote Sensing Images Applied to Forest-Type Mapping. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4977–4986. [Google Scholar] [CrossRef]
- Saksa, T.; Uuttera, J.; Kolström, T.; Lehikoinen, M.; Pekkarinen, A.; Sarvi, V. Clear-cut Detection in Boreal Forest Aided by Remote Sensing. Scand. J. For. Res. 2003, 18, 537–546. [Google Scholar] [CrossRef]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Gleason, C.J.; Im, J. A Review of Remote Sensing of Forest Biomass and Biofuel: Options for Small-Area Applications. GIScience Remote Sens. 2011, 48, 141–170. [Google Scholar] [CrossRef]
- Hall, R.J.; Castilla, G.; White, J.C.; Cooke, B.J.; Skakun, R.S. Remote sensing of forest pest damage: A review and lessons learned from a Canadian perspective ∗. Can. Entomol. 2016, 148, S296–S356. [Google Scholar] [CrossRef]
- Foody, G.M. Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sens. Environ. 2010, 114, 2271–2285. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Stehman, S.V. Practical Implications of Design-Based Sampling Inference for Thematic Map Accuracy Assessment. Remote Sens. Environ. 2000, 72, 35–45. [Google Scholar] [CrossRef]
- Stehman, S.V. Statistical rigor and practical utility in thematic map accuracy assessment. Photogramm. Eng. Remote. Sens. 2001, 67, 727–734. [Google Scholar]
- Padilla, M.; Olofsson, P.; Stehman, S.V.; Tansey, K.; Chuvieco, E. Stratification and sample allocation for reference burned area data. Remote Sens. Environ. 2017, 203, 240–255. [Google Scholar] [CrossRef]
- Fernandez-Carrillo, A.; Belenguer-Plomer, M.A.; Chuvieco, E.; Tanase, M.A. Effects of sample size on burned areas accuracy estimates in the Amazon Basin. In Proceedings of the SPIE—The International Society for Optical Engineering, Berlin, Germany, 10–13 September 2018; Volume 10790. [Google Scholar]
- Langanke, T.; Herrmann, D.; Ramminger, G.; Buzzo, G.; Berndt, F. Copernicus Land Monitoring Service – High Resolution Layer Forest. Available online: https://land.copernicus.eu/user-corner/technical-library/hrl-forest (accessed on 20 July 2020).
- Martone, M.; Rizzoli, P.; Wecklich, C.; González, C.; Bueso-Bello, J.L.; Valdo, P.; Schulze, D.; Zink, M.; Krieger, G.; Moreira, A. The global forest/non-forest map from TanDEM-X interferometric SAR data. Remote Sens. Environ. 2018, 205, 352–373. [Google Scholar] [CrossRef]
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking new ground in mapping human settlements from space—The Global Urban Footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Padilla, M.; Stehman, S.V.; Ramo, R.; Corti, D.; Hantson, S.; Oliva, P.; Alonso-Canas, I.; Bradley, A.V.; Tansey, K.; Mota, B.; et al. Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation. Remote Sens. Environ. 2015, 160, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Viana-Soto, A.; Aguado, I.; Salas, J.; García, M. Identifying post-fire recovery trajectories and driving factors using landsat time series in fire-prone mediterranean pine forests. Remote Sens. 2020, 12, 1499. [Google Scholar] [CrossRef]
- European Commission Joint Research Centre. Forest Type Map 2006. Available online: http://data.europa.eu/89h/62ec23aa-2d47-4d85-bc81-138175cdf123 (accessed on 20 July 2020).
- FAO Global Forest Resources Assessment 2020: Terms and Definition. Available online: http://www.fao.org/forest-resources-assessment/2020 (accessed on 20 July 2020).
