Regression Analysis of Subsidence in the Como Basin (Northern Italy): New Insights on Natural and Anthropic Drivers from InSAR Data
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
ERS 1 and 2 (1992–2000) | Envisat (2003–2010) | Unit 1—RM | Unit 3—OS | σv | Piezometric Level | Distance from Backthrust | Distance from Cosia Stream | |
---|---|---|---|---|---|---|---|---|
ERS 1 and 2 (1992–2000) | –0.16 | –0.52 | –0.28 | 0.62 | 0.24 | 0.31 | ||
Envisat (2003–2010) | –0.29 | –0.44 | –0.17 | 0.63 | 0.27 | 0.35 | ||
Unit 1—RM | –0.16 | –0.29 | 0.35 | 0.32 | –0.54 | 0.45 | 0.31 | |
Unit 3—OS | –0.52 | –0.44 | 0.35 | 0.25 | –0.62 | –0.07 | –0.13 | |
σv | –0.28 | –0.17 | 0.32 | 0.25 | –0.13 | –0.11 | –0.15 | |
Piezometric Level | 0.62 | 0.63 | –0.54 | –0.62 | –0.13 | –0.15 | –0.20 | |
Distance from Backthrust | 0.24 | 0.27 | 0.45 | –0.07 | –0.11 | –0.15 | 0.86 | |
Distance from Cosia Stream | 0.31 | 0.35 | 0.31 | –0.13 | –0.15 | –0.20 | 0.86 |
β0 | Thickness of Unit 1—RM | Thickness of Unit 3—OS | Overburden Stress (σv) | Piezometric Level | Distance from Backthrust | Distance from Cosia Stream | adj-R2 | AIC | |
---|---|---|---|---|---|---|---|---|---|
ERS 1 and 2 (1992–2000) | |||||||||
M1 | *** | * | *** | . | . | 0.27 | 10,860 | ||
M2 | *** | *** | *** | *** | 0.30 | 10,615 | |||
M3 | *** | *** | *** | *** | *** | 0.52 | 8327 | ||
M4 | *** | *** | *** | *** | 0.46 | 9035 | |||
M5 | *** | *** | *** | 0.42 | 9439 | ||||
M6 | *** | *** | *** | *** | *** | *** | 0.55 | 7894 | |
M7 | *** | *** | *** | ** | *** | 0.52 | 8350 | ||
M8 | *** | *** | ** | *** | *** | *** | 0.62 | 6824 | |
Envisat (2003–2010) | |||||||||
M1 | *** | *** | *** | 0.22 | 9251 | ||||
M2 | *** | * | *** | *** | 0.22 | 9248 | |||
M3 | *** | * | *** | *** | *** | 0.42 | 7386 | ||
M4 | *** | *** | *** | *** | 0.41 | 7484 | |||
M5 | *** | *** | *** | 0.41 | 7491 | ||||
M6 | *** | *** | *** | *** | *** | *** | 0.55 | 5765 | |
M7 | *** | *** | *** | ** | *** | 0.55 | 5763 | ||
M8 | *** | *** | *** | *** | *** | *** | 0.65 | 4244 |
β0 | Thickness of Unit 1—RM | Thickness of Unit 3—OS | Overburden Stress (σv) | Piezometric Level | Distance from Backthrust | Distance from Cosia Stream | AIC | |
---|---|---|---|---|---|---|---|---|
ERS 1 and 2 (1992–2000) | ||||||||
M1 | *** | *** | *** | . | . | 9954 | ||
M2 | *** | *** | *** | *** | 9271 | |||
M3 | *** | *** | *** | *** | *** | 7025 | ||
M4 | *** | *** | *** | *** | 8218 | |||
M5 | *** | *** | *** | 9191 | ||||
M6 | *** | *** | *** | *** | *** | *** | 6813 | |
M7 | *** | *** | *** | *** | *** | 7768 | ||
M8 | *** | *** | *** | *** | *** | *** | 5802 | |
Envisat (2003–2010) | ||||||||
M1 | *** | *** | *** | 8207 | ||||
M2 | *** | *** | *** | *** | 9736 | |||
M3 | *** | *** | *** | *** | *** | 6052 | ||
M4 | *** | *** | *** | *** | 6529 | |||
M5 | *** | *** | *** | 7199 | ||||
M6 | *** | *** | *** | *** | *** | *** | 4663 | |
M7 | *** | *** | *** | *** | *** | 4889 | ||
M8 | *** | *** | *** | *** | *** | *** | 3336 |
References
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Herrera, G.; Fernández-Merodo, J.A.; Tomás, R.; Cooksley, G.; Mulas, J. Advanced interpretation of subsidence in Murcia (SE Spain) using A-DInSAR data—Modelling and validation. Nat. Hazards Earth Syst. Sci. 2009, 9, 647–661. [Google Scholar] [CrossRef]
- Comerci, V.; Capelletti, S.; Michetti, A.M.; Rossi, S.; Serva, L.; Vittori, E. Land subsidence and Late Glacial environmental evolution of the Como urban area (Northern Italy). Quat. Int. 2007, 173, 67–86. [Google Scholar] [CrossRef]
- Galloway, D.L.; Jones, D.R.; Ingebritsen, S. Land subsidence in the United States; US Geological Survey: Reston, VA, USA, 1999. [Google Scholar]
- Solari, L.; Del Soldato, M.; Bianchini, S.; Ciampalini, A.; Ezquerro, P.; Montalti, R.; Raspini, F.; Moretti, S. From ERS 1/2 to Sentinel-1: Subsidence Monitoring in Italy in the Last Two Decades. Front. Earth Sci. 2018, 6, 1–16. [Google Scholar] [CrossRef]
- Mohamadi, B.; Balz, T.; Younes, A. A Model for Complex Subsidence Causality Interpretation Based on PS-InSAR Cross-Heading Orbits Analysis. Remote. Sens. 2019, 11, 2014. [Google Scholar] [CrossRef]
- Cui, Z.-D.; Yang, J.-Q.; Yuan, L. Land subsidence caused by the interaction of high-rise buildings in soft soil areas. Nat. Hazards 2015, 79, 1199–1217. [Google Scholar] [CrossRef]
- Bozzano, F.; Esposito, C.; Mazzanti, P.; Patti, M.; Scancella, S. Imaging Multi-Age Construction Settlement Behaviour by Advanced SAR Interferometry. Remote Sens. 2018, 10, 1137. [Google Scholar] [CrossRef]
- Comerci, V.; Vittori, E. The Need for a Standardized Methodology for Quantitative Assessment of Natural and Anthropogenic Land Subsidence: The Agosta (Italy) Gas Field Case. Remote Sens. 2019, 11, 1178. [Google Scholar] [CrossRef]
- Baldi, P.; Casula, G.; Cenni, N.; Loddo, F.; Pesci, A. GPS-based monitoring of land subsidence in the Po Plain (Northern Italy). Earth Planet. Sci. Lett. 2009, 288, 204–212. [Google Scholar] [CrossRef]
- Cigna, F.; Del Ventisette, C.; Liguori, V.; Casagli, N. Advanced radar-interpretation of InSAR time series for mapping and characterization of geological processes. Nat. Hazards Earth Syst. Sci. 2011, 11, 865–881. [Google Scholar] [CrossRef]
- Tomàs, R.; Romero, R.; Mulas, J.; Marturià, J.J.; Mallorqui, J.J.; Lopez-Sanchez, J.M.; Herrera, G.; Gutiérrez, F.; Gonzalez, P.J.; Fernández, J.; et al. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain. Environ. Earth Sci. 2014, 71, 163–181. [Google Scholar] [CrossRef]
- Ezquerro, P.; Del Soldato, M.; Solari, L.; Tomàs, R.; Raspini, F.; Ceccatelli, M.; Fernández-Merodo, J.A.; Casagli, N.; Herrera, G. Vulnerability Assessment of Buildings due to Land Subsidence Using InSAR Data in the Ancient Historical City of Pistoia (Italy). Sensors 2020, 20, 2749. [Google Scholar] [CrossRef] [PubMed]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Bitelli, G.; Bonsignore, F.; Del Conte, S.; Franci, F.; Lambertini, A.; Novali, F.; Severi, P.; Vittuari, L. Updating the subsidence map of Emilia-Romagna region (Italy) by integration of SAR interferometry and GNSS time series: The 2011–2016 period. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 39–44. [Google Scholar]