- Breiman, L. Random Forests. Mach. Learn 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J.; Elgin, J.H.; McMurtrey, J.E.; Fan, C.J. Monitoring corn and soybean crop development with hand-held radiometer spectral data. Remote Sens. Environ. 1979, 8, 237–248. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Rikimaru, A.; Roy, P.S.; Miyatake, S. Tropical forest cover density mapping. Trop. Ecol. 2002, 43, 39–47. [Google Scholar]
- Crist, E.P.; Cicone, R.C. A Physically-Based Transformation of Thematic Mapper Data---The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1984, GE-22, 256–263. [Google Scholar] [CrossRef]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Browne, M.W. Cross-Validation Methods. J. Math. Psychol. 2000, 44, 108–132. [Google Scholar] [CrossRef] [Green Version]
- Vidal, C.; Alberdi, I.; Redmond, J.; Vestman, M.; Lanz, A.; Schadauer, K. The role of European National Forest Inventories for international forestry reporting. Ann. For. Sci. 2016, 73, 793–806. [Google Scholar] [CrossRef] [Green Version]
- McRoberts, R.E.; Tomppo, E.O. Remote sensing support for national forest inventories. Remote Sens. Environ. 2007, 110, 412–419. [Google Scholar] [CrossRef]
- Tomppo, E.; Gschwantner, T.; Lawrence, M.; McRoberts, R.E.; Gabler, K.; Schadauer, K.; Vidal, C.; Lanz, A.; Ståhl, G.; Cienciala, E. National forest inventories. Pathw. Common Rep. Eur. Sci. Found. 2010, 1, 541–553. [Google Scholar]
- Biging, G.S.; Congalton, R.G.; Murphy, E.C. A Comparison of Photointerpretation and Ground Measurements of Forest Structure; American Congress on Surveying and Mapping and American Soc for Photogrammetry and Remote Sensing: Baltimore, MD, USA, 25–29 March 1991. [Google Scholar]
- Cochran, W.G. Stratified Random Sampling; John Willey & Sons Inc.: Toronto, Canada, 1977; ISBN 047116240X. [Google Scholar]
- Stehman, S.V. Impact of sample size allocation when using stratified random sampling to estimate accuracy and area of land-cover change. Remote Sens. Lett. 2012, 3, 111–120. [Google Scholar] [CrossRef]
- Guyot, G. Optical properties of vegetation canopies. In Applications of remote sensing in agriculture.; Steven, M.D., Clark, J.A., Eds.; Butterworth-Heinemann: London, UK, 1990; pp. 19–44. ISBN 0408047674. [Google Scholar]
- Pacheco-Labrador, J.; El-Madany, T.S.; Martín, M.P.; Migliavacca, M.; Rossini, M.; Carrara, A.; Zarco-Tejada, P.J. Spatio-temporal relationships between optical information and carbon fluxes in a mediterranean tree-grass ecosystem. Remote Sens. 2017, 9, 608. [Google Scholar] [CrossRef] [Green Version]
- Vlassova, L.; Perez-Cabello, F.; Nieto, H.; Martín, P.; Riaño, D.; Riva, J.D. La Assessment of methods for land surface temperature retrieval from landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling. Remote Sens. 2014, 6, 4345–4368. [Google Scholar] [CrossRef] [Green Version]
- Moore, C.E.; Beringer, J.; Evans, B.; Hutley, L.B.; Tapper, N.J. Tree--grass phenology information improves light use efficiency modelling of gross primary productivity for an Australian tropical savanna. Biogeosciences 2017, 14, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hill, M.J.; Zhang, X.; Wang, Z.; Richardson, A.D.; Hufkens, K.; Filippa, G.; Baldocchi, D.D.; Ma, S.; Verfaillie, J.; et al. Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales. Agric. For. Meteorol. 2017, 237–238, 311–325. [Google Scholar] [CrossRef]
- Whiteside, T.G.; Boggs, G.S.; Maier, S.W. Comparing object-based and pixel-based classifications for mapping savannas. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 884–893. [Google Scholar] [CrossRef]
- Arnot, C.; Fisher, P.F.; Wadsworth, R.; Wellens, J. Landscape metrics with ecotones: Pattern under uncertainty. Landsc. Ecol. 2004, 19, 181–195. [Google Scholar] [CrossRef]
- SIRS. GMES Initial Operations/Copernicus Land monitoring services—Validation of products: HRL Forest 2015 Validation Report. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjLuq_F1oXsAhVGXSsKHWOeBvEQFjAAegQIBxAB&url=https%3A%2F%2Fland.copernicus (accessed on 20 July 2020).