- Cascini, L.; Ferlisi, S.; Peduto, D.; Fornaro, G.; Manunta, M. Analysis of subsidence phenomenon via DinSAR data and geotechnical criteria. Riv. Ital. Geotec. 2007, 41, 50–67. [Google Scholar]
- Manzo, M.; Ricciardi, G.; Casu, F.; Ventura, G.; Zeni, G.; Borgström, S.; Berardino, P.; Del Gaudio, C.; Lanari, R. Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry. J. Volcanol. Geotherm. Res. 2006, 151, 399–416. [Google Scholar] [CrossRef]
- Peduto, D.; Cascini, L.; Arena, L.; Ferlisi, S.; Fornaro, G.; Reale, D. A general framework and related procedures for multiscale analyses of DInSAR data in subsiding urban areas. ISPRS J. Photogramm. Remote Sens. 2015, 105, 186–210. [Google Scholar] [CrossRef]
- Polcari, M.; Moro, M.; Romaniello, V.; Stramondo, S. Anthropogenic subsidence along railway and road infrastructures in Nothern Italy highlighted by Cosmo-SkyMed satellite data. J. Appl. Remote Sens. 2019, 13, 024515. [Google Scholar] [CrossRef]
- Pratesi, F.; Tapete, D.; Del Ventisette, C.; Moretti, S. Mapping interactions between geology, subsurface resource exploitation and urban development in transforming cities using InSAR Persistent Scatterers: Two decades of change in Florence, Italy. Appl. Geogr. 2016, 77, 20–37. [Google Scholar] [CrossRef]
- Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Moretti, S. PSInSAR Analysis in the Pisa Urban Area (Italy): A Case Study of Subsidence Related to Stratigraphical Factors and Urbanization. Remote Sens. 2016, 8, 120. [Google Scholar] [CrossRef]
- Stramondo, S.; Bozzano, F.; Marra, F.; Wegmuller, U.; Cinti, F.R.; Moro, M.; Saroli, M. Subsidence induced by urbanisation in the city of Rome detected by advanced InSAR technique and geotechnical investigations. Remote Sens. Environ. 2008, 112, 3160–3172. [Google Scholar] [CrossRef]
- Tosi, L.; Teatini, P.; Carbognin, L.; Brancolini, G. Using high resolution data to reveal depth-dependent mechanisms that drive land subsidence: The Venice coast, Italy. Tectonophysics 2009, 474, 271–284. [Google Scholar] [CrossRef]
- Buckley, S.M.; Rosen, P.A.; Hensley, S.; Tapley, B.D. Land subsidence in Houston, Texas, measured by radar interferometry and constrained by extensometers. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Cigna, F.; Osmanoglu, B.; Cabral-Cano, E.; Dixon, T.; Ávila-Olivera, J.A.; Garduño-Monroy, V.H.; DeMets, C.; Wdowinski, S. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sens. Environ. 2012, 117, 146–161. [Google Scholar] [CrossRef]
- Herrera, G.; Tomàs, R.; Monells, D.; Centolanza, G.; Mallorqui, J.J.; Vicente, F.; Navarro, V.D.; Lopez-Sanchez, J.M.; Sanabria, M.; Cano, M.; et al. Analysis of subsidence using TerraSAR-X data: Murcia case study. Eng. Geol. 2010, 116, 284–295. [Google Scholar] [CrossRef]