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Medica 2012, 22, 276–282. [Google Scholar] [CrossRef]
AOI Name | Sentinel-2 Tile | Date 1 | Date 2 |
---|---|---|---|
CZE-1 | T33UXQ | 22-03-2018 | 29-08-2018 |
ESP-1 | T30TXN | 26-10-2017 | 04-08-2018 |
ESP-2 | T29TNJ | 22-02-2018 | 11-08-2018 |
ESP-3 | T29TPJ | 21-12-2017 | 11-08-2018 |
ESP-4 | T29TNH | 22-02-2018 | 11-08-2018 |
ESP-5 | T29TNG | 24-02-2018 | 11-08-2018 |
FRA-1 | T30TYP/T30TYQ | 24-01-2018 | 19-08-2018 |
FRA-2 | T31TDM | 25-02-2018 | 19-08-2018 |
HRV-1 | T33TWL | 08-04-2018 | 01-08-2018 |
HRV-2 | T33TYL/T34TCR/T34TCQ | 11-03-2018 | 13-08-2018 |
LTU-1 | T35ULB | 18-03-2018 | 23-08-2018 |
LTU-2 | T35ULA | 18-03-2018 | 23-08-2018 |
PRT-1 | T29TNF | 26-03-2018 | 18-08-2018 |
PRT-2 | T29TNF | 26-03-2018 | 18-08-2018 |
PRT-3 | T29SND | 26-03-2018 | 18-08-2018 |
PRT-4 | T29SND | 26-03-2018 | 18-08-2018 |
AOIs | Total Points | Forest Points | Non-Forest Points |
---|---|---|---|
CZE-1 | 97 | 58 | 30 |
ESP-1 | 115 | 73 | 42 |
ESP-2 | 135 | 71 | 64 |
ESP-3 | 142 | 82 | 60 |
ESP-4 | 226 | 115 | 109 |
ESP-5 | 176 | 78 | 98 |
FRA-1 | 129 | 72 | 57 |
FRA-2 | 105 | 52 | 53 |
HRV-1 | 96 | 64 | 32 |
HRV-2 | 159 | 103 | 56 |
LTU-1 | 217 | 94 | 123 |
LTU-2 | 96 | 46 | 50 |
PRT-1 | 88 | 41 | 47 |
PRT-2 | 127 | 69 | 58 |
PRT-3 | 94 | 42 | 52 |
PRT-4 | 98 | 54 | 44 |
Total | 2100 | 1114 | 984 |
Predicted Condition | True Condition | ||
---|---|---|---|
Forest | Non-Forest | Total | |
Forest | True Positive (TP) | False Positive (FP) | Predicted Condition Positive (PCP) |
Non-Forest | False Negative (FN) | True Negative (TN) | Predicted Condition Negative (PCN) |
Total | Condition Positive (CP) | Condition Negative (CN) | sample size (n) |
Definition | Equation | ||
---|---|---|---|
Agreement metrics | Overall Accuracy (OA): Proportion of pixels correctly classified. | (1) | |
Precision (P): Proportion of correctly predicted (i.e., classified) cases from all those predicted as positive. | (2) | ||
Recall (R): Proportion of correctly predicted cases from all the real positives. | (3) | ||
Dice similarity Coefficient (DC) or F1-score: Harmonic mean of precision and recall. | (4) | ||
Error metrics | Commission Error (CE): Proportion of misclassified pixels from all those predicted as positive. | (5) | |
Omission Error (OE): Proportion of misclassified pixels from all the real positives. | (6) | ||
Relative Bias (relB): It quantifies the systematic error of the classification. | (7) |
MSF | HRL | FNF | |
---|---|---|---|
OA | 96.3 | 89.2 | 76.0 |
DC | 96.5 | 89.4 | 76.8 |
P | 95.5 | 93.6 | 80.3 |
R | 97.6 | 85.6 | 72.6 |
OE | 2.4 | 14.4 | 27.3 |
CE | 4.5 | 6.3 | 19.7 |
RelB | 2.0 | −8.6 | −9.5 |
CZE-1 | ESP-1 | ESP-2 | ESP-3 | ESP-4 | ESP-5 | FRA-1 | FRA-2 | HRV-1 | HRV-2 | LTU-1 | LTU-2 | PRT-1 | PRT-2 | PRT-3 | PRT-4 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSF | OA | 96.9 | 98.2 | 97.0 | 88.7 | 97.3 | 97.1 | 97.7 | 97.2 | 93.7 | 98.7 | 99.5 | 97.9 | 96.5 | 95.2 | 92.5 | 90.9 |
DC | 97.4 | 98.6 | 97.2 | 91.1 | 97.4 | 96.8 | 97.9 | 97.0 | 95.5 | 99.0 | 99.5 | 97.8 | 96.3 | 95.6 | 91.6 | 92.4 | |
P | 98.2 | 98.6 | 97.2 | 83.7 | 97.4 | 95.0 | 98.6 | 100 | 91.4 | 99.0 | 100 | 100 | 95.2 | 97.0 | 92.7 | 85.9 | |
R | 96.5 | 98.6 | 97.2 | 100 | 97.4 | 98.7 | 97.2 | 94.2 | 100 | 99.0 | 98.9 | 95.6 | 97.6 | 94.2 | 90.5 | 100 | |
OE | 3.4 | 1.3 | 2.8 | 0.0 | 2.6 | 1.2 | 2.8 | 5.8 | 0.0 | 0.9 | 1.0 | 4.3 | 2.4 | 5.8 | 9.5 | 0.0 | |
CE | 1.7 | 1.3 | 2.8 | 16.3 | 2.6 | 4.9 | 1.4 | 0.9 | 8.6 | 0.9 | 0.0 | 0.0 | 4.7 | 3.0 | 7.3 | 14.0 | |
relB | −1.7 | 0.0 | 0.0 | 19.5 | 0.0 | 3.8 | −1.4 | −5.7 | 9.3 | 0.0 | −1.0 | −4.3 | 2.4 | −3.0 | −2.3 | 16.3 | |
HRL | OA | 96.9 | 96.5 | 92.6 | 88.7 | 89.7 | 98.3 | 82.9 | 99.0 | 88.5 | 96.2 | 97.2 | 94.8 | 77.3 | 81.9 | 68.1 | 56.6 |
DC | 97.4 | 97.3 | 92.7 | 89.7 | 89.9 | 98.1 | 83.6 | 99.0 | 91.5 | 97.1 | 96.7 | 94.4 | 69.7 | 84.1 | 53.1 | 35.8 | |
P | 98.2 | 96.0 | 90.5 | 94.6 | 91.0 | 97.5 | 90.3 | 100 | 90.8 | 95.3 | 97.8 | 97.7 | 92.0 | 80.3 | 77.3 | 100 | |
R | 96.5 | 98.6 | 90.1 | 85.4 | 88.7 | 98.7 | 77.8 | 98.0 | 92.2 | 99.0 | 95.7 | 91.3 | 56.0 | 88.4 | 40.5 | 21.8 | |
OE | 3.4 | 1.3 | 9.8 | 14.6 | 11.3 | 1.2 | 22.2 | 1.9 | 7.81 | 0.9 | 4.2 | 8.7 | 43.9 | 11.6 | 59.5 | 78.2 | |
CE | 1.7 | 4.0 | 4.5 | 5.4 | 8.9 | 2.6 | 9.7 | 0.0 | 9.23 | 4.7 | 2.1 | 2.3 | 8.0 | 19.7 | 22.7 | 0.0 | |