- Hu, B.; Chen, J.; Zhang, X.-F. Monitoring the Land Subsidence Area in a Coastal Urban Area with InSAR and GNSS. Sensors 2019, 19, 3181. [Google Scholar] [CrossRef]
- Kim, S.-W.; Wdowinski, S.; Dixon, T.H.; Amelung, F.; Kim, J.W.; Won, J.-S. Measurements and predictions of subsidence induced by soil consolidation using persistent scatterer InSAR and a hyperbolic model. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Krassakis, P.; Kazana, S.; Chen, F.; Koukouzas, N.; Parcharidis, I.; Lekkas, E. Detecting subsidence spatial risk distribution of ground deformation induced by urban hidden streams. Geocarto Int. 2019, 1–18. [Google Scholar] [CrossRef]
- Minh, D.H.T.; Tran, Q.C.; Pham, Q.N.; Dang, T.T.; Nguyen, D.A.; El-Moussawi, I.; Le Toan, T. Measuring Ground Subsidence in Ha Noi Through the Radar Interferometry Technique Using TerraSAR-X and Cosmos SkyMed Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3874–3884. [Google Scholar] [CrossRef]
- Pacheco-Martínez, J.; Cabral-Cano, E.; Wdowinski, S.; Hernandez-Marin, M.; Ortíz-Lozano, J. Ángel; Zermeño-De-Leon, M.E. Application of InSAR and Gravimetry for Land Subsidence Hazard Zoning in Aguascalientes, Mexico. Remote Sens. 2015, 7, 17035–17050. [Google Scholar] [CrossRef]
- Zhou, C.; Lan, H.; Gong, H.; Zhang, Y.; Warner, T.A.; Clague, J.J.; Wu, Y. Reduced rate of land subsidence since 2016 in Beijing, China: Evidence from Tomo-PSInSAR using RadarSAT-2 and Sentinel-1 datasets. Int. J. Remote Sens. 2020, 41, 1259–1285. [Google Scholar] [CrossRef]
- Ferrario, M.F.; Bonadeo, L.; Brunamonte, F.; Livio, F.; Martinelli, E.; Michetti, A.M.; Neri, P.C.; Chiessi, V.; Comerci, V.; Höbig, N. Late Quaternary environmental evolution of the Como urban area (Northern Italy): A multidisciplinary tool for risk management and urban planning. Eng. Geol. 2015, 193, 384–401. [Google Scholar] [CrossRef]
- Bajni, G.; Apuani, T.; Beretta, G.P. Hydro-geotechnical modelling of subsidence in the Como urban area. Eng. Geol. 2019, 257, 105144. [Google Scholar] [CrossRef]
- Bini, A. L’apparato Glaciale Wurmiano di Como. Ph.D. Thesis, University of Milan, Milan, Italy, 1987. Unpublished. [Google Scholar]
- Rossi, S.; Alberti, F.; Felber, M.; Bini, A. Evidenze di fluttuazioni glaciali würmiane nella bassa valle della Breggia (Cernobbio, Como). Boll. Della Soc. Ticin. Sci. Nat. 1991, LXXIX, 25–47. [Google Scholar]
- Michetti, A.M.; Livio, F.; Pasquaré, F.A.; Vezzoli, L.; Bini, A.; Bernoulli, D.; Sciunnach, D. Note Illustrative della Carta Geologica d’Italia, Foglio 075, Como, Progetto CARG, 2014, 206p. Available online: http://www.isprambiente.gov.it/Media/carg/note_illustrative/75_Como.pdf (accessed on 13 November 2019).
- Servizio Geologico D’Italia. 2015—Carta Geologica d’Italia alla scala 1:50000—Foglio n. 75 “Como”. Available online: http://sgi2.isprambiente.it/mapviewer/ (accessed on 13 November 2019).