relB | −1.7 | 2.7 | −5.6 | −9.7 | −2.6 | 1.3 | −13.9 | −1.9 | 1.6 | 3.9 | −2.1 | −6.5 | −39.0 | 10.1 | −47.6 | −78.2 | |
FNF | OA | 81.4 | 63.5 | 77.8 | 79.6 | 73.2 | 81.2 | 60.5 | 95.3 | 76.0 | 76.1 | 91.7 | 91.6 | 64.7 | 72.4 | 56.3 | 57.6 |
DC | 85.0 | 65.0 | 77.6 | 81.0 | 72.7 | 79.5 | 59.8 | 95.2 | 82.4 | 82.2 | 90.0 | 90.9 | 63.5 | 75.8 | 36.9 | 44.7 | |
P | 82.3 | 82.9 | 82.5 | 87.3 | 76.2 | 77.1 | 69.1 | 94.3 | 80.6 | 79.3 | 94.2 | 95.2 | 61.3 | 72.4 | 52.2 | 80.9 | |
R | 87.9 | 53.4 | 73.2 | 75.6 | 69.6 | 82.0 | 52.8 | 96.1 | 84.4 | 85.4 | 86.2 | 87.0 | 65.8 | 79.7 | 28.6 | 30.9 | |
OE | 12.1 | 46.6 | 26.7 | 24.9 | 30.4 | 17.9 | 47.2 | 3.8 | 15.6 | 14.5 | 13.8 | 13.0 | 34.1 | 20.3 | 71.4 | 69.1 | |
CE | 17.7 | 17.0 | 17.4 | 12.7 | 23.8 | 22.9 | 30.9 | 5.6 | 19.4 | 20.7 | 5.8 | 4.7 | 39.6 | 27.6 | 47.8 | 19.0 | |
relB | 6.9 | −35.6 | −11.2 | −13.4 | −8.7 | 6.4 | −23.6 | 1.9 | 4.7 | 7.7 | −8.5 | −8.7 | 7.3 | 10.1 | −45.2 | −61.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez-Carrillo, A.; Franco-Nieto, A.; Pinto-Bañuls, E.; Basarte-Mena, M.; Revilla-Romero, B. Designing a Validation Protocol for Remote Sensing Based Operational Forest Masks Applications. Comparison of Products Across Europe. Remote Sens. 2020, 12, 3159. https://doi.org/10.3390/rs12193159
Fernandez-Carrillo A, Franco-Nieto A, Pinto-Bañuls E, Basarte-Mena M, Revilla-Romero B. Designing a Validation Protocol for Remote Sensing Based Operational Forest Masks Applications. Comparison of Products Across Europe. Remote Sensing. 2020; 12(19):3159. https://doi.org/10.3390/rs12193159
Chicago/Turabian StyleFernandez-Carrillo, Angel, Antonio Franco-Nieto, Erika Pinto-Bañuls, Miguel Basarte-Mena, and Beatriz Revilla-Romero. 2020. "Designing a Validation Protocol for Remote Sensing Based Operational Forest Masks Applications. Comparison of Products Across Europe" Remote Sensing 12, no. 19: 3159. https://doi.org/10.3390/rs12193159
APA StyleFernandez-Carrillo, A., Franco-Nieto, A., Pinto-Bañuls, E., Basarte-Mena, M., & Revilla-Romero, B. (2020). Designing a Validation Protocol for Remote Sensing Based Operational Forest Masks Applications. Comparison of Products Across Europe. Remote Sensing, 12(19), 3159. https://doi.org/10.3390/rs12193159