- Ferrario, M.F.; Brunamonte, F.; Caccia, A.; Livio, F.; Martinelli, E.; Mazzola, E.; Michetti, A.M.; Terrana, S. Buried Landscapes: Geoarchaeology of the Roman Harbor of Como (N Italy). Alp. Mediterr. Quat. 2015, 28, 111–120. [Google Scholar]
- Comune di Como. Relazione di Sintesi Della Commissione per lo Studio dei Fenomeni di Subsidenza; Documenti e Ricerche 34; Comune di Como: Como, Italy, 1980. [Google Scholar]
- Geoportale Regione Lombardia. Available online: http://www.geoportale.regione.lombardia.it/ (accessed on 16 June 2020).
- MATTM, Piano Straordinario di Telerilevamento Ambientale (2010). Available online: http://www.pcn.minambiente.it/mattm/en/not-ordinary-plan-of-remote-sensing/ (accessed on 13 November 2019).
- Costantini, M.; Falco, S.; Malvarosa, F.; Minati, F. A new method for identification and analysis of persistent scatterers in series of SAR images. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008; pp. 449–452. [Google Scholar]
- Costantini, M.; Falco, S.; Malvarosa, F.; Minati, F.; Trillo, F. Method of persistent scatterer pairs (PSP) and high resolution SAR interferometry. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Cascini, L.; Fornaro, G.; Peduto, D. Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng. Geol. 2010, 112, 29–42. [Google Scholar] [CrossRef]
- Wackernagel, H. Ordinary Kriging. In Multivariate Geostatistics; Springer: Berlin/Heidelberg, Germany, 1995; pp. 74–81. [Google Scholar] [CrossRef]
- Krivoruchko, K. Empirical Bayesian Kriging; Esri: Redlands, CA, USA, 2012. [Google Scholar]
- Farrar, D.E.; Glauber, R.R. Multicollinearity in Regression Analysis: The Problem Revisited. Rev. Econ. Stat. 1967, 49, 92. [Google Scholar] [CrossRef]
- Nelder, J.A.; Wedderburn, R.W.M. Generalized Linear Models. J. R. Stat. Soc. Ser. A 1972, 135, 370–384. [Google Scholar] [CrossRef]
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2010, 73, 3–36. [Google Scholar] [CrossRef]
- Sileo, G.; Giardina, F.; Livio, F.; Michetti, A.M.; Mueller, K.; Vittori, E. Remarks on the Quaternary tectonics of the Insubria Region (Lombardia, NW Italy, and Ticino, SE Switzerland). Boll. Della Soc. Geol. Ital. 2007, 126, 411. [Google Scholar]
- Livio, F.; Berlusconi, A.; Chunga, K.; Michetti, A.M.; Sileo, G. New stratigraphic and structural evidence for Late Pleistocene surface faulting along the Monte Olimpino Backthrust (Lombardia, N Italy). Online Soc. Geol. Ital. 2011, 14, 17–25. [Google Scholar]
- Flemings, P.B.; Jordan, T.E. Stratigraphic modeling of foreland basins: Interpreting thrust deformation and lithosphere rheology. Geology 1990, 18, 430. [Google Scholar] [CrossRef]
- Bridge, J.S. Rivers and Floodplains: Forms, Processes, and Sedimentary Record; John Wiley & Sons: Oxford, UK, 2009. [Google Scholar]
- Martinelli, E.; Castelletti, L.; Ferrario, M.F.; Livio, F.; Michetti, A.M. Archeologia e indagini stratigrafiche per la ricostruzione della linea di costa e delle aree portuali della Como romana. Riv. Archeol. Comense 2019, 200, 5–14. [Google Scholar]
- Ronchetti, F.B. Diluvi ed esondazioni a Como in età romana. Riv. Archeol. Dell’antica Prov. Diocesi Como 2016, 197, 45–57. [Google Scholar]
- Uboldi, M. Carta archeologica della Lombardia. In Franco Cosimo Panini La Città Murata e la Convalle; Franco Cosimo Panini Editore: Como, Italy, 1993. [Google Scholar]
Radar Sensor | ERS 1 and 2 1 | Envisat 1 | ||
---|---|---|---|---|
Wavelength and Frequency (λ) | C-band λ = 5.6 cm | C-band λ = 5.6 cm | ||
Revisiting Time | 35 days | 35 days | ||
Acquisition Geometry | Ascending | Descending | Ascending | Descending |
Observation Period | 22 July 1995–20 August 2000 | 30 April 1992–3 December 2000 | 6 July 2003–4 July 2010 | 11 April 2004–4 July 2010 |
Number of Images | 25 | 77 | 50 | 53 |
Number of PS | 848 | 2166 | 1826 | 2263 |
Average density (PS/km2) | 53 | 135 | 114 | 141 |
Standard deviation (σ) | 0.88 | 0.81 | 0.70 | 0.72 |
ERS 1 and 2 (1992–2000) | Envisat (2003–2010) | |||
---|---|---|---|---|
PCC and Type of Correlation | PCC and Type of Correlation | |||
Thickness of Unit 1—RM | –0.16 | Null | –0.29 | Weak |
Thickness of Unit 3—OS | –0.52 | Moderately Strong | –0.44 | Weak |
Overburden stress (σv) | –0.28 | Weak | –0.17 | Null |
Piezometric level | 0.62 | Moderately Strong | 0.63 | Moderately Strong |
Thickness of Unit 1—RM | Thickness of Unit 3—OS | Overburden Stress (σv) | Piezometric Level | |||||
---|---|---|---|---|---|---|---|---|
PCC and Type of Correlation | PCC and Type of Correlation | PCC and Type of Correlation | PCC and Type of Correlation | |||||
Thickness of Unit 1—RM | 0.35 | Weak | 0.32 | Weak | –0.55 | Moderately Strong | ||
Thickness of Unit 3—OS | 0.35 | Weak | 0.25 | Weak | –0.62 | Moderately Strong | ||
Overburden Stress (σv) | 0.32 | Weak | 0.25 | Weak | –0.13 | Null | ||
Piezometric Level | –0.55 | Moderately Strong | –0.62 | Moderately Strong | –0.13 | Null |
β0 | Thickness of Unit 1—RM | Thickness of Unit 3—OS | Overburden Stress (σv) | Piezometric Level | adj-R2 | AIC | |
---|---|---|---|---|---|---|---|
ERS 1 and 2 (1992–2000) | |||||||
GLM | *** | *** | *** | *** | *** | 0.52 | 8327 |
GAM | *** | *** | *** | *** | *** | 7025 | |
Envisat (2003–2010) | |||||||
GLM | *** | *** | *** | *** | *** | 0.42 | 7386 |
GAM | *** | *** | *** | *** | *** | 6052 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nappo, N.; Ferrario, M.F.; Livio, F.; Michetti, A.M. Regression Analysis of Subsidence in the Como Basin (Northern Italy): New Insights on Natural and Anthropic Drivers from InSAR Data. Remote Sens. 2020, 12, 2931. https://doi.org/10.3390/rs12182931
Nappo N, Ferrario MF, Livio F, Michetti AM. Regression Analysis of Subsidence in the Como Basin (Northern Italy): New Insights on Natural and Anthropic Drivers from InSAR Data. Remote Sensing. 2020; 12(18):2931. https://doi.org/10.3390/rs12182931
Chicago/Turabian StyleNappo, Nicoletta, Maria Francesca Ferrario, Franz Livio, and Alessandro Maria Michetti. 2020. "Regression Analysis of Subsidence in the Como Basin (Northern Italy): New Insights on Natural and Anthropic Drivers from InSAR Data" Remote Sensing 12, no. 18: 2931. https://doi.org/10.3390/rs12182931
APA StyleNappo, N., Ferrario, M. F., Livio, F., & Michetti, A. M. (2020). Regression Analysis of Subsidence in the Como Basin (Northern Italy): New Insights on Natural and Anthropic Drivers from InSAR Data. Remote Sensing, 12(18), 2931. https://doi.org/10.3390/rs12182931